Periodic solutions of a certain nonlinear boundary value problem (BVP) of a fourth order differential equation

${ }^{1}$ H. M. Ogbu and ${ }^{2}$ A. E. Umahi
${ }^{1}$ Department of Industrial Mathematics and Applied Statistics, Ebonyi State University, Abakaliki, Nigeria.
${ }^{2}$ Department of Industrial Physics, Ebonyi State University, Abakaliki, Nigeria.

Abstract

The consideration of the eigenvalue approach and a comparison between the linear and nonlinear fourth order differential equation formed the basis for a theorem for existence of periodic solutions for the nonlinear boundary value problem of a fourth order differential equation. The proof of the theorem is by the Leray-Schauder fixed point technique with the use of integrated equation as the mode for estimating the a priori bounds.

Keywords

Nonlinear ODE, Boundary value problem (BVP), a priori bounds, integrated equation, Leray-Schauder fixed point technique, parameter dependent equation.

1.0 Introduction and formulation of Theorem 1.1

Consider the eigenvalue problem

$$
\begin{equation*}
x^{(4)}+a_{1} \dddot{x}+a_{2} \ddot{x}+a_{4} x=-a_{1} \lambda \dot{x} \tag{1.1}
\end{equation*}
$$

with boundary conditions

$$
\begin{equation*}
D^{(r)} x(0)=D^{(r)} x(2 \pi), r=0,1,2,3, D=\frac{d}{d t} \tag{1.2}
\end{equation*}
$$

where $a_{1} \neq 0, a_{2}$ and a_{4} are constants. Let $x(t)$ have the Fourier expansion

$$
x^{\prime}(t)-\sum_{r=1}^{\infty}\left(d_{r} \cos r t+e_{r} \sin r t\right) \text { for } t \in[0,2 \pi]
$$

split $x^{\prime}(t)$ into two parts $\mathrm{Y}_{1}, \mathrm{Y}_{2}$ as follows

$$
Y_{1}=\sum_{r=\lambda}\left(d_{r} \cos r t+e_{r} \sin r t\right), Y_{2}=\sum_{r>\lambda}\left(d_{r} \cos r t+e_{r} \sin r t\right)
$$

Multiplying (1) by $Y_{1}-Y_{2}$ and integrating over $[0,2 \pi]$, it can be checked that
(i) Any $\lambda \neq m^{2}$ for $m=1,2, \ldots$ is not an eigenvalue of (1.1) for arbitrary a_{2} if $a_{4} \neq 0$.
(ii) Any $\lambda=m^{2}$ for some $m=1,2, \ldots$ is an eigenvalue of (1.1) if and only if

$$
\chi(m)=m^{4}-a_{2} m^{2}+a_{4}=0 .
$$

${ }^{1}$ Corresponding author:

1e-mail: ohilary2006@yahoo.com.
${ }^{1}$ Telephone: 08066972013

The statements (i) and (ii) are essential in the solvability of the well known 2π periodic BVP for the non autonomous equation.

$$
\begin{equation*}
x^{(4)}+a_{1} \dddot{x}+a_{2} \ddot{x}+a_{1} \lambda \dot{x}+a_{4} x=P(t) \tag{1.3}
\end{equation*}
$$

By (i) one expects existence of a 2π periodic solution for the equation

$$
\begin{equation*}
x^{(4)}+a_{1} \dddot{x}+a_{2} \ddot{x}+g(t, \dot{x})+a_{4} x=P(t) \tag{1.4}
\end{equation*}
$$

for arbitrary a_{2}, a_{4} where $a_{1}^{-1} g(t, y)$ is in the interval $\left\{m^{2},(m+1)^{2}\right\}$ for m a non zero integer Ezeilo [1] and Ezeilo and Onyia [3]. Again (i) taken together with (ii) leads one to expect periodic solutions to the 2π periodic BVP for the equation.

$$
\begin{equation*}
x^{(4)}+a_{1} \dddot{x}+a_{2} \ddot{x}+a_{3} \dot{x}+a_{4} x=P(t, x, \dot{x}, \ddot{x}, \dddot{x}) \tag{1.5}
\end{equation*}
$$

for arbitrary a_{1} and a_{3} if a_{2} and a_{4} satisfy

$$
\begin{equation*}
\chi(m) \neq 0 \text { for } m=1,2, \ldots \tag{1.6}
\end{equation*}
$$

The equation (1.6) is an improvement on the result of Ezeilo and Tejumola [2, 4] which required that $\chi(m) \neq 0$ for all the real λ.

