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Abstract

In this paper an exhaustive survey of complex analytic dynamics is presented,
highlighting in the process significant evolutionary trends the subject has
undergone right from the local, down to the global theories. The exponential

function E;(z) = Ae” is then used as a classical example of an entire
transcendental function to illustrate new phenomenon of modern perspectives
of iteration in (C.
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1.0 Introductory Survey

Let f(z) be a function of a complex variabteande a fixed point off (z). The main
concern of the local theory is to determine the rate of coemerg of the sequence of
iterates{f " (z)]. n = 0,1,2, ... in some neighborhoal; ., of . The important result in this part
of the theory can be found in the papers of Baker [1, 2], Fatou [10, 11, 12], Julia [13], B3gel [
and Whittington [22]. The local theory of natural iterationswater generalized to that of
continuous iteration and we present here some of the known relegaltsr Letf(z) be given

by the power series

f(z)=az+a,z’+L ,|4p R (1.1)
So thatz = 0is a fixed point of multiplierz,, then then®" iterate f ™ (=) of f(z) is given as
f"(z) =bz+b,2* +L (1.2)

Convergent in some neighborholatl < R, of z = 0. Hereb, = a," andb,is a function of the
a;'s. We now replacer by an arbitrary real or complex numbgrand define formally the
continuous iteraté “ (z) of f(z) by

f"(z)=a,(0)z+a,(0,)Z +L +a,(0)z"+L (1.3)
Where the coefficients,, (o) are uniquely determined from the conditions
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a(o)=alandf,of =fof, (1.4)
Unlike the natural iterateg”, the continuous iterate§“,may not converge at all. Hence it is

natural to investigate the question of convergence of thencmnis iterates. This question of
convergence of continuous iterates near a fixed points of meittiph; such that

0 < |a,| < 1or|a,| =1 was completely answered by Koenigs (1984) by the use of the
Schroder functional equation

o(F"(2)) = a,"o(2) (L5)
where@ is given by the (Schroder series)

e(z) =z+X5-;b,z" (1.6)
convergent in some neighborhood of 0, and satisfying

#(f(2)) = ay0(2) (L.7)
so that

fi(2) = o_y{a,"0(2)} (1.8)

in some neighborhood af= 0.
One can replacen in (1.8) by an arbitrary real or complex numberand for suitable

determinations of a, °, the expression

7)) =e_,{a,"¢(2)} (1.9)
generalize$"(2) to a family of continuous iterates fof(z2) which are permutable in the sense that
Frr@)=r ()= (1.10)

The question of convergence near an indifferent fixed point prosgddifficult. Cremer [6] and
Siegel [19] have shown that the convergence of the series obtainediwieexp(if) depends

on a number of theoretical propertieséofif a, is not a root of unity, then the Schroder function

@(z) of (1.9) can be calculated formally, but it need not converge.
Cremer showed that if

lim,  Inf |a," — 1| =0 (1.11)
there exist functions with fixed points of multiplias, for which the Schroder series (1.6)
diverges. On the other hand Siegel showed that if

logla,” — 1] = 0 (logn) (n— x) (1.12)
then the Schroder series (1.6) converges for eyiry) with f(0) =0 and f (0) = a,.
However it is generally not possible to formulate the Schrodetifumi¢ a, is not a root of unity
but |a,| = 1. In this case the Schroder function exists if and only if:fiieiterate off (=) is the

identity function.
The case of natural iteratg$ (z) whena, = 1 has been studied by Fatou [10, 11, 12].

In this case also the continuous iterates analyti =at0 are not provided for by the Schroder

functional equation.
Fora; = 1 are proceed as follows: we represgfiby the formal power series

fé(z) =z +a,0z* +T*_. b, (a)z" (1.13)
whereb, (o) are polynomials inz. The existing literature deals with the question of determining
the values ofr for which the formal power series (1.13) converges for a given
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The following theorem of Baker is of fundamental importance.
Theorem 1.1 Baker [1].
If R is the set of values corresponding to the convergent memb#re tmily (1.13)

then R has one of the following forms.

