Number of permutations with a given cycle_structure

${ }^{1}$ Ali Bashir and ${ }^{2}$ M. S. Audu
${ }^{1}$ Department of Mathematics, Nigerian Defence Academy, Kaduna, Nigeria
${ }^{2}$ Department of Mathematics, University of Jos, Jos, Nigeria

Abstract

Let X_{n} be an n-element set. We give an alternative proof of Cauchy's theorem for the number of permutations with a given cycle structure in X_{n}.

Keywords

Combinations, Permutations, cyclic-permutation, even (odd) permutation, symmetric group, alternating group.

2000 AMS Subject Classification: 20M18, 20M20, 05A10, 05A15.

1.0 Introduction and preliminaries

Let $X_{n}=\left\{a_{1}, a_{2}, \mathrm{~K}, a_{n}\right\}$ be a finite set of arbitrary elements, a permutation on X_{n} is a one-to-one mapping of X_{n} onto itself. The set of all permutations on X_{n} forms a group with respect to permutation multiplication (composition of mappings) called the symmetric group of degree n, denoted as S_{n} or $\operatorname{Sym}\left(X_{n}\right) \quad\left(\left|S_{n}\right|=n!\right)$. A Permutation group G is a subgroup of a symmetric group.

The identity permutation on X_{n} is the identity mapping which leaves all points of X_{n} fixed, $i: x \rightarrow x \quad(x) i=x \forall x \in G$. Any element $g \in \operatorname{Sym}\left(X_{n}\right)$ can be written in $r-$ cycle i.e. $g=\left(\begin{array}{lll}x_{1} & x_{2} & \mathrm{~K}\end{array} x_{r}\right)$, such that x_{1} is mapped to x_{2}, x_{2} is mapped to $x_{3}, \ldots x_{r-1}$ and x_{r} is mapped to x_{1} and any other element of x_{n} to itself. The length of a cycle is the number of distinct elements (points) which occur in the cycle.

Each cycle can be decomposed uniquely into disjoint cycles. A cycle which interchanges only two points and fixes the rest is called a transposition. Every permutation can be written as a product of transpositions, $g=\left(\begin{array}{lll}x_{1} & y_{1}\end{array}\right)\left(\begin{array}{ll}x_{2} & y_{2}\end{array}\right) \Lambda\left(\begin{array}{ll}x_{n} & y_{n}\end{array}\right)$.

Recall from [1] that an even permutation is a permutation which can be expressed as a product of an even number of cycles of even length and/or a product of any number of cycles of odd length. A permutation that is not even is called odd. The set of even permutations of X_{n}, is called the alternating group and is usually denoted by A_{n}.

[^0]${ }^{1}$ Telephone Number: +234-08020591271, +234-08033745340

2.0 Number of cycle structure in $\alpha=S_{n}$.

Let $X_{m n}=\left\{a_{1}, a_{2}, \mathrm{~K}, a_{m n}\right\}$, where $m \geq 2$ and $n \geq 1$, we easily obtained the following lemmas:

Lemma 2.1

Let $X_{n}=\left\{a_{1}, a_{2}, \mathrm{~K}, a_{n}\right\}$ The number of ways in which a permutation α of $X_{4}=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ can be expressed as a product of two transpositions is 3 .

Lemma 2.2

The number of ways in which a permutation α of X_{6} can
be expressed as a product of three transpositions is 15

Lemma 2.3

The number of ways in which permutations α of $X_{2 n}$ can be expressed as a product of
n transpositions is, $\frac{(2 n)!}{2 n \cdot 2(n-2) \mathrm{L} 4 \cdot 2}=\frac{(2 n)!}{2^{n} \cdot n!}$.
Lemma 2.4
Let $X_{n}=\left\{a_{1}, a_{2}, \mathrm{~K}, a_{n}\right\}$ The number of ways in which a permutation α of $X_{6}=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ can be expressed as a product of two $3-$ cycles is 40

Lemma 2.5

The number of ways in which a permutation α of X_{9} can be expressed as a product of three 3 - cycles is 1680

Lemma 2.6

The number of ways in which permutations α of $X_{2 n}$ can be expressed as a product of $n 3$-cycles is, $\binom{3 n-1}{2}\binom{3 n-3}{2} \mathrm{~L}\binom{5}{2}\binom{2}{2}(3!)^{n}=\frac{(3 n)!}{3^{n} \cdot n!}$.

Lemma 2.7

The number of permutation α of $X_{m r}$ that can be expressed as a product of $r m$-cycles is, $\frac{(m r)!}{m^{r} r!}=f(r, m)$.

