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Abstract 
 

The consideration of the eigenvalue approach and a comparison between the 
linear and nonlinear fourth order differential equation formed the basis for a theorem 
for existence of periodic solutions for the nonlinear boundary value problem of a 
fourth order differential equation. The proof of the theorem is by the Leray-Schauder 
fixed point technique with the use of integrated equation as the mode for estimating the 
a priori bounds. 
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1.0 Introduction and formulation of Theorem 1.1 
 Consider the eigenvalue problem 

    (4)
1 2 4 1x a x a x a x a xλ+ + + = −&&& && &     (1.1) 

with boundary conditions 

   ( ) ( )(0) (2 ),  0,1,2,3,  r r d
D x D x r D

dt
π= = =    (1.2) 

where 1 2 40,   and  are constants. Let ( )a a a x t≠  have the Fourier expansion 

   ( ) [ ]
1

( ) cos sin  for 0,  2r r
r

x t d rt e rt t π
∞

=

′ + ∈∑�  

split 1 2( ) into two parts Y ,  Y  as followsx t′  

   ( ) ( )1 2cos sin ,  cos sinr r r r
r r

Y d rt e rt Y d rt e rt
λ λ= >

= + = +∑ ∑  

Multiplying (1) by [ ]1 2  and integrating over 0, 2Y Y π− , it can be checked that  

(i) Any 2  for 1,  2, ...m mλ ≠ =  is not an eigenvalue of (1.1) for arbitrary 2 4 if 0a a ≠ . 

(ii)  Any 2  for some 1,  2, ... m mλ = = is an eigenvalue of (1.1) if and only if    

  4 2
2 4( ) 0m m a m aχ = − + = . 

 
1Corresponding author: 
 1e-mail: ohilary2006@yahoo.com.  

1Telephone: 08066972013 

- 



Journal of the Nigerian Association of Mathematical Physics Volume 14 (May, 2009), 479 - 484 
Periodic solutions of a certain nonlinear BVP,  H. M. Ogbu and A. E. Umahi, J of NAMP 

 
The statements (i) and (ii ) are essential in the solvability of the well known 2π periodic BVP for the non 
autonomous equation. 

    (4)
1 2 1 4 ( )x a x a x a x a x P tλ+ + + + =&&& && &    (1.3) 

By (i) one expects existence of a 2π periodic solution for the equation 

    (4)
1 2 4( , ) ( )x a x a x g t x a x P t+ + + + =&&& && &    (1.4) 

for arbitrary 1
2 4 1,   where ( , )a a a g t y−  is in the interval }{ 2 2,  ( 1)m m+  for m a non zero integer Ezeilo 

[1] and Ezeilo and Onyia [3].  Again (i) taken together with (ii ) leads one to expect periodic solutions to 
the 2π periodic BVP for the equation. 

   (4)
1 2 3 4 ( , , , , )x a x a x a x a x P t x x x x+ + + + =&&& && & & && &&&    (1.5) 

for arbitrary 1 3 2 4 and  if  and  satisfya a a a  

    ( ) 0 for 1,  2 ,...m mχ ≠ =     (1.6) 
The equation (1.6) is an improvement on the result of Ezeilo and Tejumola [2, 4] which required that 

( ) 0 for all the real mχ λ≠ . 
Note also that equation (1.6) can be established as a condition for existence of a 2π periodic 

solution by going through the auxiliary equation. 

    (4)
1 2 3 4 0x a x a x a x a x+ + + + =&&& && &  

( )22 21 1
2 4 22 4sin  ( )ce m m a a aχ = − + −  

It is convenient in examining the implication of (1.6) to distinguish the following cases. 
(i) 2 0a ≤  

(ii) 2
2a m=  for some integer. 