() The pointeg = 0

(i) fnagln=0 %1, £2, -, and g, #0

(i) {moy+ no},wherem=0, 1, £2,---, n=0, 1, £2, -, g, # 0,
g, # 0 and Gc,fgl is not real

(iv) The whole plane
Liverpool [15] improved the above theorem by proving the dégeénnot occur at all.
We shall afford the following definition which is fundamental the theorem that
follows:-
Definition 1.1
A functionf(2) of the complex variable is called embeddable if the casg pf theorem

1.1 above occurs otherwiges called non-embeddable.
The functionf(z) = :z({l +2) provides an easy example of an embeddable function.

Since In this cas¢“(z) = zfr;'l converges for all values @f The following theorem

+gz)
gives examples of classes of non- embeddable functions.
Theorem 1.2 Baker [3]

If f(z) =e® — 1 thenf“(z) converges only for integral valuesaf

Theorem 1.3Baker [4]
If f(z) is a meromorphic function with an expansion of the form

f{:)=:—2a.;:’"‘. a, #0

near the origin, thefi(z) is non-embeddable except when
Fl-\ =2/ _
P2 (14 az)
Yet other classes of non-embeddable functions can be found in Liverpoolli®&plobal theory
of iteration developed by Fatou and Julia on the other hand dealsheiflamily {f™(z)] of

natural iterates of the function of complex variable. Thisthé also known as the Fatou - Julia
theory — in which they considered only rational and entire fumetiRadstrom examined how far
the theory of Fatou and Julia can be extended to other glag$enctions. He proved that the
Fatou-Julia theory exists for the rational and entire functimmsidered by Fatou and Julia and
precisely for one other class of functions; functions having Bxaoe pole and one essential
singularity in the extended plane.

2.0  Advances in complex analytic dynamics

We shall now review the successes achieved over theipeamsattempt to resolve some
of the problems and open questions encountered as the subject ofxcaymphmics advanced
into the century. Indeed it is already an established fact thailerranalytic dynamics has under
gone rapid development in recent years.
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After a period of relative dormancy, the field was rejuvenatetioB0 because of some
intriguing computer graphics, images of the Mandelbrot setedisas major new mathematical
advances due to Douady and Hubbord [9] and Sullivan [20, 21] among others.

The field of complex analytic dynamics has experienced two velatshort periods of
vigorous growth. The field traces its origin to the global theory wvh&gan in the late nineteenth
and early twentieth century during which time; mathematicianb as Leau, Schroder, Keonigs,
and Bottcher became interested in the local behavior of complex funatidesiteration.

During the period of 1918-20, a dramatic shift in emphasis occurregrotarily to the
pioneering efforts of two French mathematicians Gaston Julkh Rierre Fatou. Instead of
considering only local dynamic behavior, Julia and Fatou took a more global point of view. A
from the fixed points they found quite different dynamical batravometimes the results of
iteration are quite tame or stable: at other timesetitesations behaved in dynamically different
fashion - what we now call chaotic behavior. It is in their hondrtleanow call the stable region
for a complex dynamical system the Fatou set, while the chagfion is known as the Julia set.
In a series of remarkable papers between 1918-20, Fatou andubaieeded in describing many
of the properties of both of these sets for rational maps.edemin attempting to classify all
possible dynamics on the Fatou set, they reached an impassecdiidynot rule out the
possibility that the dynamics included wandering domains, which thegtexpeould not occur,
nor could they prove the existence of what are known as Siesfys| which they expected would
occur. With these two road blocks in the way, work in complex anadiythamics was slowed
down and there was not much activity in the field for about fifty years.

There were two notable events which occurred during this period ofadoy. Siegel
[19] showed that indeed Siegel disks could in fact exist in comgiy@amical systems. This
brought the classification of stables regions one step closemntpletion. Later, Baker extended
much of the work of Fatou and Julia to other classes of functionsjrshatong the way that
other types of stable behavior could occur for entire and meromorphtmfiusic

The second major period of activity began when Mandelbrot [18}, dised computer
graphics to explore complex dynamics. His discovery of the Mandedetoprompted many
mathematicians to re investigate this field. In quick suamesSullivan introduced the use of
guasi-conformal maps into the subject. This allowed himrévgohis “No wandering domains
theorem”, which essentially completed the classificatiorstable dynamics of rational maps
began by Fatou and Julia. At the same time Douady and Hubbord openestaswin the field
by considering the parameter space for quadratic polynomials.deivejoped a technique which
enabled them to classify less or more completely all posiipés of quadratic dynamics. The
work of Blanchard [5] is indeed a key source material in thiscton as well as the results of
Liverpool and Yuguda [16 and 17] both of which link up iteration theorycantplex analytic
dynamics.All of these and the ground work of Devaney [8], formed ttial imiotivation for this
work.

