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Abstract 
 

In this paper an exhaustive survey of complex analytic dynamics is presented, 
highlighting in the process significant evolutionary trends the subject has 
undergone right from the local, down to the global theories. The exponential 

function  is then used as a classical example of an entire 

transcendental function to illustrate new phenomenon of modern perspectives 

of iteration in  . 
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1.0 Introductory Survey 

Let  be a function of a complex variable  and  a fixed point of . The main 

concern of the local theory is to determine the rate of convergence of the sequence of 
iterates .  in some neighborhood  of . The important result in this part 

of the theory can be found in the papers of Baker [1, 2], Fatou [10, 11, 12], Julia [13], Siegel [19], 
and Whittington [22]. The local theory of natural iteration was later generalized to that of 
continuous iteration and we present here some of the known relevant results.  Let  be given 

by the power series  

   ( ) 2
1 2 ,f z a z a z z R= + +L p    (1.1) 

So that is a fixed point of multiplier  then the  iterate  of  is given as  

    ( ) 2
1 2

nf z b z b z= + +L     (1.2) 

Convergent in some neighborhood  of . Here  and is a function of the 

. We now replace  by an arbitrary real or complex number  and define formally the 

continuous iterate  of   by 

   ( ) ( ) ( ) ( )2
1 2 2

n n
nf z a z a z a zσ σ σ= + + + +L L   (1.3) 

Where the coefficients are uniquely determined from the conditions 
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    ( ) 0
1 1a aσ =  and o of f f fσ σ=    (1.4) 

Unlike the natural iterates , the continuous iterates ,may not converge at all. Hence it is 

natural to investigate the question of convergence of the continuous iterates. This question of 
convergence of continuous iterates near a fixed points of multiplier  such that 

 was completely answered by Koenigs (1984) by the use of the 

Schroder functional equation 
    (1.5) 

where  is given by the (Schroder series) 

    (1.6) 

convergent in some neighborhood of  z = 0, and satisfying  
     (1.7) 

so that 
    (1.8) 

in some neighborhood of z = 0. 
One can replace n in (1.8) by an arbitrary real or complex number σ and for suitable 
determinations of , the expression  

    (1.9) 

generalizes f n(z)  to a family of continuous iterates of f σ(z) which are permutable in the sense that  
               (1.10) 

The question of convergence near an indifferent fixed point proved very difficult. Cremer [6] and 
Siegel  [19] have shown that the convergence of the series obtained when  depends 

on a number of theoretical properties of  If  is not a root of unity, then the Schroder function 

 of (1.9) can be calculated formally, but it need not converge.  

Cremer showed that if  
                    (1.11) 

 there exist functions with fixed points of multiplier  for which the Schroder series (1.6) 

diverges. On the other hand Siegel showed that if 
               (1.12) 

then the Schroder series (1.6) converges for every  with  and . 

However it is generally not possible to formulate the Schroder function if  is not a root of unity 

but . In this case the Schroder function exists if and only if the  iterate of  is the 

identity function.   
The case of natural iterates  when  has been studied by Fatou [10, 11, 12]. 

In this case also the continuous iterates analytic at  are not provided for by the Schroder 

functional equation.  
For  are proceed as follows: we represent by the formal power series 

               (1.13) 

where  are polynomials in . The existing literature deals with the question of determining 

the values of  for which the formal power series (1.13) converges for a given  
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The following theorem of Baker is of fundamental importance.  
Theorem 1.1 Baker [1]. 

If  is the set of values corresponding to the convergent members of the family (1.13) 

then  has one of the following forms. 

(i) The point  

(ii)  

(iii) where    

 
(iv) The whole plane 

Liverpool [15] improved the above theorem by proving the case (iii) cannot occur at all.  
We shall afford the following definition which is fundamental to the theorem that 

follows:-  
Definition 1.1 

A function f(z) of the complex variable  is called embeddable if the case (iv) of theorem 

1.1 above occurs otherwise  is called non-embeddable. 

The function   provides an easy example of an embeddable function. 

Since In this case  converges for all values of.  The following theorem 

gives examples of classes of non- embeddable functions.  
Theorem 1.2 Baker [3] 

If   then  converges only for integral values of . 

