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Abstract

The emergence of drug-resistant malaria parasitasécent years has become
a significant public health problem. Drawing fromw ealier models [2], which deal
with a single population group, a multigroup modé$ hereby introduced. Human
population is assumed fixed in all considerationshite that of vectors varry. All the
models are nonlinear ordinary differential equatianmodels. The models describe
accurately, the current trend in malaria infectioin a malaria endemic region. Our
focus in analysing the models is on the possibiliof establishing some positive
asymptotic equilibria. It is shown that (under satble conditions) the equilibrium points
are (globally) asymptotically stable. As a functiaf some interplay between the various
parameters, the equilibrium can lead to endemicenfion with sensitive infection only,
resistant infection only, or both, or to eliminatio of both infections. The biological
significance of these equilibrium points, namelheir usefulness to practical health
officials, also emerges as a byproduct.

Keywords
Asymptotically stable, Equilibrium points, Fedsipoints, Gametocytes, Resistant
parasites, Sensitive parasites, Superinfection.

1.0 Introduction

Malaria is a mosquito-borne infection caused by protozoa of the géasmodium. Four species
of the parasite, namely: P. falciparum, P. vivax, P. ovale, an@dl@riae infect humans. Malaria remains
the most important of the tropical diseases, being widespread throub@drapics, but also occurring in
many temperate regions.

The parasites are transmitted by the bite of infectedléemasquitoes of the genus Anopheles.
Mosquitoes become infected by feeding on the blood of infectedeggesomd the parasites then undergo
another phase of reproduction in the infected mosquito. Clisiraptoms such as fever, pains, and
sweats may develop a few days after an infected mosquito bite.

In many parts of Africa, where malaria has long been highlerig] people are infected so
frequently that they develop a degree of acquired immunity,naay become asymptomatic carriers of
the infection [8]. Treatment and control have become more difficulecent years with the spread of
drug resistant strains of malaria parasites [6, 8, 17]. Drugs such
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as chloroquine, nivaquine, quinine, and fansidar are used fam&e&atMore recent and more powerful
drugs include mefloquine, and halofantrine.

It is estimated that 267 million people are presently iefictvith 107 million clinical cases
annually; the number of countries affected is put at 103 [17].

The biology of the four species of plasmodium is generallylairand consists of two discrete
phases-sexual and asexual . The parasite migrates to thevieez it remains latent for several days
while replicating. The latent period is followed by penetration dfti®od cells and asexual replication
within them. Asexual parasites in the blood, after surviving sdmelopmental period, give rise to
sexual stages called gametocytes. Gametocytes can remain in theoblmade than two years [8].

The emergence of drug-resistant strains of malaria paraagebecome a significant health
problem. Recent pronouncements by the World Health Organisation endmeaiavailability of strains
that are resistant to virtually all known drugs.

Among the four species of plasmodium, P. falciparum causes thesemimats illness and it is the
most widespread in the tropics. This paper therefore foausdlse dynamics of P. falciparum malaria,
although the analysis is similar for all forms of malaria infections.

2.0  Preliminaries

An early fundamental model in the art of mathematical mmdelbf malaria, due to Ross-
Macdonald describes the basic features of the interactiomeée infected humang/)(and infected
mosquito vectorsg). The model is defined as follows:

y=aq@-y)-ry,
q=pyd-9) - pq
wherea =bg-¥, B,r, 1 are some constants defined as follows (see for e.g. [4]):

N is the size of the human population;
M is the size of the female mosquito population;

M is the number of female mosquitoes per human host;

B is the rate of biting on man by a single mosquito (number of bites per unit time)
b is the proportion of infected bites on man that produce an infection;

r is the per capita rate of recovery for humahsg the average duration of infection in the human host);

w1 is the per capita mortality rate for mosquito%si(s the average lifetime of a mosquito).

In this simple model, the total population of both humans and vestassumed fixed, so that
the dynamical variablesy (and g) are the proportion infected in each population. The first equatio
describes changes in the proportion of humans infected. New infectiortgjaired at a rate that depends
on the following factors:
® the number of mosquito bites per person per unit tifiéf-()

(i) the probability that the biting mosquito is infectepl (
(i) the probability that a bitten human is uninfected () -
(iv) the probability that an uninfected person thus bitten will actuallgrednfectedly).

