Journal of the Nigerian Association of Mathematical Physics
 Volume 15 (November, 2009), pp 1-4
 © J. of NAMP

On the group structure and root system of $S L_{n}$ over a field

H. Praise Adeyemo
Department of Mathematics, University of Ibadan, Nigeria

Abstract

Abstract

Given a commutative field F, the Whitehead functor K_{1} and Steinberge functor K_{2} are closely related to the theory of general linear group through exact sequences of groups. In this paper, the group structure of $S L_{n}$ over a field F is closely examined and its root system is computed. Only the case $n=3$ is considered.

Keywords

Special linear group, root system, cartan integer.
MSC: 17BXX, 17B20

1.0 Introduction

Let F be a field, we consider the groups of matrices

$$
\begin{aligned}
& G L_{n}(\mathbb{F}):=\left\{\left(x_{r t}\right) \in M_{n}(\mathbb{F}): 1 \leq r, t \leq n, \operatorname{det}\left(x_{r t}\right) \neq 0\right\} . \\
& S L_{n}(\mathbb{F}):=\left\{\left(x_{r t}\right) \in G L_{n}(\mathbb{F}) \mid \operatorname{det}\left(x_{r t}\right)=1\right\} .
\end{aligned}
$$

It is known from [5], there is a special homomorphism, $i_{n}: G L_{n}(\boldsymbol{F}) \rightarrow G L_{n+1}(\boldsymbol{F})$ induced by the embedding of \boldsymbol{F}^{n} in \boldsymbol{F}^{n+1} zl,$\left(a_{1}, a_{1}, \ldots, a_{n}\right) \alpha\left(a_{1}, a_{1}, \ldots, a_{n}, 0\right)$ each i_{n} is a monomorphism. Identification of $G L_{n}(\boldsymbol{F})$ with its image $G L_{n+1}(\boldsymbol{F})$ under i_{n} gives the tower

$$
G L_{1}(F) \subset G L_{2}(F) \subset G L_{3}(F) \subset G L_{4}(F) \subset \ldots
$$

The tower group $G L(\boldsymbol{F})$ is given by

$$
\begin{equation*}
\bigvee_{n=1}^{\infty} G L_{n}(F)=\lim _{n \rightarrow \infty} G L_{n}(F) \tag{*}
\end{equation*}
$$

This result is also true for $S L_{n}(\boldsymbol{F})$. Here, $G L(\boldsymbol{F})$ and $S L(\boldsymbol{F})$ are inductive limits of the well known matrix groups of the general and special linear group over \boldsymbol{F}.

2.0 The group structure of $S L_{\boldsymbol{n}}$ over a field

Let F be any field and F^{*} denote the multiplicative group of F. The determinant map det : $G L(\mathbb{F}) \rightarrow \mathbb{F}$ yields an exact sequence of groups.
e-mail adddress: adepraise5000@yahoo.com.au, and ph.adeyemo@mail.ui.edu.ng
Telephone: $\mathbf{+ 2 3 4 8 0 6 8 2 8 8 8 9 6}$

$$
1-S L(F) \rightarrow G L(F) \rightarrow \mathbb{F}^{*} \rightarrow 1
$$

Let $e_{i j}=\left(x_{t r}\right)$ be the matrix with coefficients in \mathbb{F} such that $x_{r t}=1$ if $(r, t)=(i, j)$ and $x_{r t}=0$ otherwise, and let $1=1_{n} \in G L_{n}(\mathbb{F})$ denote the identity matrix. For any $a \in \boldsymbol{F} i, j$ $=1$, $\mathrm{L}, n i \neq j$, we define the matrices

$$
\begin{aligned}
& r_{i j}(a)=1_{n}+a e_{i j} \quad(a \in \boldsymbol{F}) \\
& s_{i j}(a)=r_{i j}(a) u_{j i}\left(-a^{-1}\right) r_{i j}(a) \quad(a \in \mathbb{F}, a \neq 0) \\
& t_{i j}(a)=s_{i j}(a) s_{i j}(-1) \quad(a \in \boldsymbol{F}, a \neq 0)
\end{aligned}
$$

The elements $r_{i j}(a), s_{i j}(a), t_{i j}(a)$ give the following relations:
(i) $\quad r_{i j}(a+b)=r_{i j}(a) r_{i j}(b)$
(iii) $\quad s_{i j}(a) r_{i j}(b) s_{i j}(a)^{-1}=r_{i j}(-a+b)$ for $a \in F^{*}, b \in \mathbb{F}$
(iv) $\quad t_{i j}(a b)=t_{i j}(a) t_{i j}(b)$