Note also that equation (1.6) can be established as a condition for existence of a 2π periodic solution by going through the auxiliary equation.

$$
x^{(4)}+a_{1} \dddot{x}+a_{2} \ddot{x}+a_{3} \dot{x}+a_{4} x=0
$$

\sin ce $\chi(m)=\left(m^{2}-\frac{1}{2} a_{2}\right)^{2}+a_{4}-\frac{1}{4} a_{2}^{2}$
It is convenient in examining the implication of (1.6) to distinguish the following cases.
(i) $a_{2} \leq 0$
(ii) $a_{2}=m^{2}$ for some integer.

From (i), it is clear that $a_{2} \leq 0$ by equation (1.6)

$$
\left.\begin{array}{l}
\chi(m)>0 \tag{1.7}\\
\text { if } \\
a_{4}>0
\end{array}\right\}
$$

Here $\inf \chi(m)-\chi(N)=a_{4}-\frac{1}{4}\left(2 N^{2}\right)^{2} \Rightarrow a_{4}=N^{4}$ and so we expect that $\chi(m)>0$ provided $a_{4}>N^{4}=\frac{1}{4} a_{2}^{2}$. The consideration of cases (i) and (ii) if P is sufficiently small, then a 2π periodic solution of the equation (1.5) exists for arbitrary a_{1} and a_{3} if $a_{2} \leq 0$ and $a_{4}>0$ or $a_{2}=2 N^{2}$ for some integers

$$
\begin{equation*}
N>0 \text { and } a_{2}^{2}=2 N^{4} \tag{1.8}
\end{equation*}
$$

We now transfer the above consideration to more the general equation

$$
\begin{equation*}
x^{(4)}+\varphi(\ddot{x}) \dddot{x}+a_{2} \ddot{x}+\theta(\dot{x})+f(x)=P(t, x, \dot{x}, \ddot{x}, \dddot{x}) \tag{1.9}
\end{equation*}
$$

where φ, θ, f, P are continuous functions depending on the arguments shown and a_{2} is a constant. The equation (1.9) is comparable with (1.5) if

$$
\left.\begin{array}{l}
\varphi(\ddot{x}) \text { replaces } a_{1} \tag{1.10}\\
\theta(\dot{x}) \text { replaces } a_{2} \dot{x} \\
f(x) \text { replaces } a_{4} x
\end{array}\right\}
$$

The function $f(x)$ replacing $a_{4} x$ suggest that $f^{\prime}(x)$ or $x^{-1} f(x)(x \neq 0)$ replace a_{4}. So in turn (1.8) suggests that the existence of 2π periodic solutions for (1.9) might be provable for arbitrary φ, θ under the following hypotheses. $H_{1}: a_{2} \leq 0$ and $f(x)$ subject to the consideration $x^{-1} f(x)>0$ or if $f(x)$ exists and $f^{\prime}(x)>0, H_{2}: a_{2}=\mathrm{N}^{2}$ for some integer $N>0$ with $f(x)$ subject to $x^{-1} f(x)>N^{4}(x \neq 0)$ or if $f^{\prime}(x)$ exists and $f(x)>N^{4}$.
Thus we have

Theorem 1.1

Suppose in addition to the assumptions on equation (1.9) that given

$$
\delta_{0}=\left\{\begin{array}{l}
0 \text { if } \mathrm{a}_{2} \leq 0 \tag{1.11}\\
\frac{1}{4} a_{2}^{2}, \text { if } a_{2}>0
\end{array}\right.
$$

(i) there exist $\delta_{1}>\delta_{0}$ such that

$$
\begin{align*}
& \inf _{\|x\| 11} f^{\prime}(x) \geq \delta_{1} \tag{1.12}\\
& \delta_{1}>\frac{1}{4} a_{2}^{2} \tag{1.13}
\end{align*}
$$

and
(ii) the function P is bounded and 2π periodic in t, then equations (1.1) - (1.2) have at least one 2π periodic solution for arbitrary φ and θ.