Infections are lost by infected people returning to the uninfecésd,cht a characteristic recovery
rate r. Similarly, the second equation describes changes in the propoftiomosquitoes infected.
Population changes are determined by the following factors:

) the number of bites per mosquito per unit tife (
(i) the probability that the biting mosquito is uninfected () -
® the probability that the bitten human is infectgd (
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The loss termy(q) arises from the death of infected mosquitoes. The loss temtef infected
humans and infected vectors both involve death and recovery. For thostnthe recovery rate is
typically faster than the death rate, whereas for vedtarsopposite is the case. The origin is a local
asymptotic equilibrium for this model ifr > aff. Thus infection dies out if the product of the death rates
(« andr) for the two populations is large in the sense that of. Thus the above formulation is a
sensible approximation.

However, this model is highly simplified. The model simplyuasss that an infected individual
either recovers to join the susceptible grdi{fh —y) or dies. It fails to distinguish between the various
infected categories of human and vector hosts. Thus it cannatbdeaccurately the recent trend in
malaria infection.

This basic model has been studied, modified and generalizedfenedif directions by various
authors (see for e.g., [4, 5, 6, 11]). Aron and May [4] extended this modsitrogucing another
population groug — the latent infected humans (infected but not yet infectiousy dtejectured that if
the incubation interval in the mosquito has duratidhe second equation in the basic model could be
replaced by the two dynamical systems:

z=ay(l-q-2) - y{l-g-2)e" -1z,

q=ayd-q-2¢e" - n
where the circumflex denotes evaluation at timme the past:y = y(t —r); etc. Here, the two categories
of mosquito (uninfected and infected-and-infectious) are now replaced byctitegories: a proportion, 1
- g — z that are uninfected; a proportigrthat are infected and infectious; and a third, new proportion
that are latent (infected but not yet infectious).

Bailey [5] considered two interacting populations—human hosts asgjuito vectors with each
group consisting of three subgroups, viz susceptibles, infsctared isolated (recovered and immune).
These are designated kyy, andz respectively for the human populations and/, andz respectively
for the vector populations. It follows that the number of new infections occurrithg ihuman population
in time intervalot is pxyst, wherep is the infection rate. Since the converse arrangementjisred to
hold for vectors, namely that susceptible vectors are infdntdaduman infectives, the number of new
infections occurring in susceptible vectors in time intedtas therefore given b'x'yét If in addition
the overall removal rates for the two populations are assumée toandy’, respectively, then the
numbers of removals occurring in tinieareyyst andy'y’ét for humans and vectors, respectively. The
system of differential equations for the dynamic process involved is give

L= Py, U= PIXY Y

YEBXY vy, ¥y =BXY —vY,

2=y,
where B, B, v, v' are some constants. Due to its relatively short lifeggyidolation by immunity is
negligible in the mosquito vectors, and hence the only isolatiocess is by death which is assumed to
occur equally in all groups. Henege= 0 (see [6], pp. 61-68).

This model, like the first, also describes the basic interadietween the infected human host
population and the mosquito vector population but with an additional group in each population.

Throughout this part, we shall adopt the following notations where applicable.

*N denotes the total human population;

*x denotes susceptibles (the number of people that are uninfected);

*y denotes infectives (the number of people that are severely lifecte

v denotes infected vectors (the population of vectors that can transrdiséase).
wherey andY occur simultaneously, we designgtas the number of individuals infected with parasites
that are sensitive to drugs avids the number of individuals that are infected with the resiptrasites
with or without the sensitive parasit@sandV denote respectively the populations of vectors harbouring
sensitive and resistant parasites.
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The following model with the corresponding stability analysis were ptegén [2].

[J=cxg+c(l — uxQ-cuyQ —ry, (2.1)
[1 =cuxQ + cuyQ — RY (2.2)
q=v-dq, (2.3)
Q=V-AQ. (2.4)
O=-cxy+Y) +ry + RY, (2.5)

wherec is the unit contact rate between susceptibles and infectequitaes with which new cases
occur, d and\ are the death or removal rates of sensitive and resignmosquitoes respectively. The
contribution cu is a case of superinfection. Such a phenomenon has been known tim oeality (see
for e.g. [4, 6]). If an infected individual is re-exposed before ragpwanother brood of parasites may
result; this is referred to superinfection. In this model #ssumed that the population of infected vectors
grow by some influx.

