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Abstract

In this paper, we give a dightly detailed review of Graves and Hollywood
model on constant inventory tactical planning model for a job shop. The limitations of
this model are pointed out and a continuous time production model that allows work to
travel through more than one station within a single time period is derived. With the
relaxation of the period size limitation, we were able to match the time period within the
production time frame. This is our major contribution. Unlike Graves and Hollywood
model wherejob visit at most one workstation in each period.

1.0 Introduction

We examine a continuous time control model on production planning hetwader the

following assumptions:

(a) Arrival occurs continuously throughout the period.

(b) Work can arrive at the start of each sub-pesjagheres=1, 2,...m.

(c) The queue length at the start of the petimdQ, andm = 1/A, whereA is the length of each sub-
period andnis the number of subintervals.

(d) Arrivals are identical with megmand variance” the arrival at periotlis A and the arrival at the
start of each sub-periodAgm

(e) Production in each sub-period is set to a linear controlPuiethe production in period

The problem of optimal production planning and scheduling is not now, hawdwerto its
increasing relevance, this issue has attracted the attentioredalresearchers. Giffer and Thompson [5]
described the solution of production scheduling problems from an algorithmimpeietv.

Considerable theoretical advances have been made sintiendhdeading to the research area of
job shop scheduling problems (JSSP). French [3] provide the fundantestay and mathematical
methodology for production planning and scheduling problems in general. dkugado Garey and
Johnson [4] the JSSP and similar scheduling problems are cdart@ih@ptimization problems and
commonly classified as NP-hard ordering problems. Due to thhdxhess it is almost impossible to
solve these problems exactly, even for small
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problem instance. Exact methods exist, like the branch and bound apprdaaHiéyand Pinson [2] but
they are only of theoretical relevance due to the exponential runtinqdesay.

In real-word production environments, provable optimality is notctiteria for a solution to be
satisfied. Instead it suffices to compute results close togtimum but in a reasonable amount of time.
The later is achieved by heuristic methods that are dominatithg field of JSSP. The most popular and
important ones are local search approaches like Tabu search (Badn€sambers, [1]) and evolutionary
algorithms, especially generic algorithms (Yamada and Nakano, [10]).

Graves and Hollywood [7] and [8] proposed a constant — inverémtycal planning model
(TPM) for a Job shop. However, the work of Graves and Hollywood [8bkan identified to have the
following limitations:

)] In Graves and Hollywood (TPM) model, a job visits at mostwagkstation in each period. It is
not possible for one job to travel through more than one station in each period.

(i) The smoothing parameter, in the method is constrained to Be< a, <1, which entails that
the planned lead time must be at least one time period. Thastiictive in the multi — station setting, as
the planned lead time has to be set less than the minimum plamdetinie of all the stations in the
network.

(iii) The setting of the period length is short relative tofteguency of job movements between each
pair of stations.

This paper addresses the above limitations of Graves amgMdot [8] by the continuous time
control productive planning model. For better understanding of the work presentedpagér, a slightly
detailed treatment of the standard shop scheduling problem and thes @ral Hollywood [8] model are
considered in the next two sections.

2.0  The standard job shop problem

In order to provide a common basis for the following sections, werithe the most elementary
concepts and formalisms with respect to the standard job shop scheduling\(dEP).

The classia x m minimum-makespan job shop scheduling problem is given by a fetiteaf n

jobs {J,} 1<i<nandasetM of mmachinedf;} 1<i=m (Jain and Meeran, [9]). Each jdthas to
be processed on every machine. For this purpose, a job is subdividexd set oin operations Dij h

1<i<n,| <j<m which have to be scheduled in a strictly sequential way aceprdi a given
technological order. This is also referred to as the precedmmstraint. Thu®y denotes the operation
of JobJ; that has to be processed on machmnefor a certain uninterrupted processing tifjewhere
each machine can process one job at a time (capacity constfaatlime span needed to complete all

operations of all jobs is known as the makespan Given the starting timg = O for each operation the
definition of the minimum make sp&f .« with respect to all feasible schedules can be simply written as

C’'= Min (C = Min (max @, +T,), for all Feasible Schedules ard j;0J, m/OM for
ILk=123.