2.0 General comments on some notations

Throughout the proof which follows, the capitals $C, C_{1}, C_{2}, C_{3}, \ldots$ represent positive constants whose magnitude depend at most on φ, f, θ, P and a_{2}. The $C_{1}, C_{2}, C_{3}, \ldots$ with suffixes attached retain their identities throughout the proof of theorem 1.1, but the C 's without suffixes are not necessarily the same in each place of occurence. The symbols $\left\|_{\infty}, \mid\right\|_{1}$, and $\|_{2}$ in respect of the mappings $[0: 2 \pi \rightarrow R]$ shall have their usual meaning. Thus given the function $\theta:[0,2 \pi \rightarrow R]$ then

$$
|\theta|_{\infty}=\max _{0 \leq t \leq 2 \pi}|\theta(t)|,|\theta|_{1}=\int_{0}^{2 \pi}|\theta(t)| d t,|\theta|_{2}=\left(\int_{0}^{2 \pi} \theta^{2}(t) d t\right)^{1 / 2}
$$

3.0 Proof of Theorem 1.1

The proof of theorem 1.1 is by the Leray-Schauder fixed point technique. See Leray and Schauder [6] and we shall consider the parameter λ dependent equation, $(0 \leq \lambda \leq 1)$

$$
\begin{equation*}
x^{(4)}+\lambda(\ddot{x}) \dddot{x}+a_{2} \ddot{x}+\lambda \theta(\dot{x})+f(x)=\lambda P(t, x, \dot{x}, \ddot{x}, \dddot{x}) \tag{3.1}
\end{equation*}
$$

where, $f_{\lambda}(x)=(1-\lambda) \delta_{1} x+\lambda f(x)$. By setting

$$
\begin{equation*}
\dot{x}=y, \dot{y}=z, \dot{z}=u, \dot{u}=-\lambda \varphi u-a_{2} z-\lambda \theta(y)-f(x)+\lambda P \tag{3.2}
\end{equation*}
$$

the equation (3.1) can be written compactly in matrix form

$$
\begin{equation*}
\dot{X}=A X+\lambda F(X, t) \tag{3.4}
\end{equation*}
$$

where

$$
X=\left(\begin{array}{l}
x \tag{3.5}\\
y \\
z \\
u
\end{array}\right), A=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-\delta_{1} & 0 & -a_{2} & 0
\end{array}\right), F=\left(\begin{array}{l}
0 \\
0 \\
0 \\
Q
\end{array}\right)
$$

with $Q=P(t)-\varphi u-\theta(y)-f(x)+\delta_{1} x$
Note that equation (3.1) reduces to a linear equation

$$
\begin{equation*}
x^{(4)}+a_{2} r^{2}+\delta_{1} x=0 \tag{3.6}
\end{equation*}
$$

when $\lambda=0$ and to equation (1.9) when $\lambda=1$. The eigenvalues of the matrix A defined by (3.5) are the roots of the auxiliary equation.

$$
\begin{equation*}
r^{4}+a_{2} r^{2}+\delta_{1}=0 \tag{3.7}
\end{equation*}
$$

The equation (3.7) has no root of the form $r=i \beta$ (β an integer), if

$$
\begin{equation*}
\delta_{1}>\frac{1}{4} a_{2}^{2} \tag{3.8}
\end{equation*}
$$

Therefore the matrix $\left(\ell^{-2 \pi A}-I\right)$, (I being the identity 4×4 matrix) is invertible. Thus, $X=X(t)$ is a 2π periodic solution of (3.4) if and only if (Hale, [5])

$$
\begin{equation*}
\mathrm{X}=\lambda \mathrm{TX}, 0 \leq \lambda \leq 1 \tag{3.9}
\end{equation*}
$$

where the transformation T is defined by

$$
\begin{equation*}
(T X)(t)=\int_{0}^{2 \pi}\left(\ell^{-2 \pi A}-I\right)^{-1} \ell^{A(t-s)} F(X(t), S) d t \tag{3.10}
\end{equation*}
$$

Let S be the space of all continuous 4-vector function $\bar{X}(t)=(x(t), y(t), z(t), u(t))$ which are of period 2π and with norm

$$
\begin{equation*}
\|\bar{X}\|_{s}=\sup _{0 \leq t \leq 2 \pi}\{|x(t)|+|y(t)|+|z(t)|+|u(t)|\} \tag{3.11}
\end{equation*}
$$