2.1 Complex dynamics and entire transcendental functions

Our interest in this section is to illustrate some of the ple@nomenon that occurs in the
iteration of rational maps and entire transcendental functioesmEin differences arise because
of the point atc.  For polynomials, this point is a super attracting fixed p&iat.rational maps,

=0 is dynamically the same as any other point in the Riemann sjgharior entire transcendental
functions,=c is an essential singularity. By the Picard theorem, any plaighborhood oz is
mapped by an entire function over the entire plane, missing at most one
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point, and taking any other value infinitely often. Thus the paini injects a tremendous
amount of “hyperbolicity” into the dynamics and results in substadiiferences in both the

dynamics on and the geometry of the Julia sets for these maps.

In this paper we will concentrate on the Julia sets of the @minscendental function,

Ae®, whered == 0 is a real parameter. It is to be noted that entiretiume share many of the
dynamical properties of polynomial or rational maps, but therecane snajor differences. For
example, the Julia sets of these maps have the interestingtpribyae they may explode as the
parametert is varied. That is, the Julia set undergoes sudden drarhatiges at certain critical

parameter values. In the exponential case, one such explosion wbeurd = ; For instance

for A-values less than this critical value, the Julia set oesupirelatively small, nowhere dense
subset of the right half plane, but whan= ; the Julia set is the whole plane.

This means that the set of chaotic orbits changes disoonsty at this parameter value.
This type of bifurcation cannot happen in the families of polynoariahtional maps. Our major
goal in this paper is to describe this explosion in detail.

In the preceding section we present some preliminary notionscibamplex analysis and
dynamical systems theorem. We also give a precise defirafiJulia sets and formulate some of
its basic properties. We then describe the Julia séebdfbefore the explosion occurs and then

prove that the Julia set is a nowhere dense subset of the rigptam& whend < ; following
which we can concentrate on the cals&% where the Julia set is the whole plane. We also

present several alternative characterizations of the Julia $et two cases highlighted.
2.1.1 Preliminaries
Our ideal point of departure before looking at the specifie cfde® would be first to consider
some basic definitions from dynamical systems theory. Fiffsted point for a functior, as the
name implies is a poirt such thaif (z) = z. The pointz is periodic if there exist an integer
such thatf *(z) = z. We define the smallest positiviz as the period of and note immediately
that any fixed pointz is periodic with period one, and in fgtt(z) = = for all n.

Of particular interest to us as we consider Julia setdwithe behavior of orbits nearby
certain periodic points. We first distinguish several differepes$yof periodic points.
First, if z is a periodic point of perioat, and0 < |(f™) (z,)| < 1, thenz, is said to be an

attracting periodic point. In the special case W|‘(§fh“} {Z:D}| = 0, we callz, a super attracting
periodic point. _

If =, is such thaw| (™) {:c}| = 1 thenz, is said to be a repelling periodic point. The
intermediate case|e|ff”} (_:c_'}l| = 1, gives indifferent periodic points. As we would expect,

points nearby an attracting fixed point tend, upon iteration, towhetspoint. In the case of
repeller, points nearby the fixed point eventually escape frompthiat upon iteration. These
points can be made more precise into a theorem which we proceed to give.
Theorem 2.1.1

If z,is an attracting fixed point, there is an open dlskboutz,, such that ifz € U, then

lim, _. (f")(z) = z,.

Proof

Journal of the Nigerian Association of Mathematical Physics Volume 15 (November, 2009)27 - 36
Modern perspective of iteration h K. B. YugudaJ of NAMP



Since z, is an attracting fixed point, there exisiis> 0 and ¢ <1 such that if
|z —zgl < &, ther|f (z)| < u. Hence it follows that ifz,z, € B5(z,), the ball of radiusj
aboutz,, then

1f(z1) — fle )l < plzy — 25| < |z — 2,
Therefore,f (B; (z,)) © B,;(z,). By the contraction mapping principlé,is a contraction in
B;(z,), and so all points in the ball tend to the fixed paintinder iteration.
In the above proof, the sé = B, (z,) — f(Bs(z,)] is called the fundamental domain. This
means that ifz € B;(z,),z = z,, then there is a uniquev € D and n = 0 such that
f™(w) = z. This means that each forward orbitBa(z,) which is not the fixed point passes
throughD exactly once.

