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Abstract 
 

The emergence of drug-resistant malaria parasites in recent years has become 
a significant public health problem. Drawing from our ealier models [2], which deal 
with a single population group, a multigroup model is hereby introduced. Human 
population is assumed fixed in all considerations while that of vectors varry. All the 
models are nonlinear ordinary differential equations models. The models describe 
accurately, the current trend in malaria infection in a malaria endemic region. Our 
focus in analysing the models is on the possibility of establishing some positive 
asymptotic equilibria. It is shown that (under suitable conditions) the equilibrium points 
are (globally) asymptotically stable. As a function of some interplay between the various 
parameters, the equilibrium can lead to endemic infection with sensitive infection only, 
resistant infection only, or both, or to elimination of both infections. The biological 
significance of these equilibrium points, namely, their usefulness to practical health 
officials, also emerges as a byproduct. 
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1.0 Introduction 

Malaria is a mosquito-borne infection caused by protozoa of the genus plasmodium. Four species 
of the parasite, namely: P. falciparum, P. vivax, P. ovale, and P. malariae infect humans. Malaria remains 
the most important of the tropical diseases, being widespread throughout the tropics, but also occurring in 
many temperate regions. 

The parasites are transmitted by the bite of infected female mosquitoes of the genus Anopheles.  
Mosquitoes become infected by feeding on the blood of infected people, and the parasites then undergo 
another phase of reproduction in the infected mosquito. Clinical symptoms such as fever, pains, and 
sweats may develop a few days after an infected mosquito bite. 

In many parts of Africa, where malaria has long been highly endemic, people are infected so 
frequently that they develop a degree of acquired immunity, and may become asymptomatic carriers of 
the infection [8]. Treatment and control have become more difficult in recent years with the spread of 
drug resistant strains of malaria parasites [6, 8, 17]. Drugs such  
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as chloroquine, nivaquine, quinine, and fansidar are used for treatment. More recent and more powerful 
drugs include mefloquine, and halofantrine. 

It is estimated that 267 million people are presently infected, with 107 million clinical cases 
annually; the number of countries affected is put at 103 [17]. 

The biology of the four species of plasmodium is generally similar and consists of two discrete 
phases-sexual and asexual . The parasite migrates to the liver where it remains latent for several days 
while replicating. The latent period is followed by penetration of red blood cells and asexual replication 
within them. Asexual parasites in the blood, after surviving some developmental period, give rise to 
sexual stages called gametocytes. Gametocytes can remain in the blood for more than two years [8]. 

The emergence of drug-resistant strains of malaria parasite has become a significant health 
problem. Recent pronouncements by the World Health Organisation indicate the availability of strains 
that are resistant to virtually all known drugs. 

Among the four species of plasmodium, P. falciparum causes the most serious illness and it is the 
most widespread in the tropics. This paper therefore focuses on the dynamics of P. falciparum malaria, 
although the analysis is similar for all forms of malaria infections. 

 
2.0 Preliminaries 

An early fundamental model in the art of mathematical modelling of malaria, due to Ross-
Macdonald describes the basic features of the interaction between infected humans (y) and infected 
mosquito vectors (q).  The model is defined as follows: 

ryyqy −−= )1(α& , 

pqqyq −−= )1(β&  

where µββα ,,, rb N
M=  are some constants defined as follows (see for e.g. [4]): 

N is the size of the human population; 
M is the size of the female mosquito population; 

N
M  is the number of female mosquitoes per human host; 

β is the rate of biting on man by a single mosquito (number of bites per unit time); 
b is the proportion of infected bites on man that produce an infection; 
r is the per capita rate of recovery for humans (r

1  is the average duration of infection in the human host); 

µ is the per capita mortality rate for mosquitoes (µ
1  is the average lifetime of a mosquito). 

