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Abstract

Existence results for some non-linear ordinary differential equations (1.1) —
(1.2 have been very difficult to establish when it comes to computation of the apriori
bounds. These difficulties were due to the nature of Lyapunov functions involved. In
this paper, these difficulties have been avoided by the use of integrated equation as the
mode of estimating the apriori bounds.
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1.0 Introduction and formulation of Theorem 1.1
Consider the third order non-linear boundary value problem
X+ Q)+ g+ H3= g} (1.1)
with boundary conditions
D®x(0)= D" x(2m7),r=0,1, 2,D :% (1.2)

wheref, g, handp are continuous functions depending on the arguments showmigs@dd periodic in t.
We note that equation (1.1) is the most general form of the constant ieoe#iguation.

X+ax+ bxt cx= [} (1.3)
in whicha, b, c,are constants anglis a continuous function ar periodic int. It is well known that if
the Routh-Hurwitz’s conditions.

a>0,b>0,ab>c>0 (1.4)
hold, the roots of the auxiliary equation
A*+al’+bl+c=0 (1.5)

have negative real parts. Then existence of periodic solutwes p is also2z periodic int can be
verified for (1.3), when (1.4) holds.

Extensions of equation (1.3) to its non-linear terms wheke c,are all not necessarily constants
are available in the literature. For instance, Ezeilo f2ved the existence of at least one harmonic
oscillation for the equation
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X+ax+bxt {y= (o} (1.6)
whereh is continuous. A similar result has also been proved by Pliss [8] fexqtiion

X+ ak+ b K 3= |1 XXX (1.7)
in which h(x) satisfies a slightly improved generalized Routh-Hurwitz’s @@ and the forcing term p
now depends oh, X, X, X and it is bounded for all values of its arguments. Reissig, Saasdr@onti [9]

proved an existence result for the equation
X+@(X)+bx+ cx= [} (1.8)

whenb >0, ¢ > Q |p(t)| <m, m> 0fort> 0. Tejumola [11] proved the existence of periodic solutions
for the equation

X+ f()%+ o+ 3= 1 xxX¥ (1.9)
in which f, g, hand p are continuous functions depending on the arguments shown. Very recently
Tejumola [13] proved existence of no prontrivial periodic solutionghf@requation

X+h(RQ+h(Y+cx Bt x XX (1.10)
Most of these results depended on the availability of a suitabledbdoess result using the well-known
Routh-Hurwitz’'s conditions. Further results on the extension oftequél.3) to its non-linear terms are
available in Ezeilo [2, 3, 4, 5, 6], Tejumola [11, 12] and stdkencan be found in Reissig, Sansone and
Conti [9]. However, Villari [14] proved an existence resultheiit the use of generalized Routh-
Hurwitz’'s criteria for the equation.

X+4(3)+0(+¢(3- ), h<0,g>0 (1.11)
subject to the conditiod@#(z) ~ & z)}( 2— 3 <O for z # zZ where z =%, z, =% and used

Halanay’'s approach in his proof. Ezeilo [4] proved the existengeewddic solutions for the equation
(1.7) and has shown that the condition

0<x*h(x) < ah =R (1.12)

or other similar conditions are not absolute necessity foexisence of periodic solutions for equation
(1.7). This can be seen clearly from the consideration of the linearaguati

X + X+ 4%+ 30x= cost
which has periodic solutio®50x = 29cost — 3sinbut the correspondireg bandh in (1.7) do not satisfy
(2.12).

The objective of this paper is to give some other resuliseirinon-Routh Hurwitz's” direction.