To see why this is true, we note that, as above,

fr {55 {zn),} = 5;“5[39)-
Hence there is a smallest integer 0 such that: € f/ (Ba (znj) but
zZ € fa"I[Eﬁ(:E}). Then we may letv € D be such thaf’(w) = z andn = j (see Figure

2.1)
B{l‘" (:'D‘-}

Figure 2.1B;(z,) — f(B; (z,)) is a fundamental domain

We call the set of all points whose orbits tend to a given fixed point #ire dlzattraction
of that point. Clearly, the basin of attraction is an open set.

In the case of a repelling fixed point, nearby points eventealtape from the repeller
upon iteration. In contrast to the previous theorem, we state
Theorem 2.1.2

If z, is a repelling fixed point then there exists a didkabout z, such that if
z €U (z # z,), then there existe > 0 such thaff *(z) &€ u
Proof

Sincez, is a repelling fixed point, we ha\|';E {zD}| = 1. Hence by the inverse mapping
theorem, there exists a neighborhood obn which a branch of ~* exists. We compute

D) G| = 1/|F (F T (z))| = 1/]f (z)] < 1.
And we conclude that, is an attracting fixed point fgf~* and hence by our previous theorem
there existd == 0 such that ifz € Bs(z,) thenf "*(z) € B;(z,) and(f ~*)"(z) = z,.
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Now assume that for any neighborhoodof z,, there existsz=" # z, which satisfies
f¥(z*)euforallk = 0. We may assume that= f~*(B;(z,) ) for & sufficiently small. As
above, Bs(z,) — f*(B; (20:}) is a fundamental domain fof ~*. Hence there exists
w € Bs(z,) — f*(Bs(z,)) andn > 0 such thatf()'(") = 2. But thenf"(z") = w & U. This
contradiction establishes the result.

In order to give a more precise definition of the Juliawetnhow shift our attention to
some important concepts from classical complex analysist et a family of analytic functions

defined on an opely < C. For our purposeF will usually be the family of iterates of a given
complex function. The familyF is said to be normal oY if every sequence itF has a
subsequence that eithigr) converges uniformly on every compact subsel afr (ii) converges
uniformly to=c on U.

Of particular interest to us will be Montel’'s theorem which vegestvithout proof.
Theorem 2.1.3(Montel)

If U.€ F[f(U)] omits two or more points in the complex plane, tifers a normal
family onUJ.
Equivalently, ifF is not normal orlJ, thenu.€ F[f(U)] omits at most one point in

the complex plane.
In dealing with entire transcendental functions lies, we have access to a particularly
powerful tool. We recall that such functions have an essemigllarity at-c. Hence, they

satisfy the hypothesis of the great Picard theorem.
Theorem 2.1.4
Suppose an analytic functiofi has an essential singularity ma&= a. Then for any

neighborhoodl of a and for allz" € € (with at most one exception) there exist infinitely
manyz € U. such thatf(z) = z". We can now give a formal definition of the Julia set. We
considerF = {f"} wheref" is thern" iterate off. We define the Julia set ¢t J(f), by
J(f) = {z: {f"} is not normal on any neighborhood of z}.
Remark 2.1.1

We remark here that the Julia set is completely invari@hat is if a the point is
contained in/(f), then so are all of its images and all its pre imagesdditian, from this
definition we may immediately conclude that all repelling period pairgsontained ifi( ).

In contrast to the above remark, the attracting fixed pointsredbasin of attraction are never
contained in the Julia set. We note in addition that any point in gie dfattraction of a fixed
point z, has about it a neighborho®tsuch that ifz € U, thenlim, __ f"(z) = z,. Hencef™

converges uniformly to the constant functis{z) = z, on U. We conclude thaf ™ is normal at
z, and, thereforez, € J(f). Similar arguments give the same result for periodic points.
2.1.2  New perspectives in the dynamics of the exponentid ;(z) = de®,A == 0.