In this simple model, the total population of both humans and vectors is assumed fixed, so that 
the dynamical variables (y and q) are the proportion infected in each population. The first equation 
describes changes in the proportion of humans infected. New infections are acquired at a rate that depends 
on the following factors: 
(i) the number of mosquito bites per person per unit time (N

Mβ ) 

(ii) the probability that the biting mosquito is infected (q) 
(iii) the probability that a bitten human is uninfected (1 − y) 
(iv) the probability that an uninfected person thus bitten will actually become infected (b). 

Infections are lost by infected people returning to the uninfected class, at a characteristic recovery 
rate r. Similarly, the second equation describes changes in the proportion of mosquitoes infected.  
Population changes are determined by the following factors: 
(i) the number of bites per mosquito per unit time (β) 
(ii) the probability that the biting mosquito is uninfected (1 − q) 
(i) the probability that the bitten human is infected (y). 
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The loss term (µq) arises from the death of infected mosquitoes. The loss terms for the infected 

humans and infected vectors both involve death and recovery. For human hosts the recovery rate is 
typically faster than the death rate, whereas for vectors the opposite is the case. The origin is a local 
asymptotic equilibrium for this model if µr > αβ. Thus infection dies out if the product of the death rates 
(µ and r) for the two populations is large in the sense that µr > αβ. Thus the above formulation is a 
sensible approximation. 

However, this model is highly simplified. The model simply assumes that an infected individual 
either recovers to join the susceptible group N(1 − y) or dies. It fails to distinguish between the various 
infected categories of human and vector hosts. Thus it cannot describe accurately the recent trend in 
malaria infection. 

This basic model has been studied, modified and generalized in different directions by various 
authors (see for e.g., [4, 5, 6, 11]). Aron and May [4] extended this model by introducing another 
population group z – the latent infected humans (infected but not yet infectious). They conjectured that if 
the incubation interval in the mosquito has duration r the second equation in the basic model could be 
replaced by the two dynamical systems: 

( ) ,1)1( zezqyqzqyz r µα µ −−−−−−= −
&&&& , 

qezqyq r µα µ −−−= −)1( &&&&  

where the circumflex denotes evaluation at time r in the past: );( rtyy −=&  etc. Here, the two categories 
of mosquito (uninfected and infected-and-infectious) are now replaced by three categories: a proportion, 1 
− q − z, that are uninfected; a proportion q that are infected and infectious; and a third, new proportion z 
that are latent (infected but not yet infectious). 

Bailey [5] considered two interacting populations–human hosts and mosquito vectors with each 
group consisting of three subgroups, viz susceptibles, infectives, and isolated (recovered and immune).  
These are designated by x, y, and z respectively for the human populations and x′, y′, and z′ respectively 
for the vector populations. It follows that the number of new infections occurring in the human population 
in time interval δt is βxy′δt, where β is the infection rate. Since the converse arrangement is required to 
hold for vectors, namely that susceptible vectors are infected by human infectives, the number of new 
infections occurring in susceptible vectors in time interval ðt is therefore given by β′x′yðt. If in addition 
the overall removal rates for the two populations are assumed to be γ and γ′, respectively, then the 
numbers of removals occurring in time δt are γyδt and γ′y′δt for humans and vectors, respectively. The 
system of differential equations for the dynamic process involved is given as 

ẋ = −βxy′, ẋ′ = −β′x′y′ + γ′y′, 
ỷ = βxy′ − γy′, ỷ′ = β′x′y − γ′y′, 
ż = γy, 

where β, β′, γ, γ′ are some constants. Due to its relatively short life-cycle, isolation by immunity is 
negligible in the mosquito vectors, and hence the only isolation process is by death which is assumed to 
occur equally in all groups. Hence ż′ ≡ 0 (see [6], pp. 61–68). 

This model, like the first, also describes the basic interaction between the infected human host 
population and the mosquito vector population but with an additional group in each population. 