If the operator T defined by (3.10) is a compact mapping of S into itself then it suffices for the proof of theorem 1.1 to establish a priori bounds $C_{13}, C_{9}, C_{8}, C_{17}$, independent of λ such that

$$
\begin{equation*}
|x|_{\infty} \leq C_{13},|\dot{x}|_{\infty} \leq C_{9},|\ddot{x}|_{\infty} \leq C_{8},|\ddot{x}|_{\infty} \leq C_{17} \tag{3.12}
\end{equation*}
$$

See Scheafer [7].

4.0 Verification of (3.12)

Let $x(t)$ be a possible 2π periodic solution of equation (3.1). The main tool to be used here in this verification is the function $V(x, y, z, u)$ defined by

$$
\begin{equation*}
V=\lambda \int_{0}^{s} s \varphi(s) d s+a_{2} y z+u z+y f_{\lambda}(x)+\lambda \int_{0}^{y} \theta(s) d s \tag{4.1}
\end{equation*}
$$

The time derivative of \dot{V} along the solution path of (3.2) is

$$
\begin{align*}
& \dot{V}=u^{2}+a_{2} y u+y^{2} f_{\lambda}^{\prime}(x)+\lambda z P \tag{4.2}\\
& \equiv\left(u+\frac{1}{2} a_{2} y\right)^{2}+y^{2}\left(f_{\lambda}^{\prime}(x)-\frac{1}{4} a_{2}^{2}\right)+\lambda z P \tag{4.3}
\end{align*}
$$

In dealing with the term $y^{2} f_{\lambda}^{\prime}(x)$, in which $f_{\lambda}^{\prime}(x)$ is positive only when $|x|$ is large, consider the function W defined by

$$
\begin{equation*}
W=y H(x) \tag{4.4}
\end{equation*}
$$

where

$$
H(x)= \begin{cases}\sin \left(\frac{\pi}{4}\right), & |x| \leq 2 \tag{4.5}\\ \sin x, & |\mathrm{x}|>2\end{cases}
$$

and along the solution paths of (3.2)

By considering the function

$$
\begin{gather*}
\frac{d}{d t}(y H(x))=y^{2} H^{\prime}(x)+z H(x) \tag{4.6}\\
U=V+\lambda C_{0} H(x) \tag{4.7}
\end{gather*}
$$

along the solution paths (1.7)

$$
\begin{equation*}
\frac{d}{d t}(U) \equiv \dot{U}=\left(u+\frac{1}{2} a_{2} y\right)^{2}+y^{2}\left(f_{\lambda}^{\prime}(x)-\frac{1}{4} a_{2}^{2}\right)+\lambda z P+\lambda C_{0} y^{2} H^{\prime}(x)+\lambda C_{0} z H(x) \tag{4.8}
\end{equation*}
$$

Since $|H| \leq 2 \forall x$ and $H^{\prime}(x) \geq \frac{\pi}{4 \sqrt{2}}$ when $|x| \leq 1$ it follows from (4.8) and C_{0} is fixed and large enough. Then for every possible 2π periodic solution of (1.9) that

$$
\begin{equation*}
\int_{0}^{2 \pi}\left(u+\frac{1}{2} a_{2} \dot{y}\right)^{2} d t+C_{1} \int_{0}^{2 \pi} y^{2} d t \leq C_{2} \int_{0}^{2 \pi}|z| d t \tag{4.9}
\end{equation*}
$$

we have used the boundedness of P here. The result (4.8) is the key to the proof of (3.12) but we also need the following inequality

$$
\begin{equation*}
|\ddot{x}|_{2} \leq C_{3}|\dddot{x}+\alpha \dot{x}| \tag{4.10}
\end{equation*}
$$

from Ezeilo and Omari [4].
Now recall that $y=\dot{x}, z=\ddot{x}, u=\dddot{x}$. Then

$$
\begin{equation*}
|\dddot{x}+\alpha \dot{x}|_{2}^{2} \leq C_{2}|\ddot{x}|_{1} \tag{4.11}
\end{equation*}
$$

