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Abstract

The consideration of the eigenvalue approach and a comparison between the
linear and nonlinear fourth order differential equation formed the basis for a theorem
for existence of periodic solutions for the nonlinear boundary value problem of a
fourth order differential equation. The proof of the theorem is by the Leray-Schauder
fixed point technique with the use of integrated equation as the mode for estimating the
apriori bounds.
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1.0 Introduction and formulation of Theorem 1.1
Consider the eigenvalue problem
XY +ax+axt gx- gt (1.1)
with boundary conditions
D®x(0)= D" x(2m), r=0,1,2,3D =% (1.2)

wherea, # 0, a, anda, are constants. Lett have the Fourier expansion
X(t) - > (d, cosrt+¢ sinrt) fortO[ 0, 2]
r=1

split X'(t) into two parts Y, Y as follow
Y, =Y (d cosrt+e sinrt) , %, =>'(d cost+ g sir
r=A

r>A

Multiplying (1) by Y, =Y, and integrating ove[r 0,7ﬂ , it can be checked that

() Any A #n? for m=1, 2, .. is not an eigenvalue of (1.1) for arbitray if a, #0.

(i) Any A =n¥ for somem= 1, 2, ..is an eigenvalue of (1.1) if and only if
x(m=nf-3gni+ a=0.
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The statements)(and (i) are essential in the solvability of the well knowng2riodic BVP for the non
autonomous equation.

XD rax+gxr gl gx PX (1.3)
By (i) one expects existence of aZeriodic solution for the equation
xXV+ax+ax 1Y+ ax RPX (1.4)

for arbitrary a,, a, wherea g ¢,y is in the interval{ m*, (m+ 1)2} for ma non zero integer Ezeilo

[1] and Ezeilo and Onyia [3]. Agaim) (taken together withiij leads one to expect periodic solutions to
the 2t periodic BVP for the equation.

xXP+ax+axt ax ax Pt XXX) (1.5)
for arbitrarya, anda, ifa, anda, satist
x(m=#0form=1, 2,.. (1.6)

The equation (1.6) is an improvement on the result of Ezeilo and Tegy&o#t] which required that
X(m) z0 for all the reall .

Note also that equation (1.6) can be established as a condition for exadftartigperiodic
solution by going through the auxiliary equation.

xP+aX+ax ax g x0

since)((m):( m-1 9)2+ a-1 &
It is convenient in examining the implication of (1.6) to distinguish thewviatig cases.
) a<0
(ii) a, = Nt for some integer.
From (), it is clear thata, <0 by equation (1.6)

x(m)>0

if 2.7)

a,>0
Here inf y(m-x(N)=3-3(2N)’=> a,=N* and so we expect thagy(m)>0 provided
a, > N* =4 a22 The consideration of cased é&nd (i) if P is sufficiently small, then an2periodic

solution of the equation (1.5) exists for arbitragyanda, ifa,< 0 anda,> (or a, =2N? for some
integers

N >0 anda’ = N* (1.8)
We now transfer the above consideration to more the general equation
XD+ PR+ a %O+ (F= REX XXX (1.9)

whereg, 8, f, P are continuous functions depending on the arguments show&, s constant.
The equation (1.9) is comparable with (1.5) if

@ (X) replacesa,
6(x) replacesa, x (1.10)

f (x) replacesa, x
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The functionf(x) replacing a,x suggest that’ X ) ox* f X )¥ 0)replag¢ So in turn (1.8)

suggests that the existence afgriodic solutions for (1.9) might be provable for arbitrgry & under

the following hypothesesH;: a, < 0 andf(x) subject to the consideratiofif(x) > 0 or iff/(x) exists and
f(X) > 0, H,: a, = N for some integeN > 0 withf(x) subject tox*f(x) > N* (x # 0) or if f(X) exists and

f/(x) > N*.
Thus we have
Theorem 1.1
Suppose in addition to the assumptions on equation (1.9) that given
Oifa,<0
O = (1.11)
38, ifa,>0
(i) there existd, > J, such that Wfl f'(x) =4 (1.12)
and 51 > %a; (1.13)

(i) the function P is bounded and Rgeriodic int, then equations (1.1) - (1.2) have at least ane 2
periodic solution for arbitrarg and &

2.0 General comments on some notations

Throughout the proof which follows, the capit@lsC,, C,, Cs,... represent positive constants
whose magnitude depend at mostpof 6, P anda,. TheC,, C,, Cs,... with suffixes attached retain their
identities throughout the proof of theorem 1.1, butGhewithout suffixes are not necessarily the same in

each place of occurence. The symhols ||, , and||, in respect of the mappings [@2R] shall have
their usual meaning. Thus given the functid®,2rm—R] then

. = maxiat ), 6, = ["lo o, ja, =76 o)

©  ostg2mr

3.0 Proof of Theorem 1.1
The proof of theorem 1.1 is by the Leray-Schauder fixed point technique. Seehdray
Schauder [6] and we shall consider the paraniedependent equatio(Q <1 <1)

X9+ AR+ 3% A0(Y+ (F=A REXKKY (3.1
where, f,(X) =(1-A)9,x+ A f(X). By setting
X=Y,¥=2 2=y w-Ag u+ azA0( y ()A (3.2
the equation (3.1) can be written compactly in matrix form
X = AX+AF(X 1) (3.4)
where
X 0 1 0 0 0
y o o0 1 0 0 (3.5)
X = , A= , F=
z 0 0 0 1 0
u -0 O -a, O Q

1
with Q=P() —gu-6(y)— f(R+J, >
Note that equation (3.1) reduces to a linear equation
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xXP+ar’+o,x=0 (3.6)
when/ = 0 and to equation (1.9) whén= 1. The eigenvalues of the matixdefined by (3.5) are the
roots of the auxiliary equation.