Theorem 1.3 Baker [4] 
If   is a meromorphic function with an expansion of the form  

 
near the origin, then  is non-embeddable except when  

 
Yet other classes of non-embeddable functions can be found in Liverpool [15].  The global theory   
of iteration developed by Fatou and Julia on the other hand deals with the family  of 

natural iterates of the function of complex variable. This theory is also known as the Fatou - Julia 
theory – in which they considered only rational and entire functions. Radstrom examined how far 
the theory of Fatou and Julia can be extended to other classes of functions. He proved that the 
Fatou-Julia theory exists for the rational and entire functions considered by Fatou and Julia and 
precisely for one other class of functions; functions having exactly one pole and one essential 
singularity in the extended plane.  
 
2.0 Advances in complex analytic dynamics 

We shall now review the successes achieved over the years in an attempt to resolve some 
of the problems and open questions encountered as the subject of complex dynamics advanced 
into the century. Indeed it is already an established fact that complex analytic dynamics has under 
gone rapid development in recent years. 
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After a period of relative dormancy, the field was rejuvenated in 1980 because of some 

intriguing computer graphics, images of the Mandelbrot set as well as major new mathematical 
advances due to Douady and Hubbord [9] and Sullivan [20, 21]  among others.  

The field of complex analytic dynamics has experienced two relatively short periods of 
vigorous growth. The field traces its origin to the global theory which began in the late nineteenth 
and early twentieth century during which time; mathematicians such as Leau, Schroder, Keonigs, 
and Bottcher became interested in the local behavior of complex functions under iteration.  

During the period of 1918-20, a dramatic shift in emphasis occurred due primarily to the 
pioneering efforts of two French mathematicians Gaston Julia and Pierre Fatou. Instead of 
considering only local dynamic behavior, Julia and Fatou took a more global point of view. Away 
from the fixed points they found quite different dynamical behavior. Sometimes the results of 
iteration are quite tame or stable: at other times these iterations behaved in dynamically different 
fashion - what we now call chaotic behavior. It is in their honor that we now call the stable region 
for a complex dynamical system the Fatou set, while the chaotic region is known as the Julia set. 
In a series of remarkable papers between 1918-20, Fatou and Julia succeeded in describing many 
of the properties of both of these sets for rational maps. However in attempting to classify all 
possible dynamics on the Fatou set, they reached an impasse. They could not rule out the 
possibility that the dynamics included wandering domains, which they expected would not occur, 
nor could they prove the existence of what are known as Siegel disks which they expected would 
occur. With these two road blocks in the way, work in complex analytic dynamics was slowed 
down and there was not much activity in the field for about fifty years. 

There were two notable events which occurred during this period of dormancy.  Siegel 
[19] showed that indeed Siegel disks could in fact exist in complex dynamical systems. This 
brought the classification of stables regions one step closer to completion. Later, Baker extended 
much of the work of Fatou and Julia to other classes of functions, showing along the way that 
other types of stable behavior could occur for entire and meromorphic functions. 

The second major period of activity began when Mandelbrot [18], first used computer 
graphics to explore complex dynamics. His discovery of the Mandelbrot set prompted many 
mathematicians to re investigate this field. In quick succession, Sullivan introduced the use of 
quasi-conformal maps into the subject. This allowed him to prove his “No wandering domains 
theorem”, which essentially completed the classification of stable dynamics of rational maps 
began by Fatou and Julia. At the same time Douady and Hubbord opened new vistas  in the field 
by considering the parameter space for quadratic polynomials. They developed a technique which 
enabled them to classify less or more completely all possible types of quadratic dynamics. The 
work of Blanchard [5] is indeed a key source material in this direction as well as the  results of 
Liverpool and Yuguda [16 and 17]  both of which link up iteration theory and complex analytic 
dynamics.All of these and the ground work of Devaney [8], formed the initial motivation for this 
work. 
2.1 Complex dynamics and entire transcendental functions 

Our interest in this section is to illustrate some of the new phenomenon that occurs in the 
iteration of rational maps and entire transcendental functions. The main differences arise because 
of the point at  For polynomials, this point is a super attracting fixed point. For rational maps, 

 is dynamically the same as any other point in the Riemann sphere. But for entire transcendental 

functions,  is an essential singularity. By the Picard theorem, any plane neighborhood of  is 

mapped by an entire function over the entire plane, missing at most one  
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point, and taking any other value infinitely often. Thus the point at  injects a tremendous 

amount of “hyperbolicity” into the dynamics and results in substantial differences in both the 
dynamics on and the geometry of the Julia sets for these maps. 