Throughout this part, we shall adopt the following notations where applicable. 
•N denotes the total human population; 
•x denotes susceptibles (the number of people that are uninfected); 
•y denotes infectives (the number of people that are severely infected); 
•v denotes infected vectors (the population of vectors that can transmit the disease). 

where y and Y occur simultaneously, we designate y as the number of individuals infected with parasites 
that are sensitive to drugs and Y as the number of individuals that are infected with the resistant parasites 
with or without the sensitive parasites. v and V denote respectively the populations of vectors harbouring 
sensitive and resistant parasites. 
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The following model with the corresponding stability analysis were presented in [2]. 
ẋ = cxq + c(1 − u)xQ − cuyQ − ry,    (2.1) 
ẋ = cuxQ + cuyQ − RY,      (2.2) 

=q&  v − δq,       (2.3) 

=Q&  V − ∆Q.       (2.4) 
ẋ = −cx(y + Y) + ry + RY,     (2.5) 

where c is the unit contact rate between susceptibles and infected mosquitoes with which new cases 
occur, ð and ∆ are the death or removal rates of sensitive and resistant type mosquitoes respectively.  The 
contribution cuyQ is a case of superinfection. Such a phenomenon has been known to occur in reality (see 
for e.g. [4, 6]). If an infected individual is re-exposed before recovery, another brood of parasites may 
result; this is referred to superinfection. In this model it is assumed that the population of infected vectors 
grow by some influx. 

Eliminating x from (2.1) and (2.2) (using x + y + Y = N) we get: 
ẋ = −ry + cNq + cN(1 − u)Q − cyq − cYq − cyQ − c(1 − u)YQ  (2.6) 

ẋ = −RY + cuNQ − cuYQ,    (2.7) 
=q&  v − δq     (2.8) 

=Q& V − ∆Q     (2.9) 
A more appropriate reality is to assume that the sensitive vectors grow by factors proportional to 

both itself and the resistant type. In this case, equations (2.8) and (2.9) are replaced by   
 =q&  α1y + α2Y − δq,                (2.10) 

=Q&  γY − ∆Q                 (2.11) 
The system (2.6), (2.7), (2.10), and (2.11) has four equilibrium points in which the origin is one. By 
considering the linearized system near the origin, it is easy to see that the origin is locally asymptotically 
stable if 
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q2), (y3, q3) satisfies some quadratic equation of the form 
EX2 + FX + G = 0,                 (2.12) 

where E, F and G are some functions of the parameters. 
2.1 Proposition PS [16] 

Consider the system  ẋ1 = f(x1, x2) 
ẋ2 = g(x2) 

with f(.,.) and g(.) continuous throughout a compact subset E of R2. Define P(E) as the projection of E 
onto the x2 axis. Assume 
 
(1) E is positively invariant for the system, and 
(2) x2 = 2x̂  is an equilibrium point that is globally asymptotically stable on a subset A of P(E). 
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Then every trajectory starting in A′ = {(x1, x2): x2 Є A} tends asymptotically to a point of the form (1x̂ , 2x̂

), where 1x̂  is an equilibrium of 1x̂  = f(x1, 2x̂ ). 
Proof (see [16] 

The author [2] extended Proposition PS to R4 and consequently proved that the system (2.6)–
(2.9) has a unique positive globally asymptotic equilibrium point. 

 
3.0 Multigroup models 

Now, we consider a case of a heterogeneous interacting population groups: Ni, i = 1, 2, ..., k; 

∑
=

=
k

i
iNN

1

.  This consideration becomes necessary in view of the fact that resistivity of parasites to a 

particular antimalaria drug is a function of geographical distribution. We denote by yi and Yi respectively 
sensitive and resistant infecteds associated with group Ni; the corresponding vectors are denoted by qi and 
Qi respectively. Vectors from group j infect susceptibles of group i at a rate of cij. The probability that a 
susceptible in group i is infected by a resistant vector from group j is denoted by uj; the complementary 
probability is 1 − uj. The model for this spatial heterogeneity is then described by the following system of 

differential equations: ẋi = ∑
=

k

i 1

[ cijNiqj + cijNi(1 − uj)Qj − cijqj(yi + Yi) − cijyiQj − cij(1 − uj)YiQj] − riyi

 (3.1) 