r‘+a,r’+9,=0 (3.7)
The equation (3.7) has no root of the forrsi S (£ an integer, if
>3, (3.8)

Therefore the matrié%‘z”A -1 ) , (I being the identity 4 x 4 matrix) is invertible. This= X(t) is a2z
periodic solution of (3.4) if and only if (Hale, [5])

X=ATX,0<A<1 (3.9)
where the transformatiohis defined by
(27 oA\ A9
(TX) () = (e7™=1) AR (X(D), S) di (3.10)

Let Sbe the space of all continuous 4-vector functh(t) = ( x(1), y(1), z(1), u(t)) which are of
period2z and with norm
H)?HS:Oiljg){|x(tj+|y(t}+|z(tj+| u(tj} (3.11)

If the operatoiT defined by (3.10) is a compact mappingSahto itself then it suffices for the proof of
theorem 1.1 to establish a priori bouiitls, G, Cs, Cy7, independent of such that

M, <Cs |4, =G, [}, <G [ s G (3.12)
See Scheafer [7].

4.0  Verification of (3.12)
Let x(t) be a possibl@rz periodic solution of equation (3.1). The main tool to be used here in this
verification is the functiov(x, y, z, udefined by

v=/1joss¢(s) dst ayz uz ¥ )x/]joye()s (4.1)
The time derivative of/ along the solution path of (3.2) is
V=u+ayu ¥ f( 3+ zF (4.2)
=(u+say) + V([ (32 d)+a 2 4.3)
In dealing with the termy” f, (X), in which f;(X) is positive only whertux| is large, consider the
functionW defined by W = yH(X (4.4)

where
sin(Z), |¥< 2
H(x)= (4.5)
sinx, | %> 2

and along the solution paths of (3.2)
d :
a(yH(x)): YH(X+ zH ¥ (4.6)

By considering the function U=V+ACGH(X 4.7)
along the solution paths (1.7)
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SWy=U=(urtayf+ ¥( 1(3-24)+A 2P A G H A G2) (9

Since|H|< 2 Ox andH’ & )24i when¥< it follows from (4.8) andC, is fixed and large

V2
enough. Then for every possible 2eriodic solution of (1.9) that
27 L 2 2 2
IO (u+iay) dt+ CJO y di QIO | kd (4.9)

we have used the boundednes#dfere. The result (4.8) is the key to the proof of (3.12) butlse a
need the following inequality

4, < C[x+a¥ (4.10)
from Ezeilo and Omari [4].
Now recall thaty = X, z="X U="X Then

x+ax]< G|, (4.12)
(from 4.9) wherea =1 a, , by definition

s 2” .o 2 2”-- }é 2 |+,

%, =[5t < (2m)* ([ %2a)” =(27)"|3,
By Schwartz’s inequality< (277)y2 C;[X+a¥, by (4.9). Thus|¥| <C,[x+a¥ or
(27T)|X|2 s C4|.X+ a Xl = C5|.>.< + 0541

%] < Ce[x+ay, (4.12)
by Schwartz’s inequality. From (4.11X + a>‘<l; < G, G|+a %, which implies that

[X+aX,<C, (4.13)
By (4.12) and (4.13), ¥,<G and|}, <G (4.14)

Sincex(0) = x(2m), implies that there [ [0,2r] such that exits(t) = 0. Then the identity

X(1)= 1)+ [ X9 ds
holds. Thus,

. 2” .
{Q%V“SL |Xds

< @4,
by Schwartz’s inequality. From (4.14§E<azx|>'((tj < (21):G,, max|x(t)<GC,. Thus

Ost<2m

M. <G (4.15)
Now integrate equation (3.1) directly framx O tot = 27

[ xde+ [T Ap(xate [ g%t [AOCK e[ f( o[ A P
0 0 0 3 0 o A 0
Using the equation (4.14) and (4.15) and (1.2)
[ t,00dt=]"APdt-[ " A6( o (4.16)
The boundedness Bfand the fact thad < A < 1 together with (4.15) imply that the right hand
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side of (4.16) is finite. That s, ‘ [ Pd4+ [ 263 d{s C, (4.17)
Thus, |71, (x)d[‘s C,. So, (1-2)ax+A (¥ < G, (4.18)
For Cyo very large implies that, |x(t)| < C,, for somer [ 0, 2] (4.19)

Now the identityt, x(t) = X(r) + [ ds holds. Thus,

2m, .
525),(1|X(t1£|x(71+jo |34ds

<C,+ () (joz”xzdt)%

by Schwartz’s inequality. From (4.15), max|x )< C,+C, (4.20)

Ost<2m
and|x|w < C;. To obtain the fourth inequality in equation (3.12), multiply equation (3.43nd
integrate with respect tdromt=0tot =2«
| @ dt+ [T ap(sot d [ ) de [TA6CK R de[T xR @[ 74 PR
0 0 0 0 o 4 0
We use equations (4.15), (4.14), (4.20) and the boundednesmdfsincep, & andf are continuous
functions, there are constafig, C;s such that
@|? 3)| | @ a) 4)
‘X ‘2SC4‘X( ‘z‘x( ‘2+QS‘)£ ‘2SC15‘X( ‘2 (4.21)

where Gg = Cis + CisC; (from 4.13). Hence(,x(“)‘2 < C,.. From which because of (1.2) witk 3, then

| <(2m)" cy=C; (4.22)
which is the fourth inequality in (3.12).
5.0 Conclusion

The estimates (4.14), (4.1%%.20) and (4.22) verify the inequality (3.12) and hence the proof of
theorem 1.1, which implies the existence of at leasRarmeriodic solution for equation (1.1) — (1.2).
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