In order to illustrate the formal specification we will ppesnow on example of a 3 x 3 JSSP (3
jobs, 3 machines). The technological order of operation (machine sequenceshisnstadohe 1. The first

number in each column represents the maciihen which the operation has to be processed whereas

max )

the number within the parentheses denotes the required processirg time
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Table 2.1 A 3*3 JSSP illustration table

Job Machine sequence
1 1(3) 2(3) 3(3)
2 1(2) 3Q3) 24
3 2(3) 1(2) 3(1)

3.0 Graves and Hollywood model
In this section of this paper, we give a slightly detailedensvof the work of Graves and
Hollywood [8]. The key assumption of the model is the linear control rule, whithted as

P=a Q (3.1)
where B, is the production at statianin time period t,Q, is the Queue level or work in progress (WIP)
level at the start of the period t, the parameterO< a; <1, is a smoothing parameter. Bol and

Q, are measured in units of the workload at staliong hour of work. This rule states that the
production P, at stationl is a fixed portiona, of the QueudQ, , wherel/a; is the planned lead time.

In particular statiod must proces®, of the work in queue on average in each period in ordeatzee

the planned lead time. This is approximated by (3.1) in which the produeguirement is assumed to
be preciselya, of the queue.

The Queue leveQ, satisfies the standard inventory balance equation

Qlt = Q|,t—1 - Pi,t—l + A (3.2)
where A, is the amount of work that arrives at statioat the start period t. by putting (3.1) into (3.2),
we have P=0-a)- F?,t—l ta, A (3.3)

which is a first order smoothing equation with as the smoothing parameter and the arrivals model to a
station from another station is

A =®; P+ (3.4)
A, is the amount of work arriving statidriorm station j at the start of period®; is a positive scalar
and Eijt is a random variable. The model assumes that one unit (egdfiouork at statiorj generates

@, time units of work at station, on averageg; is a term that introduces uncertainty into the

relationship between production at j and arrivals. b is assumed that the term is an identical random
variable with zero mean and a known variance. Then, the arrival streanatiomi $6 given by

A =2 B +N; (3.5)
where N, is identical random variable for the work load from new jthtag enter a shop at statiomt
timet. Substituting forA, , we find:
A =20, P ., ¢ (3.6)
whered, =N, +Z &
Note that & represents arrivals that are not predictable from the priodutgvels of the

previous period, and consists of work from new jobs and noise ifhoth. By assumption, the time series
¢ is independent and identically distributed over time.
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To present the analysis for the model, we rewrite the eqgat@nproduction (3.3) and for
arriving work (3.6) in matrix form.

R =(-D)R,+DA (3.7)
A = ®P a1+ G (3.8)
whereP; = {Py,...,Pudi A = {Aw,...,And "
and & ={¢&,,---,&,}" are column vectors of random variablesis the number of stations,is the
identity matrix, D is a diagonal matrix wiffwr,,---,a,} on the diagonal, an@® is an n-by-n matrix with

eIementhij . By putting (3.8) into (3.7) we have the recursion:

P = (1-D + D®) P, + D¢, . (3.9)
By iterating this equation and assuming the system to be infinite, wateeBaas an infinite series
a
R= 2 (1-D+®)°Dq (3.10)
sS=—

We denote the mean and the covariance for the noise végtby u={g,"--, 4}, and 2 ={0;},
respectively. The first two moments qfdPe given by:

E[P]= > (1-D+®)Du=(1-0) 'y (3.11)

a

andS = var(P) = ZO B°D Y. DB, where
S

B=I-D+D® (3.12)
and provided thaP(®) < 1, whereP(®) denotes the spectral radius @f (see Graves [6]). We note
that S provides the production variance for each station as well asotregiance for each pair of work
stations.

4.0  Continuous time control model

In this section we derive a continuous time production function ttt&lvork to travel through
more than one station within a single time period.

We rewrite the control rule (3.1) for each sub-period s as.

V(4,s) =adu (4,s); s=12..m (4.1)

where V(A, ) is the production in sub-period S of lenglhu(A,s) is the queue length at start of sub-
period S anda is the smoothing parameter. Similarly to Graves and Hollywood (20@6)nterpret
'/a as the planned lead-time; however, we now peanito assume any positive value, thus, we permit

the planned lead-time to be less than one time period.