Theorem 2.1 [4]
(a) The group $S L_{n}(\mathcal{F})$ is generated by the matrices $\left\{r_{i j}(a): 1 \leq i, j<n \quad i \neq j \quad a \in \mathbb{F}\right\}$
(b) The matrices $\left\{s_{i j}(a): 1 \leq i, j \leq n \quad i \neq j \quad a \in \boldsymbol{F}^{*}\right\}$ generate the subgroup M of all monomial matrices of $S L_{n}(F)$.
(c) The matrices $\left\{t_{i j}(a): 1 \leq i, j<n, i \neq j, a \in \mathbb{F}^{*}\right\}$ generate the subgroup U of all diagonal matrices of $S L_{n}(\mathbb{F})$.
Remark 2.1
The subgroup M is the normalizer of U in $S L_{n}(\mathbb{F})$ and the quotient M / U is isomorphic to the symmetric group S_{n}.
Theorem 2.2 [10]
Let a presentation of G be given by relations (i), (ii) and (iv) if $n \geq 3$ and (i), (iii) and (iv) if $n=2$. Let denote by \hat{G} the group given by the presentation (i), (ii) if $n \geq 3$ and (i), (iii) if $n=2$. Then the canonical map $\pi: \widetilde{G} \rightarrow G$ is central. Assume $|k|>4$ if $n \geq 3$ and $|k| \neq 4,9$ if $n=2$. Then this central extension is universal i.e. every central extension $\pi_{1}: G_{1} \rightarrow G$ factors from π.

Remark 2.2

As G and \tilde{G} are perfect, \tilde{G} as a universal extension of G is unique up to isomorphism. The group $S t_{n}(\mathbb{F})=\tilde{G}$ is called the Steinberg group of $S L_{n}(\mathbb{F})$.

3.0 Root systems of $S L_{n}(\boldsymbol{F})$

Definition 3.1

Let X be a finite dimensional \mathbb{R}-vector space with scalar product \langle,$\rangle . A set$ $\sum \subset X \backslash\{0\}$ is a root system in X if the following hold.
(i) The set \sum is finite, generate V, and $-\sum=\sum$
(ii) For each $\alpha \in \sum$, the linear map

$$
S_{\alpha}: V \rightarrow V \text { defined by }
$$

$$
S_{\alpha}(r)=r-2 \frac{\langle\alpha, r\rangle}{\langle\alpha, \alpha\rangle} \alpha \text { leaves }
$$

$$
\sum \text { invariant : } S_{\alpha}\left(\sum\right)=\sum .
$$

(iii) For each pair $\alpha, \beta \in \sum$, the number

$$
n_{\beta, \alpha}=2 \frac{\langle\alpha, \beta\rangle}{\langle\alpha, \alpha\rangle} \text { is an integer. }
$$

This is called "Cartan integer".

Definition 3.2

\sum is reducible if there exist proper mutually orthogonal sub-spaces $X^{\prime}, X^{\prime \prime}$ of X such that $X=X^{\prime} \perp X^{\prime \prime}$ and $\sum=\left(X^{\prime} \cap \sum\right) \cup\left(X^{\prime \prime} \cap \sum\right)$. Otherwise \sum is called irreducible.

Definition 3.3

An element in \sum is called a simple if it is not the sum of two positive roots.

Proposition 3.4

Every root is an integral sum of simple roots with coefficients of same sign.
Next we give the main result.

4.0 Computation of the root system of $S L_{3}(F)$

Let $\operatorname{Diag}_{3}(\boldsymbol{F})$ denote the subgroup of all diagonal matrices in $G L_{3}(\boldsymbol{F})$, and we denote a diagonal matrix just by its components: we define

$$
\operatorname{diag}(d r)=\operatorname{diag}\left(d_{1}, d_{2}, d_{3}\right):=\left(\begin{array}{ccc}
d_{1} & 0 & 0 \\
0 & d_{2} & 0 \\
0 & 0 & d_{3}
\end{array}\right) \in \operatorname{Diag}_{3}
$$

