Journal of the Nigerian Association of Mathematical Physics Volume 15 (November, 2009), pp 5 - 8 © J. of NAMP

Number of permutations with a given cycle_structure

¹Ali Bashir and ²M. S. Audu ¹Department of Mathematics, Nigerian Defence Academy, Kaduna, Nigeria ²Department of Mathematics, University of Jos, Jos, Nigeria

Abstract

Let X_n be an n-element set. We give an alternative proof of Cauchy's theorem for the number of permutations with a given cycle structure in X_n .

Keywords

Combinations, Permutations, cyclic-permutation, even (odd) permutation, symmetric group, alternating group.

2000 AMS Subject Classification: 20M18, 20M20, 05A10, 05A15.

1.0 Introduction and preliminaries

Let $X_n = \{a_1, a_2, K, a_n\}$ be a finite set of arbitrary elements, a permutation on x_n is a one-to-one mapping of x_n onto itself. The set of all permutations on x_n forms a group with respect to permutation multiplication (composition of mappings) called the symmetric group of degree n, denoted as S_n or $Sym(X_n)$ ($|S_n| = n!$). A Permutation group G is a subgroup of a symmetric group.

The identity permutation on X_n is the identity mapping which leaves all points of X_n fixed, $i: x \to x$ $(x)i = x \forall x \in G$. Any element $g \in Sym(X_n)$ can be written in r-cycle i.e. $g = (x_1 \ x_2 \ K \ x_r)$, such that x_1 is mapped to x_2, x_2 is mapped to $x_3, \ldots x_{r-1}$ and x_r is mapped to x_1 and any other element of X_n to itself. The length of a cycle is the number of distinct elements (points) which occur in the cycle.

Each cycle can be decomposed uniquely into disjoint cycles. A cycle which interchanges only two points and fixes the rest is called a transposition. Every permutation can be written as a product of transpositions, $g = (x_1 \ y_1)(x_2 \ y_2) \Lambda (x_n \ y_n)$.

Recall from [1] that an even permutation is a permutation which can be expressed as a product of an even number of cycles of even length and/or a product of any number of cycles of odd length. A permutation that is not even is called odd. The set of even permutations of X_n , is called the alternating group and is usually denoted by A_n .

¹Corresponding author: ¹e-mail address: <u>bashirklgi@yahoo.com</u>

Number of cycle_structure in $\alpha = S_n$. 2.0

Let $X_{mn} = \{a_1, a_2, K, a_{mn}\}$, where $m \ge 2$ and $n \ge 1$, we easily obtained the following lemmas:

Lemma 2.1

Let $X_n = \{a_1, a_2, K, a_n\}$ The number of ways in which a permutation α of $X_4 = \{a_1, a_2, a_3, a_4\}$ can be expressed as a product of two transpositions is 3. Lemma 2.2

The number of ways in which a permutation α of X_6 can

be expressed as a product of three transpositions is 15

Lemma 2.3

The number of ways in which permutations α of X_{2n} can be expressed as a product of

transpositions is,
$$\frac{(2n)!}{2n \cdot 2(n-2)L \ 4 \cdot 2} = \frac{(2n)!}{2^n \cdot n!}.$$

Lemma 2.4

п

Let $X_n = \{a_1, a_2, K, a_n\}$ The number of ways in which a permutation α of $X_6 = \{a_1, a_2, a_3, a_4\}$ can be expressed as a product of two 3-cycles is 40 Lemma 2.5

The number of ways in which a permutation α of X_9 can be expressed as a product of three 3 - cycles is 1680

Lemma 2.6

The number of ways in which permutations α of X_{2n} can be expressed as a product of

n 3-cycles is,
$$\binom{3n-1}{2}\binom{3n-3}{2}L\binom{5}{2}\binom{2}{2}(3!)^n = \frac{(3n)!}{3^n \cdot n!}.$$

Lemma 2.7

The number of permutation α of X_{mr} that can be expressed as a product of r m-cycles is, $\frac{(mr)!}{m^r r!} = f(r,m).$

Proof

If r = 1, we have one *m*-cycle on *m* elements of which there are clearly (m-1)! *m*cycles which agrees with our formula, $f(1,m) = \frac{m!}{m!!} = (m-1)!$. If m = 2 it reduces to Lemma

2.3

Now let the first *m*-cycles be $(ax_1x_2 \Lambda x_{m-1})$. There we choose $x_1x_2 \Lambda x_{m-1}$ in $\binom{mn-1}{m-1}$ way and there are (m-1)! ways of writing this first *m*-cycle. The remaining m(n-1) elements can be expressed as a product of *m*-cycles in $\frac{(m(n-1))!}{m^{n-1}(n-1)!}$