In this paper we will concentrate on the Julia sets of the entire transcendental function, 
, where  is a real parameter. It is to be noted that entire functions share many of the 

dynamical properties of polynomial or rational maps, but there are some major differences. For 
example, the Julia sets of these maps have the interesting property that they may explode as the 
parameter  is varied. That is, the Julia set undergoes sudden dramatic changes at certain critical 

parameter values. In the exponential case, one such explosion occurs when . For instance 

for -values less than this critical value, the Julia set occupies a relatively small, nowhere dense 

subset of the right half plane, but when  the Julia set is the whole plane. 

This means that the set of chaotic orbits changes discontinuously at this parameter value. 
This type of bifurcation cannot happen in the families of polynomial or rational maps. Our major 
goal in this paper is to describe this explosion in detail. 

In the preceding section we present some preliminary notions from complex analysis and 
dynamical systems theorem. We also give a precise definition of Julia sets and formulate some of 
its basic properties. We then describe the Julia set of  before the explosion occurs and then 

prove that the Julia set is a nowhere dense subset of the right half plane when  following 

which we can concentrate on the case  where the Julia set is the whole plane. We also 

present several alternative characterizations of the Julia set in the two cases highlighted. 
2.1.1 Preliminaries 
Our ideal point of departure before looking at the specific case of  would be first to consider 

some basic definitions from dynamical systems theory. First, a fixed point for a function f, as the 
name implies is a point  such that . The point  is periodic if there exist an integer n 

such that . We define the smallest positive   as the period of  and note immediately 

that any fixed point,  is periodic with period one, and in fact  for all .  

Of particular interest to us as we consider Julia sets will be the behavior of orbits nearby 
certain periodic points. We first distinguish several different types of periodic points.  
First, if  is a periodic point of period , and , then  is said to be an 

attracting periodic point. In the special case when , we call  a super attracting 

periodic  point.  
If  is such that  then  is said to be a repelling periodic point.  The 

intermediate case, , gives indifferent periodic points. As we would expect, 

points nearby an attracting fixed point tend, upon iteration, towards that point. In the case of 
repeller, points nearby the fixed point eventually escape from that point upon iteration. These 
points can be made more precise into a theorem which we proceed to give. 
Theorem 2.1.1 

If  is an attracting fixed point, there is an open disk  about  such that if  then 

. 

 

 
 

Proof 
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Since  is an attracting fixed point, there exists  and  such that if 

 then . Hence it follows that if , the ball of radius  

about , then 

 
Therefore, . By the contraction mapping principle,  is a contraction in 

, and so all points in the ball tend to the fixed point  under iteration. 

In the above proof, the set  is called the fundamental domain. This 

means that if , then there is a unique  and  such that 

. This means that each forward orbit in  which is not the fixed point passes 

through  exactly once. 

To see why this is true, we note that, as above, 
.  

Hence there is a smallest integer  such that  but  

  Then we may let  be such that  and  (see Figure 

2.1) 
 
 
 
 
 
 
 
 
 

Figure 2.1:  is a fundamental domain 

We call the set of all points whose orbits tend to a given fixed point the basin of attraction 
of that point. Clearly, the basin of attraction is an open set. 

In the case of a repelling fixed point, nearby points eventually escape from the repeller 
upon iteration. In contrast to the previous theorem, we state 
Theorem 2.1.2 

If  is a repelling fixed point then there exists a disk  about  such that if 

, then there exists  such that  

Proof 
Since  is a repelling fixed point, we have . Hence by the inverse mapping 

theorem, there exists a neighborhood of  on which a branch of  exists. We compute 

 .  

 And we conclude that  is an attracting fixed point for  and hence by our previous theorem 

there exists  such that if  then  and . 
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Now assume that for any neighborhood  of , there exists  which satisfies 

 for all . We may assume that  for  sufficiently small. As 

above,  is a fundamental domain for . Hence there exists 

 and n > 0 such that (f-1)n(w) = zn. But then . This 

contradiction establishes the result.  
In order to give a more precise definition of the Julia set, we now shift our attention to 

some important concepts from classical complex analysis. Let  be a family of analytic functions 

defined on an open . For our purpose, will usually be the family of iterates of a given 

complex function. The family  is said to be normal on  if every sequence in  has a 

subsequence that either  converges uniformly on every compact subset of  or  converges 

uniformly to  on . 

Of particular interest to us will be Montel’s theorem which we state without proof. 
Theorem 2.1.3 (Montel) 

If  omits two or more points in the complex plane, then  is a normal 

family on . 