ẋi = ∑
=

k

i 1

[ ujcijQj(Ni − Yi)] − RiYi,    (3.2) 

iq&  = vi − δiqi,     (3.3) 

iQ& = Vi − ∆iQi.     (3.4) 

If vectors grow by factors proportional to the number of infecteds then equations (3.3) and (3.4) 
are replaced by    iq&  = α1iyi + α2iYi − δiqi,    (3.5) 

iQ& = γiY i − ∆iQi,    (3.6) 

cij ≥ 0, 0 < ui ≤ 1, r i > 0, Ri > 0, α1i, α2i > 0, δi > 0, ∆i > 0,γi > 0 and 0 ≤ yi + Yi ≤ Ni. 
Let X = (y1, ..., yk, Y1, ..., Yk, q1, ..., qk,Q1, ...,Qk)

T .  Then X is a 4k-dimensional vector whose first, second, 
third, and fourth k components are respectively those of yi(i = 1, ..., k), Yi(i = 1, ..., k), qi(i = 1, ..., k), and 
Qi(i = 1, ..., k). 

For the stability analysis of the system (3.1)–(3.4) we shall generalize Proposition PS so that (x1, 
x2) Є R4k and x2 Є R3k. As can be seen from the system, both vector groups are each disconnected from the 
system as a whole. 
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where   ( ) [ ] 0
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as t →∞   The rest of the proof follows by mimicking the idea used by the author in a previous paper [2]. 

Eventually we arrive at yi →
i

i

A
B  as t →∞ which is the required result. Hence the system (3.1)–

(3.4) has a unique positive globally asymptotic equilibrium. 
The analysis of the system (3.1), (3.2), (3.5), and (3.8), we begin with the following definitions: is 

more complex than that of the corresponding ungrouped system (2.6), (2.7), (2.10), and (2.11). We begin 
with the following definitions. For vectors a and b, where a = (a1, ..., ak)

T , b = (b1, ..., bk)
T, let a⊗ b be 

the vector whose components are the products of the corresponding components of its arguments, i.e. a⊗
b = (a1b1, ..., akbk)

T.  It is easy to see that the operation is symmetric, bilinear, associative and 
commutative. If diag(d) for a vector d means the diagonal matrix (of appropriate dimension) whose ith 
diagonal entry is di and 1 means the vector with all components equal to 1, then a⊗ b = diag(a)b and a.b 
= (a⊗ b).1 (where . means dot product). If B is a matrix, a ⊗ B is a matrix with (a⊗ B)ij = aiBij . Let y = 
(y1, ..., yk)

T , Y = (Y1, ..., Yk)
T, q = (q1, ..., qk)

T, Q = (Q1, ...,Qk)
T . With these definitions, the vector form of 

system (3.1), (3.2), (3.5), and (3.6) is: 
� = -r ⊗ y + (N⊗ C)q + (N⊗ C)((1 − u) ⊗ Q) − ((y + Y) ⊗ C)q 

−(y⊗ C)Q − (Y⊗ C)((1 − u) ⊗ Q),   (3.7) 
� = −R⊗ Y + (N⊗ C)(u ⊗ Q) − (Y⊗ C)(u ⊗ Q)   (3.8) 

q&  = α1 ⊗ y + α2⊗ Y − δ⊗ q,    (3.9) 

Q&  = γ⊗ Y −∆⊗ Q,                 (3.10) 

Consider the system   ( ) ii

n

j
iijiji ygyNywy −








−= ∑

=1

&                (3.11) 

where wij , Ni, gi are constants and wij > 0, Ni > 0, gi > 0, yi ≥ 0. Let y be the vector whose components are 
yi, i = 1, ... ,n; A the matrix of linear terms, and Q(y) the vector of quadratic terms in (3.5). Then the vector 
form of the system is,  ẋ = Ay − T(y)               (3.12) 
Lajmanovich and Yorke (see [10]) proved that solutions to system (3.6) are globally asymptotically stable 
with limiting value determined by the stability modulus s(A) of the matrix A. This is defined as the 
maximum real part of the eigenvalues of A, i.e., s(A) = max{Re λλ :  an eigenvalue of A}.  Precisely, the 
following theorem was proved by Lajmanovich and Yorke. 
3.1 Theorem LY  