From (i), it is clear that 2 0a ≤  by equation (1.6) 

     

4

( ) 0

if

0

m

a

> 




> 

χ

     (1.7) 

Here 2 21
4 4inf  ( ) ( ) (2 )m N a Nχ χ− = − => 4

4a N=  and so we expect that ( ) 0mχ >  provided 
4 21

4 24a N a> = .  The consideration of cases (i) and (ii ) if P is sufficiently small, then a 2π periodic 

solution of the equation (1.5) exists for arbitrary 1 3 2 4 and  if 0 and 0a a a a≤ >  or 2
2 2a N=  for some 

integers  
2 4
20 and 2N a N> =       (1.8) 

We now transfer the above consideration to more the general equation 

   (4)
2( ) ( ) ( ) ( , , , , )x x x a x x f x P t x x x xϕ θ+ + + + =&& &&& && & & && &&&   (1.9) 

where ,  ,  ,  f Pϕ θ  are continuous functions depending on the arguments shown and 2a  is a constant. 

The equation (1.9) is comparable with (1.5) if 

    
1

2

4

( )  rep laces 

( )  rep laces 

( )  rep laces 

x a

x a x

f x a x

ϕ

θ







&&

& &
                 (1.10) 
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The function f(x) replacing 1
4 4 suggest that ( ) or ( ) ( 0) replace .a x f x x f x x a−′ ≠  So in turn (1.8) 

suggests that the existence of 2π periodic solutions for (1.9) might be provable for arbitrary ,  ϕ θ  under 
the following hypotheses.  H1: a2 ≤ 0 and f(x) subject to the consideration x-1f(x) > 0 or if f′(x) exists and 
f′(x) > 0, H2: a2 = N2 for some integer N > 0 with f(x) subject to x-1f(x) > N4 (x ≠ 0) or if f′(x) exists and 
f′(x) > N4. 
Thus we have 
Theorem 1.1 
Suppose in addition to the assumptions on equation (1.9) that given 

    
2

0
21
2 24

0 if a 0

,  if 0a a
δ

≤= 
>

                 (1.11) 

(i) there exist 1 0δ δ>  such that   11
inf  ( ) δ

>
′ ≥

x
f x                 (1.12) 

and     21
1 24δ > a                  (1.13) 

(ii)  the function P is bounded and 2π periodic in t, then equations (1.1) - (1.2) have at least one 2π 
periodic solution for arbitrary and .ϕ θ  
 
2.0 General comments on some notations  

Throughout the proof which follows, the capitals C, C1, C2, C3,… represent positive constants 
whose magnitude depend at most on φ, f, θ, P and a2.  The C1, C2, C3,… with suffixes attached retain their 
identities throughout the proof of theorem 1.1, but the C’s without suffixes are not necessarily the same in 

each place of occurence. The symbols 
1 2

. ,  . ,  and .
∞

 in respect of the mappings [0:2π→R] shall have 

their usual meaning. Thus given the function θ:[0,2π→R] then 

( ) 1
22 2 2

1 20 00 2
max ( ) ,  ( ) ,  ( )

t
t t dt t dt

π π

π
θ θ θ θ θ θ

∞ ≤ ≤
= = =∫ ∫  

 
3.0 Proof of Theorem 1.1 

The proof of theorem 1.1 is by the Leray-Schauder fixed point technique. See Leray and 
Schauder [6] and we shall consider the parameter λ dependent equation, (0 ≤ λ ≤ 1) 

  (4)
2( ) ( ) ( ) ( , , , , )x x x a x x f x P t x x x xλ λθ λ+ + + + =&& &&& && & & && &&&    (3.1) 

where, 1( ) (1 ) ( )f x x f xλ λ δ λ= − + .  By setting 

  2,  ,  ,  ( ) ( )x y y z z u u u a z y f x Pλϕ λθ λ= = = = − − − − +& & &&   (3.2) 

the equation (3.1) can be written compactly in matrix form 

    ( ,  )λ= +&X AX F X t      (3.4) 
where 

1 2

0 1 0 0 0

0 0 1 0 0
, , 

0 0 0 1 0

0 0

x

y
X A F

z

au Qδ

    
    
    
    = = =
    
    

    − −    

     (3.5) 

with 1( ) ( ) ( )Q P t u y f x xϕ θ δ= − − − +  

Note that equation (3.1) reduces to a linear equation 
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   (4) 2
2 1 0x a r xδ+ + =      (3.6) 

when λ = 0 and to equation (1.9) when λ = 1. The eigenvalues of the matrix A defined by (3.5) are the 
roots of the auxiliary equation. 