Eliminatingx from (2.1) and (2.2) (using+y +Y = N) we get:

[J==ty+cNg+cN1-uQ-cyg-cYqg-cyQ-€ -uYQ (2.6)
[J = -RY + cuNQ - cuYQ (2.7)

q=v-3dq (2.8)

Q=V-AQ (2.9)

A more appropriate reality is to assume that the sens#gt®rs grow by factors proportional to
both itself and the resistant type. In this case, equations (2.8) and (2.9laceddy

4= o1y +apY - 30, (2.10)

Q=yY-AQ (2.11)
The system (2.6), (2.7), (2.10), and (2.11) has four equilibrium points ichwie origin is one. By
considering the linearized system near the origin, it is gmsge that the origin is locally asymptotically
stable if

: { ro RA}
N<min{d—,—
a,c cuy
and unstable if N > min{ﬁ,ﬂ}
a,c cuy
The other equilibrium points ara(y:,Y1,01,Q1) = ( Nea, =ro 0 Neayro ,Oj, Pa(Y2,Y2,02,Q2) =
ca, co
CUN —rA CulN - RA CuN - RA CuN - RA
Y2, M s, W » P3(Y3,Y3,03,Q3) = | Vs, A o W and each ofyg,
cuy CUA cuy CUA
02), (Ys, ) Satisfies some quadratic equation of the form
EX+FX+G=0, (2.12)

whereE, FandG are some functions of the parameters.
2.1 Proposition PS16]
Consider the system [y =f(xq, X2)
T2=9(%)
with f(.,.) and g(.) continuous throughout a compact subsstR’. Define P(E) as the projection of
onto thex, axis. Assume

D E is positively invariant for the system, and
2) X, = X, is an equilibrium point that is globally asymptotically stable on a sébstP(E).
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Then every trajectory starting A = {(x4, X2): X2 € A} tends asymptotically to a point of the forrt ( X,
), whereX, is an equilibrium ofk, =f(x;, X,).
Proof (see [16]

The author [2] extended Proposition PS to R4 and consequently proved that thg3y&tem
(2.9) has a unique positive globally asymptotic equilibrium point.

3.0  Multigroup models
Now, we consider a case of a heterogeneous interacting populadigpsgi, i = 1, 2, ...k

k
N = z N, . This consideration becomes necessary in view of the factesiativity of parasites to a
i=1

particular antimalaria drug is a function of geographicatidistion. We denote by, andY; respectively
sensitive and resistant infecteds associated with gigupe corresponding vectors are denotedjtand

Q respectively. Vectors from groygnfect susceptibles of groupat a rate of;. The probability that a
susceptible in group i is infected by a resistant vector fyomnpj is denoted byj; the complementary
probability is 1 —u;. The model for this spatial heterogeneity is then deschigete following system of

Kk
differential equationst); = Z[cijNiqj + N1 - w)Q — cigly + V) —GyiQ — ¢i(1 —w)YiQ] — ryi

i=1

(3.1)

k
0= Z[ uciQ(Ni - Y)] - RY;, (3.2)

i=1
¢ =V - 4, (3.3)
Q=Vi-AQ. (3.4)

If vectors grow by factors proportional to the number of infecteds thaatieqgs (3.3) and (3.4)

are replaced by G =owyi +0xY; = &g, (3.5)
Qi =7iYi = AQ;, (3.6)

Cj>0,0<u<1,r>0,R>0,a4, 05 > 0,8 >0,A >0y; >0and &y +Y;<N.
Let X= (Y1, ---s Yk Y1, ---» Yo O1s ---5 G Q1 ...,Qk)T. ThenX is a «-dimensional vector whose first, second,
third, and fourthk components are respectively those;6f= 1, ...,k), Yi(i = 1, ...,K), gi(i = 1, ...,K), and
Q. =1, ...Kk).

For the stability analysis of the system (3.1)—(3.4) we slealbralize Proposition PS so tha, (
;) € R* andx, € R*. As can be seen from the system, both vector groups arelisachnected from the
system as a whole.

v,

Clearly g - %,Qi - 4+ ast —oo. By application of Proposition PS with € R* to the

k

. N'ZUJCIJ\ALI,
equations (3.2) and (3.4) we dedu¥e,~» —=——. Hence equation (3.1) has the form
Zulc” XﬁjﬁR
O Kk k
yi Y= _(r. *Z [CuqlJrCuQI]in + (N| _Y|)Z Cij [q] + (1_uj bj]
i=1 =
or v =-At)y, +B(t)
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where Alt) - A=r +Z[ +¢ A—’]
ast —o0 and B(t) - B =(N, —Yi)Zc”. [g—;+(1—uj)z—ij]>o

ast - The rest of the proof follows by mimicking the idea used by the author in aysegaper [2].