The subgroup U in Theorem 2.1(c) is strictly contained in Diag_{3} and as a result we define homomorphism $\Gamma_{1}, \Gamma_{2}, \Gamma_{3}$ respectively by

$$
\begin{gathered}
\Gamma_{1}: \operatorname{Diag}_{3}(\mathbb{F}) \rightarrow \mathbb{F}^{*} \\
\Gamma_{1}\left(\operatorname{diag}\left(d_{r}\right)\right)=d_{1} \\
\Gamma_{2}: \operatorname{Diag}_{3}(\mathbb{F}) \rightarrow \mathbb{F}^{*} \\
\Gamma_{2}\left(\operatorname{diag}\left(d_{r}\right)\right)=d_{2}
\end{gathered}
$$

$$
\begin{gathered}
\Gamma_{3}: \operatorname{Diag}_{3}(\mathbb{F}) \rightarrow \boldsymbol{F}^{*} \\
\Gamma_{3}\left(\operatorname{diag}\left(d_{r}\right)\right)=d_{3}
\end{gathered}
$$

Therefore the set $\left\{\Gamma_{1}, \Gamma_{2}, \Gamma_{3}\right\}$ is a basis of the free \mathbb{Z}-module $Y\left(\operatorname{Diag}_{3}\right)$ of all homomorphisms

$$
\chi: \mathrm{Diag}_{3} \rightarrow \boldsymbol{F}^{*}
$$

Hence the set $\left\{\alpha_{i}=\Gamma_{i}-\Gamma_{i+1}: i=1,2\right\}$ is a basis of the \mathbb{Z}-module $Y(U)$ of all homomorphism on U. From this basis we obtain the following

$$
\begin{array}{ll}
\left\langle\alpha_{1}, \alpha_{1}\right\rangle=2 & \left\langle\alpha_{2}, \alpha_{2}\right\rangle=2 \\
\left\langle\alpha_{1}, \alpha_{2}\right\rangle=-1 & \frac{\left\langle\alpha_{1}, \alpha_{2}\right\rangle}{2}=\frac{-1}{2} \\
\left\langle\alpha_{2}, \alpha_{1}\right\rangle=-1 & \left\langle\alpha_{2}, \alpha_{1}\right\rangle=-\frac{1}{2}
\end{array}
$$

The root system is given by $\quad \sum=\left\{\alpha_{i j}=\Gamma_{i}-\Gamma_{j} \mid 1 \leq i, j \leq n \quad i \neq j\right\}$ (hence $\alpha_{i, i+1}=\alpha_{i}$). Therefore

$$
\alpha_{i j}=\left\{\begin{array}{l}
\alpha_{i}+\alpha_{i+1}+\ldots+\alpha_{j-1} \text { if } i<j \\
-\alpha-\alpha_{j+1}-\ldots-\alpha_{j-1} \text { if } i>j
\end{array}\right.
$$

i.e. every element in \sum is an integral combination of d_{i} coefficients of the same sign. Therefore the root system \sum is given by $\left\{ \pm \alpha_{1} \pm \alpha_{2}, \pm\left(\alpha_{1}+\alpha_{2}\right)= \pm \alpha_{3}\right\}$. In general every pair (i, j) of indices with $i \neq j$ in $S L_{n}(\mathbb{F})$ determines a root $\alpha_{i j}=\Gamma_{i}-\Gamma_{j} \in \sum$.

5.0 Conclusion

In this paper, we compute a special case of a well motivated problem. Further work is in progress to generalize these results using recent development in enumerative geometry.

References

[1] E. Artin, Geometric Algebra, Interscience, No. 3 (1957).
[2] H.P. Adeyemo, On the isomorphism of $\operatorname{Aut}\left(Z_{n}\right), U$-group and Permutation group. Journal of the Nigeria Association of Mathematical Physics, Vol. 13, No. 2008, pp. 31-34.
[3] H. Bass, Algebraic K-theory, W.A. Benjamin Inc. 1968.
[4] A. Borel, Linear Algebraic Groups, Second edition. Graduate texts in Mathematics 126. ISBN 0-387-973702.
[5] A. Borel, Harish-Chandra, Arithmetic Subgroups of Algebraic Groups. Ann. of Maths. 75(1962), 485-535.
[6] Calvin C. Moore, Group extensions of p-adic and adelic linear groups. Inst. Haute etude Sc. Publ. Math. No. 35, 1968, 157-222.
[7] S.A. Ilori, Subvariates of Flag Bundles, Bolletino U.M.S. (6) (1982), 1151-1159.
[8] Ulf Rehamann, Ulrich Stuhler. On K_{2} of finite-dimensional division algebras over arithmetical fields. Invent. Math. 50, (1978/79), No. 1, 75-90.
[9] A. Kuku, Representation Theory and Higher Algebraic K-theory, Chapman and Hall/CRC 2007.
[10] T.A. Springer, Linear Algebraic Groups. Second edition. Progress in Mathematics 9, ISBN 0-8176-4021-5.