The solutions to system (24 approach the origin if s(A) ≤ 0 and approach a unique positive 
equilibrium ŷ  if s(A) > 0, provided yi(0) > 0 for some i. Furthermore in this case 0 < iŷ (0) < Ni for each 

I = 1, 2, ... ,n. 
Now, back to system (3.1), (3.2), (3.5), and (3.6). I do not know a complete analytical 

characterization of this system. However, with much restrictions as below, we arrive at some reasonable 
results: 

If Qi is fixed at its equilibrium, i.e. γiYi − ∆iQi = 0 

iiii YYQ
i

i ηγ ==⇒ ∆                   (3.13) 

where 
i

i

i ∆= γη .  At this point, equation (3.2) becomes identical to equation (3.13). It follows that the 

resistant infecteds’ subsystem is equivalent to the LY system; hence the resistant infecteds’ subsystem 
tends asymptotically to a fixed nonnegative vector, say Y*.  From (3.13), this also means that the resistant 
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vectors’ subsystem tends asymptotically to a fixed vector, η ⊗ Y* , where 
i

i

i ∆= γη .  From equation (3.2), 

the matrix of coefficients for the resistant infecteds, which is disconnected from that of the sensitive 
infecteds, is 

AY = diag(N)Cdiag(u ⊗ η ) − diag(R) 

and the vector of quadratic terms is T = (Y⊗ C)(u ⊗ η ⊗ Y).  Thus, from theorem LY, Y* = 0 if s(AY ) ≤ 
0, and Y* ≠ 0 if s(AY ) > 0.  Hence, Q* = 0 if s(AY ) ≤ 0 and Q* ≠ 0 if s(AY ) > 0. Again, note that if 

(Y(0),Q(0))T = (0, 0)T , then iiii yyqq
i

i ξδ
α ==⇒= 0& .  At this point, 

   ( ) ii

k

j
iijjiji yryNycy −








−= ∑

=1

ξ&  

In this case, the sensitive infected humans’ subsystem becomes identical to system (3.13) and hence it 
tends asymptotically to a fixed nonnegative vector y*. The matrix of coefficients for the linear terms of 
the sensitive vectors when YT = 0T, QT = 0T, qT = 0T is Ay = diag(N)Cdiag(ξ) − diag(r) and the vector of 
quadratic terms is Wy = (y ⊗ C)(ξ⊗ y), y tends asymptotically to 0 if s(Ay) ≤ 0 and to a fixed nonnegative 
vector y*if s(Ay) > 0. Hence, both infections die out if both s(Ay) ≤ 0 and s(AY ) ≤ 0. Thus, our 
subconclusion is as follows: 
Theorem 3.1 
(i) (y,Y,q,Q)T = (0,0,0,0)T is asymptotically stable if s(AY ) ≤ 0 and s(Ay) ≤ 0. 
(ii ) (y,Y,q,Q)T = (y*,0,q*,0)T, (where y*,q* are some positive vectors) is asymptotically stable if s(AY 

) ≤ 0 and s(Ay) > 0. 
Next, we examine the case, s(AY ) > 0. Let E1 = Y − Y* , E2 = Q − Q*. Then the equation for the 

sensitive (human and vectors) subsystems become 
ẋ = −r ⊗ y + (N⊗ C)q + (N⊗ C)((1 − u) ⊗ (Q* + E2)) − ((y + Y* + E1) ⊗ C)q 

−(y⊗ C)(Q* + E2) − ((Y* + E1) ⊗ C)((1 − u) ⊗ (Q* + E2)),              (3.14) 
q&  = α1 ⊗ y + α2⊗ (Y* + E1) − δ⊗ q.                (3.15) 