(from 4.9) where $\alpha=\frac{1}{2} a_{2}$, by definition

$$
|\ddot{x}|_{1}=\int_{0}^{2 \pi}|\ddot{x}| d t \leq(2 \pi)^{1 / 2}\left(\int_{0}^{2 \pi} \ddot{x}^{2} d t\right)^{1 / 2}=(2 \pi)^{1 / 2}|\ddot{x}|_{2}
$$

By Schwartz's inequality, $\leq(2 \pi)^{1 / 2} C_{3}|\dddot{x}+\alpha \dot{x}|_{1}$ by (4.9). Thus, $|\ddot{x}|_{1} \leq C_{4}|\dddot{x}+\alpha \dot{x}|_{1}$ or $(2 \pi)|\ddot{x}|_{2} \leq C_{4}|\dddot{x}+\alpha \dot{x}|_{1}=C_{5}|\dddot{x}+\alpha \dot{x}|_{1}$

$$
\begin{equation*}
\left|\ddot{x}_{2}\right| \leq C_{6}|\ddot{x}+\alpha \dot{x}|_{2} \tag{4.12}
\end{equation*}
$$

by Schwartz's inequality. From (4.11), $|\dddot{x}+\alpha \dot{x}|_{2}^{2} \leq C_{2} C_{6}|\dddot{x}+\alpha \dot{x}|_{2}$ which implies that

$$
\begin{equation*}
|\ddot{x}+\alpha \dot{x}|_{2} \leq C_{7} \tag{4.13}
\end{equation*}
$$

$$
\begin{equation*}
\text { By (4.12) and (4.13), } \quad|\ddot{x}|_{2} \leq C_{8} \text { and }|\ddot{x}|_{\infty} \leq C_{8} \tag{4.14}
\end{equation*}
$$

Since $x(0)=x(2 \pi)$, implies that there $\tau \square[0,2 \pi]$ such that exits $\square(\tau)=0$. Then the identity

$$
\dot{x}(t)=\dot{x}(\tau)+\int_{0}^{2 \pi} \ddot{x}(s) d s
$$

holds. Thus,

$$
\begin{aligned}
\max _{0 \leq \leq \leq 2 \pi}|\dot{x}(t)| & \leq \int_{0}^{2 \pi}|\ddot{x}| d s \\
& \leq(2 \pi)^{1 / 2}|\ddot{x}|_{2}
\end{aligned}
$$

by Schwartz's inequality. From (4.14), $\max _{0 \leq \leq \leq 2 \pi}|\dot{x}(t)| \leq(2 \pi)^{1 / 2} C_{8}, \quad \max _{0 \leq \leq \leq 2 \pi}|\dot{x}(t)| \leq C_{9}$. Thus

$$
\begin{equation*}
|\dot{x}|_{\infty} \leq C_{9} \tag{4.15}
\end{equation*}
$$

Now integrate equation (3.1) directly from $t=0$ to $t=2 \pi$

$$
\int_{0}^{2 \pi} x^{(4)} d t+\int_{0}^{2 \pi} \lambda \varphi(\ddot{x}) \dddot{x} d t+\int_{0}^{2 \pi} a_{2} \ddot{x} d t+\int_{0}^{2 \pi} \lambda \theta(\dot{x}) d t+\int_{0}^{2 \pi} f_{\lambda}(x) d t=\int_{0}^{2 \pi} \lambda P d t
$$

Using the equation (4.14) and (4.15) and (1.2)

$$
\begin{equation*}
\int_{0}^{2 \pi} f_{\lambda}(x) d t=\int_{0}^{2 \pi} \lambda P d t-\int_{0}^{2 \pi} \lambda \theta(\dot{x}) d t \tag{4.16}
\end{equation*}
$$

The boundedness of P and the fact that $0 \leq \lambda \leq 1$ together with (4.15) imply that the right hand
side of (4.16) is finite. That is,

$$
\begin{equation*}
\left|\int_{0}^{2 \pi} \lambda P d t\right|+\left|\int_{0}^{2 \pi} \lambda \theta(\dot{x}) d t\right| \leq C_{10} \tag{4.17}
\end{equation*}
$$

$$
\begin{equation*}
\text { Thus, }\left|\int_{0}^{2 \pi} f_{\lambda}(x) d t\right| \leq C_{10} \text {. So, } \quad\left|(1-\lambda) \delta_{1} x+\lambda f(x)\right| \leq C_{10} \tag{4.18}
\end{equation*}
$$