Equivalently, if  is not normal on , then  omits at most one point in 

the complex plane. 
In dealing with entire transcendental functions like  we have access to a particularly 

powerful tool. We recall that such functions have an essential singularity at .  Hence, they 

satisfy the hypothesis of the great Picard theorem. 
Theorem 2.1.4 

Suppose an analytic function  has an essential singularity at . Then for any 

neighborhood  of  and for all  (with at most one exception) there exist infinitely 

many . such that . We can now give a formal definition of the Julia set. We 

consider  where  is the  iterate of . We define the Julia set of , by 

. 

Remark 2.1.1 
We remark here that the Julia set is completely invariant. That is if a the point is 

contained in , then so are all of its images and all its pre images. In addition, from this 

definition we may immediately conclude that all repelling period points are contained in . 

In contrast to the above remark, the attracting fixed points and their basin of attraction are never 
contained in the Julia set. We note in addition  that any point in the basin of attraction of a fixed 
point  has about it a neighborhood  such that if , then . Hence  

converges uniformly to the constant function  on . We conclude that  is normal at 

 and, therefore, . Similar arguments give the same result for periodic points. 

2.1.2 New perspectives in the dynamics of the exponential ,  
As a dynamical system on the real line, this map has two quite distinct dynamical 

behaviors depending upon weather  or  the details of which have been discussed 

extensively elsewhere and would not be recounted here but refer the interested reader to Devaney 
and Durkin [7]. 
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The change on the dynamics of  which occurs at  is an example of a bifurcation 

known as a saddle-node bifurcation. Our interest will be to investigate the effects of this 
bifurcation in the complex plane.  Before describing the Julia sets of , we recall some of the 

basic mapping properties of the exponential function. 
1.   

2. Consequently,  maps vertical lines  to circles of radius  centered at the 

origin, and horizontal lines  to rays  emanating from the origin. In particular, any 

rectangle with sides parallel to the axes and vertical length  is mapped into an annular region 

surrounding the origin. 
Thus when  the Julia set  is quite small as most points have orbits which are 

stable when . Recall that when  has two fixed points on : an attracting fixed 

point at  and a repelling fixed point at .  

Since 
 =   and    

we have 
    (2.1) 

Consider the half plane 

 
If  then 

 
Hence  contracts  into the unit disk, which, since  is completely contained in . 

Thus by the contraction mapping theorem, all points in  tend under iteration to a fixed point, 

which must be .  Let us denote the basin of attraction of  by . Then , and 

clearly, all points in  have stable orbits.  Since they all tend asymptotically to the same 

point. 
As a consequence, we will be mainly interested in the complement of . To 

investigate the dynamics of  in the complement of  we use  and choose  such 

that 
    (2.2) 

Let  denote the half plane . Arguing as before,   maps   inside  and so is 

also contained in .  

Note that if , then  

  

which shows that  is an expanding map on the complement of . Before discussing the 

properties of the complement of  we first show that, for , this set is quite small. To 

do this we need an important Lemma that may be used severally in the sequel. 
Lemma 2.1.2 (Expansion Lemma) 

Suppose  for all  where . Then there is an open set 

 such that  is a homeomorphism. 
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Proof 
Assume the statement of the Lemma. Assume that , then  is one–to-one in 

. Hence we may define the inverse map  From the chain rule, 

it follows that   for all . Thus if , we have  

 
It follows that  maps  to a curve which contains  in its interior. By 

the maximum principle, 

 
Thus we see that, as long as the orbit of a point remains in the complement of  where     

, 

successive iterations of  tend to expand neighborhoods of the original points, we may apply 

this idea  repeatedly to prove the following result.  
Theorem 2.1.5 

Suppose  lies in the complement of  and suppose  is an open set containing . 

Then  

Proof 
Suppose on the contrary that  

 for all .  

It follows that 
 for all .  

Hence we have 

 
For all , where Choose  so that . Then by the expansion lemma 

. 

Now  does not meet  for otherwise we have a contradiction. It follows that we 

may apply repeatedly the lemma to this disk. Continuing in this fashion, and using the fact that      
 it follows that we may find a disk of radius  about  which does not 

meet . If we choose  large enough so that , then this disk must meet one of the 

horizontal lines of the form .  

But these lines are mapped by  onto the negative real axis which lies in  This 

contradiction establish the result.  
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