    4 2
2 1 0r a r δ+ + =      (3.7) 

The equation (3.7) has no root of the form  (  an integer)r i β β= , if  
21

1 24 aδ >       (3.8) 

Therefore the matrix( )2 A Iπ− −l , (I being the identity 4 × 4 matrix) is invertible. Thus, X = X(t) is a 2π 

periodic solution of (3.4) if and only if (Hale, [5]) 
    X = λTX, 0 ≤ λ ≤ 1     (3.9) 
where the transformation T is defined by  

   ( ) ( ) ( )
12 2 ( )

0
( ) ( ),A A t sTX t I F X t S dt

π π
−

− −= −∫ l l               (3.10) 

Let S be the space of all continuous 4-vector function ( )( ) ( ),  ( ),  ( ),  ( )X t x t y t z t u t=  which are of 

period 2π and with norm 

   { }
0 2
sup ( ) ( ) ( ) ( )

s
t

X x t y t z t u t
π≤ ≤

= + + +                (3.11) 

If the operator T defined by (3.10) is a compact mapping of S into itself then it suffices for the proof of 
theorem 1.1 to establish a priori bounds C13, C9, C8, C17, independent of λ such that 

   13 9 8 17,  ,  ,  x C x C x C x C
∞ ∞ ∞ ∞

≤ ≤ ≤ ≤& && &&&                (3.12) 

See Scheafer [7]. 
 
4.0 Verification of (3.12) 

Let x(t) be a possible 2π periodic solution of equation (3.1). The main tool to be used here in this 
verification is the function V(x, y, z, u) defined by 

  20 0
( ) ( ) ( )

s y
V s s ds a yz uz yf x s dsλλ ϕ λ θ= + + + +∫ ∫    (4.1) 

The time derivative of V&  along the solution path of (3.2) is 

   2 2
2 ( )V u a yu y f x zPλ λ′= + + +&     (4.2) 

   ( ) ( )2 2 21 1
2 22 4( )u a y y f x a zPλ λ′≡ + + − +    (4.3) 

In dealing with the term 2 ( ),y f xλ′  in which ( )f xλ′  is positive only when x  is large, consider the 

function W defined by  ( )W yH x=      (4.4) 
where 

    
( )4sin ,  2

( )
sin ,     x 2

x
H x

x

π ≤= 
>

    (4.5) 

and along the solution paths of (3.2) 

    ( ) 2( ) ( ) ( )
d

yH x y H x zH x
dt

′= +    (4.6) 

By considering the function  0 ( )U V C H xλ= +     (4.7) 

along the solution paths (1.7) 
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( ) ( )2 2 2 21 1
2 2 0 02 4( ) ( ) ( ) ( )

d
U U u a y y f x a zP C y H x C zH x

dt λ λ λ λ′ ′≡ = + + − + + +&  (4.8) 

Since 2  and ( )  when 1
4 2

H x H x x
π′≤ ∀ ≥ ≤  it follows from (4.8) and 0C  is fixed and large 

enough. Then for every possible 2π periodic solution of (1.9) that  

   ( )
22 2 221

2 1 220 0 0
u a y dt C y dt C z dt

π π π
+ + ≤∫ ∫ ∫&    (4.9) 

we have used the boundedness of P here.  The result (4.8) is the key to the proof of (3.12) but we also 
need the following inequality 

     32
x C x xα≤ +&& &&& &                 (4.10) 

from Ezeilo and Omari [4]. 
Now recall that ,  ,  .y x z x u x= = =& && &&&  Then 

   
2

22 1
x x C xα+ ≤&&& & &&                   (4.11) 

(from 4.9) where 1
22 aα = , by definition 

   
2

1 0
x xdt

π
= ∫&& &&  ( ) ( ) ( )

1
21 1

2 2
2 2

20
2 2x dt x

π
π π≤ =∫ && &&  

By Schwartz’s inequality, ( ) 1
2

3 1
2 C x xπ α≤ +&&& &  by (4.9).  Thus, 41 1

x C x xα≤ +&& &&& &  or 

( ) 42 1
2 x C x xπ α≤ +&& &&& & 5 1

C x xα= +&&& &  

2 6 2
x C x xα≤ +&& &&& &                  (4.12) 

by Schwartz’s inequality. From (4.11), 
2

2 62 2
x x C C x xα α+ ≤ +&&& & &&& &  which implies that 

    72
x x Cα+ ≤&&& &                   (4.13) 