We proceed to develop an expressionRpin terms Q andA.. These variables have the same
definition as Graves and Hollywood [8}; is the production in periog @ is the queue length at the start
of the periodt, A is the arrival of work to the station periadWe assume tha; does not arrive at the
start of the period, but arrives uniformly over perioth particular, we assume that the arrival amount at
the start of each sub-period is equaiion

We began with the following boundary condition for the queue length ataheof the first sub-
period within each time period.

U((4,S=1) =Q, =A/m for S=2,...m (4.2)
We model the queue length at the start of sub-period S by the standard bailetica e
UA,s-)-v(A,s-) A/m (4.3)
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Substituting (4.1) into (4.3) we have.

UA,s)=0-a AU, s-)+A/m (4.4)
for S=2,...m. Then, the production function is given as
M M
R=ZV()I,S):aXlZU (A,9) (4.5)
s=1 S=!

Using equation (4.2) and (4.4) we find:
M
a/_]lZU(A,s):Q+A—(1—aA)U(A,m) (4.6)
Putting equation (4.6) into (4.5) we have.
R=Q+A-A-a,A)U (A,m) (4.7)
But we need to find U4, m) from (4.7) above.
We can write from equation (4.2) that
UA,m)= L-ad) " xQ + +@-aA)+-+L-a )" 'xAlm (4.8)
Using equation (4.8), we can rewrite equation (4.7) as

P= B(A)Q +7 (1) A (4.9)
where BA)=1-Q-a )" (4.10)
1-1-ai m
and r(A) :(Tj(l— @-a)™
1-8 ) () (4.11)

Thus, we have a linear control for the production in ea@uk period, where the production
depends on both the work queue at the start of the period plusrivesaduring the period. The
coefficients for the linear control rule depend on the size of the sulafgerv

To get some insight into the structure and behaviour of the mededxamine the continuous-
time limits for S(A) and 7(A) as the length of the sub-period goes to zero. This corresporals to
continuous-time control that is independent/bf and as a result we assume that the control rule (4.1)
holds of every instant in time. We obtain the continuous-time limgf) :

B=lim__ BA)=Ilm, ,A-A-aA) " =lim,,[1-@-aA)"]=1-¢€“
For 7(X), we find that

r=lim, ,r(A)=Ilim {1—(%) - (1—a/1)m)} :1—1 +1 e’ :1—1 a-e) =1—£
a a a a
We now restate (4.9) for a continuous-time control as:
R =8 +1A (4.12)
wheref andt are given above. The balance equation for the queue lengtrsiiogla station is now
given by: Q=Q-1-P-1+A-1 (4.13)

Equation (4.13) differs from the balance equation in (3.2) of Grawnel Hollywood [8] because of the
new assumption that arrivals occur continuously throughout a peférte, we defin€, to be the queue
length at the start of the peritdorior to any arrivals in that period. By substituting (4.1®) (@.13), we
have:

Q=0-0% - A~ (419
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If we assume that the arrivals avel with meanu and variancejz, we find the two moments
for the queue length for (4.14)

1-1
EQ) =0 y=# (4.15)
B
_\2 42
Var (Q) = (1T—W'2) (4.16)
26-p
In the same vein, we obtain the two moments for the production variable:
E[R]=u (4.17)
Var (R) = (2, @-1)* +1%) o (4.18)

Note that the expected queue length (4.15) and expected production lérigth for our
continuous-time model are identical to Graves and Hollywood [8]goiat®ns (3.5) and (3.7). We can
see that the expected lead-time corresponds to the planneihiedd ¢ . The variance (4.16 and 4.17).
However, is different from that of Graves and Hollywood [8].

In (3.6) and (3.8). The production variables differ from Graves antd\wbd [8] due to the
uniform workflow assumption of our continuous-time model.

5.0 Conclusion

In this paper, we derived a continuous-time production model that alowksto travel through
more than one station within a single time period. With the retaxaf the period size limitation, we are
able to match the time period within the production time frame, whiolir major contribution to Graves
and Hollywood [8] in which work flows between stations at thet stheach time period; thus visit at
most workstation in each period.
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