Proof
If $r=1$, we have one m-cycle on m elements of which there are clearly $(m-1)!m-$ cycles which agrees with our formula, $f(1, m)=\frac{m!}{m 1!}=(m-1)!$. If $m=2$ it reduces to Lemma 2.3

Now let the first m-cycles be $\left(a x_{1} x_{2} \Lambda x_{m-1}\right)$. There we choose $x_{1} x_{2} \Lambda x_{m-1}$ in $\binom{m n-1}{m-1}$ way and there are $(m-1)$! ways of writing this first m-cycle. The remaining $m(n-1)$ elements can be expressed as a product of m-cycles in $\frac{(m(n-1))!}{m^{n-1}(n-1)!}$

Thus we have : $=\frac{(m n-1)!(m-1)!}{(m-1)!(m(n-1))!} \frac{m(n-1)!}{m^{n-1}(n-1)!} \frac{m n}{m n}=\frac{(m n)!}{m^{n} n!}$
Theorem 2.8
Let α be a permutations of X_{n} with $r_{i}(m-i+1)$-cycles $(i=1,2, \mathrm{~K}, m-1)$. Then the number of such permutations is $\frac{n!}{m^{r_{1}} r_{1}!(m-1)^{r_{2}} r_{2}!\Lambda 2^{r_{m-1}} r_{m-1}!}=\frac{n!}{\prod_{i=0}^{m-2}(m-i)^{r_{i+1}}\left(r_{i+1}\right)!}$

Proof

First note that $m r_{1}+(m-1) r_{2}+\Lambda+3 r_{m-2}+2 r_{m-1}=n$. Now choose $m r_{1}$ elements from X_{n} to form $r_{1} m$-cycles. This can be done in $\binom{n}{m r_{1}}$ ways, and these $m r_{1}$ elements can be expressed as a product of $r_{1} m$-cycles in $f\left(r_{1}, m\right)$.ways Next choose $(m-1) r_{2}$ elements from the remaining $n-m r_{1}$ elements to form the $r_{2}(m-1)-$ cycles. This can be done in $\binom{n-m r_{1}}{(m-1) r_{2}}$ ways and these $(m-1) r_{2}$ elements can be expressed as a product of $r_{2}(m-1)-$ cycles , in $f\left(r_{2}, m-1\right)$ ways. We continue in this way until we reach the last $2 r_{m-1}$ elements which can be expressed as a product of $r_{m-1} 2-$ cycles in $f\left(r_{m-1}, 2\right)$ ways. Multiplying all the possibilities gives

$$
\begin{aligned}
& \binom{n}{m r_{1}} f\left(r_{1}, m\right) \cdot\binom{n-m r_{1}}{(m-1) r_{2}} f\left(r_{2}, m-1\right) \Lambda\binom{2 r_{m-1}}{2 r_{m-1}} f\left(r_{m-1}, 2\right) . \\
& =\frac{n!}{\left(n-m r_{1}\right)!m r_{1}!} f\left(r_{1}, m\right) \frac{\left(n-m r_{1}\right)!}{\left(n-\left(r_{1}-r_{2}\right) m-r_{2}\right)!(m-1) r_{2}!} f\left(r_{2}, m-1\right) \Lambda \frac{2 r_{m-1}!}{0!2 r_{m-1}!} f\left(r_{m-1}, 2\right) . \\
& =\frac{n!}{\left(n-m r_{1}\right)!m r_{1}!} f\left(r_{1}, m\right) \frac{\left(n-m r_{1}\right)!}{\left(n-\left(r_{1}-r_{2}\right) m-r_{2}\right)!(m-1) r_{2}!} f\left(r_{2}, m-1\right) \mathrm{L} \\
& \left(\begin{array}{c}
\left.n-m r_{1}-(m-1) r_{2}-\mathrm{L}-3 r_{m-2}\right) f\left(r_{m-1}, 2\right) . \\
\quad 2 r_{m-1}
\end{array}\right. \\
& =\frac{n!}{\left(n-m r_{1}\right)!m r_{1}!\frac{\left(m r_{1}\right)!}{m^{1} r_{1}!} \frac{\left(n-m r_{1}\right)!}{\left(n-\left(r_{1}-r_{2}\right) m-r_{2}\right)!(m-1) r_{2}!} \frac{\left[(m-1) r_{2}\right]!}{(m-1)^{r_{2}} r_{2}!} \mathrm{L}} \\
& \left(\begin{array}{c}
n-m r_{1}-(m-1) r_{2}-\mathrm{L}-3 r_{m-2} \\
\quad 2 r_{m-1}
\end{array} \frac{\left(2 r_{m-1}\right)!}{2^{r_{m-1}}\left(r_{m-1)}\right)}\right. \\
& \quad=\frac{n!}{m^{r_{1}} r_{1}!(m-1)^{r_{2}} r_{2}!\Lambda 2^{r_{m-1}} r_{m-1}!}
\end{aligned}
$$

This simplifies to the required result by using Lemma 2.4 and algebraic manipulations.

References

[1] J. A. Gallien, Contemporary Abstract Algebra. Boston/New York: Houghton miffin, 1998.

[^0]: ${ }^{1}$ Corresponding author:
 ${ }^{1} \mathrm{e}$-mail address: bashirklgi@yahoo.com