For C_{10} very large implies that,

$$
\begin{equation*}
|x(t)| \leq C_{11}, \text { for some } \tau \in[0,2 \pi] \tag{4.19}
\end{equation*}
$$

Now the identity $t, x(t)=x(\tau)+\int_{\tau}^{t} \dot{x} d s$ holds. Thus,

$$
\begin{align*}
& \max _{0 \leq \leq \leq 2 \pi}|x(t)| \leq|x(\tau)|+\int_{0}^{2 \pi}|\dot{x}| d s \\
& \\
& \quad \leq C_{11}+(2 \pi)^{1 / 2}\left(\int_{0}^{2 \pi} \dot{x}^{2} d t\right)^{1 / 2} \tag{4.20}\\
& \text { (4.15), } \quad \max _{0 \leq \leq \leq 2 \pi}|x(t)| \leq C_{11}+C_{12}
\end{align*}
$$

and $|x|_{\infty} \leq C_{13}$. To obtain the fourth inequality in equation (3.12), multiply equation (3.1) by $x^{(4)}$ and integrate with respect to t from $t=0$ to $t=2 \pi$
$\int_{0}^{2 \pi} x^{(4)^{2}} d t+\int_{0}^{2 \pi} \lambda \varphi(\ddot{x}) \dddot{x} x^{(4)} d t+\int_{0}^{2 \pi} a_{2} \ddot{x} x^{(4)} d t+\int_{0}^{2 \pi} \lambda \theta(\dot{x}) x^{(4)} d t+\int_{0}^{2 \pi} f_{\lambda}(x) x^{(4)} d t=\int_{0}^{2 \pi} \lambda P x^{(4)} d t$
We use equations (4.15), (4.14), (4.20) and the boundedness of P and since φ, θ and f are continuous functions, there are constants C_{14}, C_{15} such that

$$
\begin{equation*}
\left|x^{(4)}\right|_{2}^{2} \leq C_{4}\left|x^{(3)}\right|_{2}\left|x^{(4)}\right|_{2}+C_{15}\left|x^{(4)}\right|_{2} \leq C_{16}\left|x^{(4)}\right|_{2} \tag{4.21}
\end{equation*}
$$

where $\mathrm{C}_{16}=\mathrm{C}_{15}+\mathrm{C}_{15} \mathrm{C}_{7}$ (from 4.13). Hence, $\left|x^{(4)}\right|_{2} \leq C_{15}$. From which because of (1.2) with $r=3$, then

$$
\begin{equation*}
\left|x^{3}\right|_{\infty} \leq(2 \pi)^{1 / 2} C_{16}=C_{17} \tag{4.22}
\end{equation*}
$$

which is the fourth inequality in (3.12).

5.0 Conclusion

The estimates (4.14), (4.15), (4.20) and (4.22) verify the inequality (3.12) and hence the proof of theorem 1.1, which implies the existence of at least one 2π periodic solution for equation (1.1) - (1.2).

References

[1] Ezeilo, J. O. C. (1983); Uniqueness theorems for periodic solutions of certain fourth and fifth order differential systems, J of Nigerian Math. Soc. 2: 55-59.
[2] Ezeilo, J. O. C. and Tejumola, H. O. (2001); Non resonant oscillations for some fourth order differential equation II. Journal of Nigerian Mathematical Society, vol 20, 45-58.
[3] Ezeilo, J. O. C. and Onyia J. (1984); Non resonant oscillations for some third order differential equations I. J. Nigerian Math. Soc. 83-96
[4] Ezeilo, J. O. C. and Tejumola H. O. (1979); Periodic solution for certain fourth order differential equations; Att. Accad. Naz, Lencei Rend. CL. Sci. Fis. Mat. Natur. Ser VIII LXVI 344-350
[5] Hale, J. (1963); Oscillations in nonlinear systems, McGraw-hill, New York, Toronto London.
[6] Leray, J. and Schauder, J. (1934); Topologie et equations functionelles, Ann. Sci Ecole norm sup (3) 51, 45-78.
[7] Scheafer H (1955); Uber der methode de a priori schranken, math ann. 129415 - 416.