By (4.12) and (4.13),   8 82
 and x C x C

∞
≤ ≤&& &&                 (4.14) 

Since x(0) = x(2π), implies that there τ ϵ [0,2π] such that exits ẋ(τ) = 0.  Then the identity 

    
2

0
( ) ( ) ( )x t x x s ds

π
τ= + ∫& & &&   

holds.  Thus,  

    
1

2

2

00 2

2

max ( )

                (2 )

t
x t xds

x

π

π

π

≤ ≤
≤

≤

∫& &&

&&

 

by Schwartz’s inequality. From (4.14), 
1

2
8

0 2
max ( ) (2 )

t
x t C

π
π

≤ ≤
≤& ,  9

0 2
max ( )

t
x t C

π≤ ≤
≤& .  Thus 

     9x C
∞

≤&                  (4.15) 

Now integrate equation (3.1) directly from t = 0 to t = 2π 

 
2 2 2 2 2 2(4)

20 0 0 0 0 0
( ) ( ) ( )x dt x xdt a xdt x dt f x dt Pdt

π π π π π π

λλϕ λθ λ+ + + + =∫ ∫ ∫ ∫ ∫ ∫&& &&& && &  

Using the equation (4.14) and (4.15) and (1.2) 

   
2 2 2

0 0 0
( ) ( )f x dt Pdt x dt

π π π

λ λ λθ= −∫ ∫ ∫ &                 (4.16) 

The boundedness of P and the fact that 0 1λ≤ ≤  together with (4.15) imply that the right hand  
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side of (4.16) is finite.  That is,   
2 2

100 0
( )Pdt x dt C

π π
λ λθ+ ≤∫ ∫ &               (4.17) 

Thus, 
2

100
( )f x dt C

π

λ ≤∫ .  So,   ( ) 1 101 ( )x f x Cλ δ λ− + ≤                (4.18) 

For C10 very large implies that,   [ ]11( ) ,  for some 0,  2x t C τ π≤ ∈               (4.19) 

Now the identity t, ( ) ( )
t

x t x xds
τ

τ= + ∫ &  holds.  Thus,  

( ) 1
1 2

2

2

00 2

2 2
11 0

max ( ) ( )

                (2 )

t
x t x xds

C x dt

π

π

π

τ

π

≤ ≤
≤ +

≤ +

∫

∫

&

&

 

by Schwartz’s inequality. From (4.15),   11 12
0 2
max ( )

t
x t C C

π≤ ≤
≤ +                (4.20) 

and 13x C
∞

≤ .  To obtain the fourth inequality in equation (3.12), multiply equation (3.1) by x(4) and 

integrate with respect to t from t = 0 to t = 2π 
22 2 2 2 2 2(4) (4) (4) (4) (4) (4)

20 0 0 0 0 0
( ) ( ) ( )x dt x xx dt a xx dt x x dt f x x dt Px dt

π π π π π π

λλϕ λθ λ+ + + + =∫ ∫ ∫ ∫ ∫ ∫&& &&& && &  

We use equations (4.15), (4.14), (4.20) and the boundedness of P and since ,   and fϕ θ  are continuous 
functions, there are constants C14, C15 such that  

   
2(4) (3) (4) (4)

4 152 2 2 2
x C x x C x≤ + (4)

16 2
C x≤                (4.21) 

where C16 = C15 + C15C7 (from 4.13).  Hence, (4)
152

x C≤ .  From which because of (1.2) with r = 3, then 

  ( ) 1
23

16 172x C Cπ
∞

≤ =                 (4.22) 

which is the fourth inequality in (3.12). 
 
5.0 Conclusion 

The estimates (4.14), (4.15), (4.20) and (4.22) verify the inequality (3.12) and hence the proof of 
theorem 1.1, which implies the existence of at least one 2π periodic solution for equation (1.1) – (1.2). 
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