At equilibrium, ẋ = 0, q&  = 0, E1, E2 → 0.  From (3.14) and (3.15), this condition leads to a vector 
quadratic equation in each of y and q, whose complete analytical characterization is elusive.  However, 
for special cases such as u = 1, α2 = 0, we again obtain asymptotic stability as follows: If u = 1, α2 = 0, 

then at equilibrium qi = ii
y yw
i

ii =δ
α1  (say). At this point, we see from equation (3.14) that 

ẏ = −r ⊗ y + (N⊗ C)(w ⊗ y) − ((y + Y* + E1) ⊗ C)(w⊗ y) − (y⊗ C)(Q*  + E2).   
Now, o(E1,E2) → 0 as ||E1||, ||E2|| → 0. Hence 

� = ((N− y) ⊗ C)(w⊗ y) − (CQ* + r) ⊗ y − (Y* ⊗ C)(w ⊗ y)              (3.16) 
Equation (3.16) can be identified with system (??) with the matrix 

By = diag(N− Y* )Cdiag(w) − diag(CQ* + r),               (3.17) 
as the matrix of coefficients for the linear term and Zy = −(y⊗ C)(w⊗ y), as the vector of quadratic terms.  
Thus, y → 0 and consequently, q → 0 if s(B) ≤ 0 and y → y* ≠ 0 and consequently q →w ⊗ y* if s(By) ≥ 
0. 

Hence, we adjoin to the subconclusions in theorem 3.1 the following similar results and thus 
obtain a more general conclusion as regards the stability analysis of the system (3.1), (3.2), (3.5) and 
(3.6): 
Theorem 3.2 
(i) (y,Y, q,Q)T = (0,Y*, 0,Q* )T is asymptotically stable if s(AY ) > 0 and u =1, α2 = 0 leads to s(By) ≤ 

0. 
 
(ii ) (y,Y, q,Q)T = (y*,Y*,q*,Q* )T is asymptotically stable if s(AY ) > 0 and u =1, α2 = 0 leads to s(B) > 

0, where By is the matrix in (3.17). 
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Thus, in case (i), sensitive infection dies out and in case (ii ), an endemic state is reached for both 
infections. 
Remark 3.3  

A complete analytical characterization and or solution of the system (3.1), (3.2), (3.5) and (3.6) 
proves elusive. It is certainly of interest to know the asymptotic limit(s) for all possible u when s(AY ) > 0, 
and s(By) > 0. 
 
4.0 Conclusion 

This paper focuses on malaria infection in a multigroup population. The first model is typical of a 
situation in which there is a sudden out break of infection for each of the population groups. In this case, 
infected vectors arrive at a constant rate from the rest of the groups. This model shows that resistant 
infectives persist and nearly everybody could be infected with the resistant parasite if the death rate of 
resistant vectors is small. This is seen from the fact that Yi(t) - Ni as 0→∆i . Since resistant infectives are 

less sensitive to the drug, major health efforts should be geared towards destroying the parasites. 
The second multigroup model describes more accurately the current trend in malaria infection, 

especially in Sub-Saharan Africa, for instance, where strains that are resistant to virtually all known drugs 
have emerged. Since efforts should be directed towards eliminating resistant parasites (and hence resistant 
infection), conditions leading to the results of theorem 1 should serve as guides to a health management 
board. Condition (i) of the theorem shows that eventually both strains of the parasites are eliminated. 
Condition (ii) shows that resistant parasites die off. On the other hands, theorem 3.2 shows that resistant 
parasites/infection persist in both conditions of the theorem. Condition (ii) shows that an endemic state is 
reached for both infections. These models differ considerably from the ealier models of malaria infection 
such as [3, 4, 5, 6, 11] in that each model here addresses acurately the evolution of resistant infection and 
the results here are more complex than the earlier results of the author [2]. 
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