That is, a>0,b>0,ab<c (2.13)
or other similar conditions for equation (1.1). Hence, we proposeoaethewhereby the “non-Routh
Hurwitz's” conditions could be generalized to equation (1.1). Bypaoiaon of equation (1.1) with (1.3),
we observe that equation (1.1) is equivalent to (1.3) if

f (X) is replaced by al

X

g(x) is replaced by b
g (1.149)
an

h(x) is replaced by c
This may in turn suggestf (X) andH (x) being replaced byaX andc respectively. To be more precise,
let us take the purely imaginary root
A=ipB,p>0ifaz 0and dc # B° (1.15)
(B an integer. Thus ifP is 2z periodic int, the linear differential equation (1.3) has indeed
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2z periodic solutions ifa, b, care subject to condition (1.15). Thus we have the following in twthie
hypotheses have been suggested by equation (1.14).
Theorem 1.1:

Suppose in addition to the basic assumptiof, g handp, there exists constanés> 0, ¢ > 0
andg > 0 such that the functioln(x) satisfies

h(X)<c<a 0OXx (1.16)
a—-c>0,adc#p% a0 (1.17)
zf(z)<aZ + Bz 1.18)
Ih(X)| - +e0 as| % - o (1.19)

The functionp is bounded andm2periodic int. There is on&z periodic solution in L'[O,2ﬂ] for
arbitraryg(y).

2.0  Notations
Throughout the proof, which follows, we denote finite capi@lsC,, C;, ... which depend at
most onf, g, handp. TheC; (i=0, 1, 2, ...)yetain a fixed identity throughout the proof of theorem 1.1.

The symbols|[] , |[J, |fJ with respect to the mappingfd, 277] - I will have their usual
meaning. That is for a given functidh: [0, 277] — [ say

61, = maxial . |6], =[ |6 §)ds.|al, :=( [7e (s)d}z

Ost<26

3.0  Proof of Theorem 1.1
The proof of theorem 1 shall be by the Leray-Schauder fixed pmxhhigue (see Leray and
Schauder [7]) and instead of equation (1.1), we consider the parardeieendent equation

K+ 1,(0+Ag(+ h(3=4 1 (3.1)
where
f,(X)=@A-A)ax+A (¥ (3.2)
h,(X) =A-A)cx+ AR (3.3)
The equation (3.1) can be written in matrix form by setting
X=y, ¥y=2z==-§(0-A1 9%~ h( 3+ | (3.4)
and equation (3.4) can be written compactly in the form
X = AX+AF( X 1) (3.5)
where
X 01 0 0
X=|y|,A=| 0 0 1|,F=|0 (3.6)
. -c 0 -a Q

with Q= p-h(X+ cx- ¢ %- {")+ &
We remark that equation (3.1) reduces to a linear equation
X +ax+ cx=0 (3.7)
when/ = 0 and to equation (1.1) whén= 1.
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The auxiliary equation to (3.7)
A+al®+c=0 (3.8)
has no purely imaginary rodt= i, f > 0 if a# 0 and &c #
Therefore the matrixe® — 1) (I being identity 3 x 3 matrix) is invertible. Ths= X(t) is a2z periodic
solution of (3.5) if and only iK satisfies the equation

X=ATX., 0<1<1 (3.9
where the transformatiohis defined by
(TX) @ =["" (™™ - ) &I X3 } d (3.10)

Let S be the space of all real-valued continuous and 3-vector funéfitt — x(t), y(t), z(t)
which are of period2and with norn"ﬂ)?uS defined by

H)? = su5{|x(tj+|y(tj+|z(tj} (3.11)

Ost<

The definition of (TX)(t) is the solution of the differentiated equation (3.5). Note that the

A A(t=s)

_ -1 _ .
matrices(e A _ I) ande™ "™ exist. MoreoverHe denotes the sum of absolute values of the

elements of the matrig™"™ . Similarly F(X, t) is continuous irX and t sincé, g, handp are continuous

and is periodic in t with period 2z (by the periodicity of p). Since
+271A -1

(T.X)(t):J-: (8_2"— |) €9 +( X(3, $ d Then a change of the variahle= t — sin the

integral equation yields

T -1
(Tx)(t)zjo2 (2™ -1) € F( Xt v, (+ ) d (3.12)

Also, let x(t) be a possibletderiodic solution of the equation (1.1). By this assumpEEf(t —
u), (t — u))is equation (3.12) is definitel®r periodic inu because of its composition as given@yn
equation (3.6). The term is 2z periodic int, the other termd(X), cx g(X, f(X and & are all2x
periodic int, by the assumption tha(t) is a possible2z periodic solution of equation (1.1). T2
periodicity of F(X(t), t) implies that(TX)(t) is also2z periodic int. ThusT : S - S.