Eventually we arrive ay; —»% ast —oo which is the required result. Hence the system (3.1)—

(3.4) has a unique positive globally asymptotic equilibrium.

The analysis of the system (3.1), (3.2), (3.5), and (3.8), we begin with the folldefingions: is
more complex than that of the corresponding ungrouped system (278)(2210), and (2.11). We begin
with the following definitions. For vectom andb, wherea = (ay, ...,a)" , b= (b, ...,b)", letad b be
the vector whose components are the products of the corresponding compbiteaigoments, i.ea [l
b = (aby, ..., aby)’. It is easy to see that the operation is symmetric, bilin@ssociative and
commutative. If diag{) for a vectord means the diagonal matrix (of appropriate dimension) whose ith
diagonal entry is;dand1 means the vector with all components equal to 1, &heb = diag@)b anda.b
= (alJ b).1 (where . means dot product).Bfis a matrixa U B is a matrix with 4[] B); = aB; . Lety =
V1 oY) Y= Yy, oYL, 0= @ - 0" Q = (Qu ...QW" . With these definitions, the vector form of
system (3.1), (3.2), (3.5), and (3.6) is:

O=aUOy+(NOUC)qg+(NUC)((1-uwlIQ) - ((y+Y)LUCO)q

—(yOOQ- (v -u 0Q), (3.7)
O=-ROY+NOCQUQ) -(YIUOulQ (3.8)
q:(llljy+(12DY_6|:|q, (39)
Q=y0Y-AOQ (3.10)
Consider the system y, = (Zn: W, Y, (Ni -V )j -0V (3.11)
=1

wherew; , N;, g are constants and; > O,N; > 0,9, > 0,y; > 0. Lety be the vector whose components are
yi, i1 =1, ... n; Athe matrix of linear terms, ari@gy) the vector of quadratic terms in (3.5). Then the vector
form of the system is, [ = Ay — T(y) (3.12)
Lajmanovich and Yorke (see [10]) proved that solutions to By§36) are globally asymptotically stable
with limiting value determined by the stability moduls(®) of the matrixA. This is defined as the
maximum real part of the eigenvaluesfofi.e.,s(A) = max{ReA : A an eigenvalue of}. Precisely, the
following theorem was proved by Lajmanovich and Yorke.
3.1 Theorem LY

The solutions to system (24 approach the origis(4) < 0 and approach a unique positive
equilibrium ¥ if (A) > 0, providedy;(0) > 0 for some. Furthermore in this case 0¥ (0) <N, for each
I=1,2,..n

Now, back to system (3.1), (3.2), (3.5), and (3.6). | do not know a comphetgtieal
characterization of this system. However, with much resiristias below, we arrive at some reasonable
results:

If Q is fixed at its equilibrium, i.e;Y; — AQ; =0

= Q :AL:Yi =nY, (3.13)
where 77, = yii . At this point, equation (3.2) becomes identical to equation (3ltLB)llows that the

resistant infecteds’ subsystem is equivalent to the LY sydtemce the resistant infecteds’ subsystem
tends asymptotically to a fixed nonnegative vector,¥sayFrom (3.13), this also means that the resistant
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vectors’ subsystem tends asymptotically to a fixed veetadr, Y*, where, 2% . From equation (3.2),

the matrix of coefficients for the resistant infectedfjolv is disconnected from that of the sensitive
infecteds, is

Ay = diagN)Cdiagu LI n7) — diagR)
and the vector of quadratic termsTiss (YU C)(uU 7 LJY). Thus, from theorem LYY* = 0 if s(Ay) <
0, andY* # 0 if S(Ay ) > 0. HenceQ* = 0 if S(Ay ) <0 andQ* # 0 if S(Ay) > 0. Again, note that if
(Y(0),Q(0)) = (0, 0) , thenq=0=>q, = 5 Y =&Y, Atthis point,