As a dynamical system on the real line, this map has two qistmat dynamical
behaviors depending upon weatlia A < ; orid = ; the details of which have been discussed

extensively elsewhere and would not be recounted here butheferterested reader to Devaney
and Durkin [7].
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The change on the dynamicsEf which occurs att = ; is an example of a bifurcation

known as a saddle-node bifurcation. Our interest will be to imatst the effects of this
bifurcation in the complex plane. Before describing the 3dta ofE;, we recall some of the

basic mapping properties of the exponential function.

1. E;(x+iy) = e = le*(cosx + isiny)

2. Consequently E; maps vertical linest = C to circles of radiusie® centered at the
origin, and horizontal liney = € to rays# = C emanating from the origin. In particular, any
rectangle with sides parallel to the axes and vertical heigtis mapped into an annular region
surrounding the origin.

Thus wheni < : the Julia sef(E; ) is quite small as most points have orbits which are
stable wheni < — Recall that whe?d < ; E; has two fixed points o: an attracting fixed
point atg; and a repelling fixed point &t; .

Since
E;(1)=2e andE;(—logi) = 1,

we have

0<gq;<1<-—logi<p,; (2.1)
Consider the half plane

H ={z:Rez< —logi}
If z € H then

|EAI{:}| = |E;(z)| = Aexp(Re z) <1

HenceE; contractsH into the unit disk, which, since leg 4 = 1, is completely contained iH.
Thus by the contraction mapping theorem, all point& itend under iteration to a fixed point,
which must beg;. Let us denote the basin of attractionggfby w(g ;). ThenH < wi(g;), and
clearly, all points inw(g;) have stable orbits. Since they all tend asymptotitallthe same
point.

As a consequence, we will be mainly interested in the compleofemt(q;). To
investigate the dynamics &; in the complement of(q;), we use(2.1) and choose’ such
that

1< E;(v) <—=logd < v <p, (2.2)
Let H, denote the half planBe = << v. Arguing as beforef; mapsH, insideH and saH, is
also contained iV (g ;).
Note that ifRe z = v, then

E, (2)| = |E;(2)] = 2e¥ > 1
which shows thak; is an expanding map on the complement)f Before discussing the
properties of the complement wf(q ;) we first show that, fo < ; this set is quite small. To

do this we need an important Lemma that may be used severally in the sequel.
Lemma 2.1.2(Expansion Lemma)

Suppose|E; (z)| = u for all z € B;(z,) whered < 7. Then there is an open set
U € Bs(z,) such thak;: U = B,;(E, (z,) ) is a homeomorphism.
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Proof
Assume the statement of the Lemma. Assume dhdtm, then E; is one—to-one in

B;(z,). Hence we may define the inverse niaf; (B;(z,)) — B;(z,). From the chain rule,
it follows that|L (z)| < = for all z € E; (B;(z,)). Thus if|z, — z,| = &, we have

8= 120 = 2,| = [L( Ey(20)) = L( Ea(2))| < 2| Ea(20) = Ey(2)!

It follows thatE; maps|z, — z;| = & to a curve which contairﬁﬂé[ﬁ‘i{:u)) in its interior. By

the maximum principle,
E; (Bs(20)) = Bus(Ex(20))
Thus we see that, as long as the orbit of a point remains in the complerfierwioére
|E; (2)| = |Ey(2)| =z v =1,
successive iterations @ tend to expand neighborhoods of the original points, we may apply

this idea repeatedly to prove the following result.
Theorem 2.1.5
Supposez,, lies in the complement ¢#(q ;) and suppos® is an open set containirg.

ThenU n wig;) + @

Proof
Suppose on the contrary that
E;™(U) nw(g;) = 0 for alln.

It follows that
E;"(U)n H,= Oforalln.
Hence we have
|E.';I (:}| T |
For allz € U, whereu = Ae".Choosed so thatB;(z,) = U. Then by the expansion lemma
B;(Bs(z5)) 2 B,s(Ei(z0))
Now B#&(_E;L(:c}) does not meedf, for otherwise we have a contradiction. It follows that we

may apply repeatedly the lemma to this disk. Continuing inf#sision, and using the fact that
E;"(z,) ¢ H,, it follows that we may find a disk of radipg'é aboutE;™(z,) which does not

meetH,,. If we choosen large enough so thai*d = 2m, then this disk must meet one of the
horizontal lines of the forrs = (2k + 1)m,k € Z.

But these lines are mapped [y onto the negative real axis which lies f. This
contradiction establish the result.
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