Now X(t)OSand X (t)= TX(t) implies thatX(t) is a2z periodic solution of the differential
equationX = AX+ F( X, 1). But

t+2]‘r(

-1
X(t) = L ™ 1) IR(X(3 3 d
Differentiating both sides of the above integral equation with respéegtelds

X :((eznA_ |)-1) Al s F(X(3 % d$( &TA_ )I_l T E K2, +2n)

(e -1) T IF (X @)
:ALt+2n(e_2nA_ l)‘l el-\(t—s) F( X( 3' $ dsf( —érrA_ )l( —€7A_ )| F K)’t)
= AX+ F( X(9), 1)
Thatis X = AX+ F( X(D, t). Again, consider the parametetifferential equation (3.1)
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t+27T(

with the solution X(t)=A L g™ - |)l fIF(X($, $ d which by equation (3.10) is
X(t) =ATX(?). Thus verifying the claim (3.9). It is therefore clear tthe existence of a periodic
solution of equation (3.5) for eaohD[O,]] would correspond to the existenceXf] s satisfying (3.9).

Thus the existence of at led@hi periodic solution of equation (1.1) requires that there are assls,
C;, G independent ofl D[O,]] such that angx periodic solutiorX(t) of equation (3.1) satisfies

X, <G |X, <G and|k < G (3.13)
see Scheafer [10].
Let x(t) be a possibl@z periodic solution of equation (3.1). The main tool to be used hehgsin
verification is the functioWV defined by

W=3%+AQ Y+ xh( X (3.14)
where G(X) =j: g(9 deand h,(x) =(1-A)cx+ A H ®. The time derivativen along the solution

paths (3.4) is W=-x%f,(R+ XH{( 3+ p (3.15)
Integrating (3.15) with respect tdromt = 0 tot = 2z, we have

T 2”.. . 2 . 2 m
W[, =j0 xu;(x)dt—jo % h( X dtrjo A pxc
By equation (3.2), (3.3), and (1.16), we have
0=-["(1-Aadt-[ A f(xde [ @-A)ck e [ ek de[ A P
0 0 0 0 0
21 . 2m e . a
=—jo (1—A)ax2dt—jo A f(x)xo|t+j0 X d&jo A pxc
By equation (1.18)
2” e 2” . 27T . 27T . ZT ..
OS—jO (1—/1)ax2dt—jo Aax clt—j0 Bxdrrjo ek d+jo A P
Using the2r periodicity ofx(t), then
2” e 2” 3 27T . 27T .
OS—jO (1—/1)ax2dt—jo Aax c|t+j0 X d&jo A pxc
After due simplification, we have) < —J'Ozna')'(2 dt+ Jjn cX dt+'[02n/1 pxd
2” e 2” . 27T .
or [astdt-[ " ctd| | fkd (3.16)
2, 2, 2, . .
[axdi- ek dts M| %d
We have used the bounded pfind the fact thad < 1 < 1. By the Fourier series expansion xgf)

X(t)zao+ix arcosrt+br Sirﬂ) and the derivative(t) andx ), V\engoznxzdtzjomxzdt. Therefore by
r=
(316),(a-0)[ % dt< M[ |5t Thatis, [ %dt< g | ot
2 1?7
jo x*dt< g(27) (jo g da

By Schwartz’s inequality, therefore
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2m }/2 1
(J'O det) <g(2n)y=¢ (3.17)
Now sincex(0) = x(2x), there exista (J[0, 277] such thak { ¥ . So that the identity
t
X(t) = X(r)+ | %(9 ds
Therefore

max|x ) < [ [%(t)fat

Ost<2m

< (sz( ;”xzds)%

By Schwartz’s inequality. From (3.17) X, < (2m)°C, = C, (3.18)
Now integrating equation (3.1) with respect to t from0 tot = 2z