S«{gq@jyj(Ni—m)}w

In this case, the sensitive infected humans’ subsystem becdemggal to system (3.13) and hence it
tends asymptotically to a fixed nonnegative vegtorThe matrix of coefficients for the linear terms of
the sensitive vectors whefl = 0", Q" =07, g = 0" is A, = diag(N)Cdiagg) — diag¢) and the vector of
quadratic terms 8V, = (yJ C)(§ [ y), y tends asymptotically to 0 §A,) < 0 and to a fixed nonnegative
vector y*if s(A,) > 0. Hence, both infections die out if batfA)) < 0 ands(Ay ) < 0. Thus, our
subconclusion is as follows:
Theorem3.1
(i) (v.Y,q,Q" = (0,0,0,0] is asymptotically stable &Ay ) < 0 ands(A,) < 0.
(ii) (v,Y,q,Q" = (y*,0,g*,0)T, (wherey*,q* are some positive vectors) is asymptotically stals&f
) <0 ands(A)) > 0.
Next, we examine the casAy) > 0. LetE; =Y - Y*, E; = Q — Q*. Then the equation for the
sensitive (human and vectors) subsystems become
D==a0y+(NOQq+(NOO(A-u)D(Q* +Ep)) - (Y + Y* +E)) L C)g
(YU O(Q* +Ep) = ((Y*+ E) U C)((1 -u) T (Q* + Ep)), (3.14)
qz(llljy+(12[|(Y*+E1)_6Dq. (315)
At equilibrium, 1 = 0,q = 0,E;, E; —» 0. From (3.14) and (3.15), this condition leads to a vector
guadratic equation in each pfandqg, whose complete analytical characterization is elusive. Memve
for special cases such as= 1, a, = 0, we again obtain asymptotic stability as followsa ¥ 1, a, = 0,

then at equilibriung;, = ”ﬁTy =Wy, (say). At this point, we see from equation (3.14) that

D==Uy+(NOC(wly) - (y+Y*+E)UC)(wly) - YU C)Q* +En).
Now, o(Ey,Ey) — 0 ag||E4||, |Ez]|]— 0. Hence

C=((N-y)UC)wly) - (Co+nUy-(y*UC(wly) (3.16)
Equation (3.16) can be identified with system (??) with the matrix
By = diag(N— Y*)Cdiag(w) — diagCQ* + r), (3.17)

as the matrix of coefficients for the linear term apa —(yJ C)(wl y), as the vector of quadratic terms.
Thus,y — 0 and consequently, — 0 if S(B) <0 andy — y* # 0 and consequentty—w [ y* if s(B,) >
0.

Hence, we adjoin to the subconclusions in theorem 3.1 the followin¢asirasults and thus
obtain a more general conclusion as regards the stabilitysemaf the system (3.1), (3.2), (3.5) and

(3.6):

Theorem3.2

(i) .Y, 9,.Q" = O,Y*, 0,Q*)" is asymptotically stable &Ay) > 0 andu =1, a, = 0 leads ts(B,) <
0.

(i) (.Y, 9.Q" = (y*,Y*g*Q*)" is asymptotically stable &Ay ) > 0 andu =1, a, = 0 leads ts(B) >
0, whereB, is the matrix in (3.17).
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Thus, in casei), sensitive infection dies out and in cad@, (an endemic state is reached for both
infections.
Remark3.3

A complete analytical characterization and or solutiorhefdystem (3.1), (3.2), (3.5) and (3.6)
proves elusive. It is certainly of interest to know the asymptintit(s) for all possiblas whens(Ay) > 0,
ands(B,) > 0.

4.0 Conclusion

This paper focuses on malaria infection in a multigroup population. ®herfodel is typical of a
situation in which there is a sudden out break of infectiomé&ah of the population groups. In this case,
infected vectors arrive at a constant rate from the akgihe groups. This model shows that resistant
infectives persist and nearly everybody could be infected théhresistant parasite if the death rate of

resistant vectors is small. This is seen from the factftat N;as A, — 0. Since resistant infectives are

less sensitive to the drug, major health efforts should be geared talgatdsying the parasites.

The second multigroup model describes more accurately the tctneed in malaria infection,
especially in Sub-Saharan Africa, for instance, where strawsth resistant to virtually all known drugs
have emerged. Since efforts should be directed towards eliminatingmepistasites (and hence resistant
infection), conditions leading to the results of theorem 1 showe s guides to a health management
board. Condition (i) of the theorem shows that eventually both stoditise parasites are eliminated.
Condition (ii) shows that resistant parasites die off. Orother hands, theorem 3.2 shows that resistant
parasites/infection persist in both conditions of the theorem. Condit) shows that an endemic state is
reached for both infections. These models differ considerablytfierealier models of malaria infection
such as [3, 4, 5, 6, 11] in that each model here addresses aciimatelylution of resistant infection and
the results here are more complex than the earlier results ofttioe E1).
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