Journal of the Nigerian Association of Mathematical Physics Volume 15 (November, 2009), 5 - 8 Permutations with a given cycle structure, Ali Bashir and M. S. Audu J of NAMP

Thus we have : =
$$\frac{(mn-1)!(m-1)!}{(m-1)!(m(n-1))!} \frac{m(n-1)!}{m^{n-1}(n-1)!} \frac{mn}{mn} = \frac{(mn)!}{m^n n!}$$

Theorem 2.8

Let α be a permutations of X_n with $r_i (m-i+1)$ -cycles (i = 1, 2, K, m-1). Then the number of such permutations is $\frac{n!}{m^{r_1}r_1!(m-1)^{r_2}r_2!\Lambda 2^{r_{m-1}}r_{m-1}!} = \frac{n!}{\prod_{i=0}^{m-2}(m-i)^{r_{i+1}}(r_{i+1})!}$

Proof

First note that $mr_1 + (m-1)r_2 + \Lambda + 3r_{m-2} + 2r_{m-1} = n$. Now choose mr_1 elements from X_n to form $r_1 \ m$ -cycles. This can be done in $\binom{n}{mr_1}$ ways, and these mr_1 elements can be expressed as a product of $r_1 \ m$ -cycles in $f(r_1,m)$. ways Next choose $(m-1)r_2$ elements from the remaining $n - mr_1$ elements to form the $r_2 \ (m-1) - cycles$. This can be done in $\binom{n-mr_1}{(m-1)r_2}$ ways and these $(m-1)r_2$ elements can be expressed as a product of $r_2 \ (m-1) - cycles$, in $f(r_2, m-1)$ ways. We continue in this way until we reach the last $2r_{m-1}$ elements which can be expressed as a product of $r_{m-1} \ 2 - cycles$ in $f(r_{m-1}, 2)$ ways. Multiplying all the possibilities gives

$$\begin{pmatrix} n \\ mr_{1} \end{pmatrix} f(r_{1}, m) \begin{pmatrix} n-mr_{1} \\ (m-1)r_{2} \end{pmatrix} f(r_{2}, m-1) \wedge \begin{pmatrix} 2r_{m-1} \\ 2r_{m-1} \end{pmatrix} f(r_{m-1}, 2).$$

$$= \frac{n!}{(n-mr_{1})!mr_{1}!} f(r_{1}, m) \frac{(n-mr_{1})!}{(n-(r_{1}-r_{2})m-r_{2})!(m-1)r_{2}!} f(r_{2}, m-1) \wedge \frac{2r_{m-1}!}{0!2r_{m-1}!} f(r_{m-1}, 2).$$

$$= \frac{n!}{(n-mr_{1})!mr_{1}!} f(r_{1}, m) \frac{(n-mr_{1})!}{(n-(r_{1}-r_{2})m-r_{2})!(m-1)r_{2}!} f(r_{2}, m-1) L$$

$$\begin{pmatrix} n-mr_{1}-(m-1)r_{2}-L - 3r_{m-2} \\ 2r_{m-1} \end{pmatrix} f(r_{m-1}, 2).$$

$$= \frac{n!}{(n-mr_{1})!mr_{1}!} \frac{(mr_{1})!}{m^{r_{1}}r_{1}!} \frac{(n-mr_{1})!}{(n-(r_{1}-r_{2})m-r_{2})!(m-1)r_{2}!} \frac{[(m-1)r_{2}]!}{(m-1)^{r_{2}}r_{2}!} L$$

$$\begin{pmatrix} n-mr_{1}-(m-1)r_{2}-L - 3r_{m-2} \\ 2r_{m-1} \end{pmatrix} \frac{(2r_{m-1})!}{2^{r_{mm-1}}(r_{m-1)!}}.$$

$$= \frac{n!}{m^{r_{1}}r_{1}!(m-1)^{r_{2}}r_{2}! \wedge 2^{r_{m-1}}r_{m-1}!}.$$

This simplifies to the required result by using Lemma 2.4 and algebraic manipulations.

Journal of the Nigerian Association of Mathematical Physics Volume 15 (November, 2009), 5 - 8 Permutations with a given cycle_structure, Ali Bashir and M. S. Audu J of NAMP

References J. A. Gallien, *Contemporary Abstract Algebra*. Boston/New York: Houghton miffin, 1998. [1]