2, 2 . 2 3 2 T
jo xo|t+jO 1;(x)o|t+jO Ad N dt+_[0 A, on:jo A pd
2 2 2 2
By equation (1.2), we havfe0 f, (X)dt+J.0 Ag(X dt+J.O h( ¥ dE& IO A pd
By equation (3.2) and (3.3), the above equation yields
2m . 2 . 2 2
[Cxdt+ [ TAg W de [T axde[ || p o
which yields
[ @-paxdt+ [ At dte [ A gy de [T @-A) oxae [TA bxat[ A p
0 0 0 0 0 0
By (1.19), we have
2 . o 2 o . s x £y .
jo (l—/1)axdt+_[0 /1axdt+_[0 p) Bdtlr_[o A g X d{-IO 1-1) cxertjo A h)x enjo A | pThatis
[ A dt+ [ @-A)oxds [ (A p-2 ¢ R d (3.19)
By (3.18) and the boundednesspafombined with the fact th& </ < 1 the right hand side of equation
(3.19) is boundeded, so thft {(1 - Hcx+ AK 3} di< G.

Thatis, ‘ ["Ap-Ag(® d{ <G (3.20)
Which also implies that ‘ joz"(l—/l)cxdt+ [An(3 d}s C (3.21)
But (3.21) implies

Givena >008 >0 such th: x| = B=|h(x) >a (3.22)
Then there exists [0, 277] such that (1)< G (3.23)

Now if (i) x(7) =0, then we are done.
Suppose NOT i.e. (iix(r) # 0 for any 7, then the left hand side (3.19)

Uozn(l—/l)cM dt+ [ A (%) dHLZ"(l‘/‘) @ dt-[Aa t#

jozi 72— A)CAdt+ 2 a
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which implies that the left hand side of equation (3.19) is not baountBleis is a negation to the
boundedness in equation (3.21). Therefore, equation (3.23) hoIdstf{)@, 27'[] Thus, the identity

x(t) = X(7) + jt () dx holds. That is

max|x ) <|x@ ) +J'02” X (t)dt

Ost<2m

<C. + (Z%)(jjﬂxzdt)%

By Schwartz’s inequality from (3-18§QS§|X(‘1 <C+C=G.

Thus X, <G (3.24)
It remains the third inequality (3.13) for the full realipatiof the proof of theorem 1.1. So consider
equation (3.1) in the form X+ f,(X=K (3.25)

with K =Ap-Ag(%) - h (3
In view of (3.18) and (3.24) combined with the boundednegs wk are assumed that the right
hand side of (3.25) is bounded.

That is K=<C, (3.26)
Now multiplying equation (3.25) b¥X and integrate with respecttéromt=0tot= 2z
2”...2 2 _ ar .
jo X dt+j0 fA(x)x—J'O Kxdt (3.27)

By equations (3.2), (1.19) and (1.2), we have after due simplification that (8difes to
2”... 2” s
[ xdt<|K]|[ [t
That is

joz”'xzdts o joz”|">4 dt

<C, (21%( joz”'xz dt)é
By Schwartz’s inequality. Therefore,
joz”('xzdt)% <C(n} =G (3.28)
Since x(0) = x(277) by (1.2) then there exists] [0772s]ch thak £ ¥ (The identity
() = X(1) + f (9 d

holds. Therefore
2
max|x () < J'O %] dt

Ost<2mr

< (zé)( J‘OZH'X'Zdt)%

By Schwartz’s inequality. From (3.28@3};&@1 < (21¥C,=G,
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Thus M, <G (3.29)

4.0 Conclusion

Our estimates (3.18), (3.24), (3.29) verify equation (3.13) and tuf pf theorem 1.1 follows,
which implies existence ar periodic solutions for equation (1.1) subject to the boundary condition
(1.2).
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