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Abstract 
 

In this paper, we give a slightly detailed review of Graves and Hollywood 
model on constant inventory tactical planning model for a job shop. The limitations of 
this model are pointed out and a continuous time production model that allows work to 
travel through more than one station within a single time period is derived. With the 
relaxation of the period size limitation, we were able to match the time period within the 
production time frame. This is our major contribution. Unlike Graves and Hollywood 
model where job visit at most one workstation in each period. 
 

 
 
1.0 Introduction 

We examine a continuous time control model on production planning network under the 
following assumptions: 
(a) Arrival occurs continuously throughout the period. 
(b) Work can arrive at the start of each sub-period s, where s = 1, 2,…,m. 
(c) The queue length at the start of the period t is Qt and m = 1/λ, where λ is the length of each sub-
period and m is the number of subintervals. 
(d) Arrivals are identical with mean µ and variance σ2 the arrival at period t is At and the arrival at the 
start of each sub-period is At/m 
(e) Production in each sub-period is set to a linear control rule; Pt is the production in period t. 

The problem of optimal production planning and scheduling is not now, however, due to its 
increasing relevance, this issue has attracted the attention of diverse researchers. Giffer and Thompson [5] 
described the solution of production scheduling problems from an algorithmic point of view. 

Considerable theoretical advances have been made since that time, leading to the research area of 
job shop scheduling problems (JSSP). French [3] provide the fundamental theory and mathematical 
methodology for production planning and scheduling problems in general. According to Garey and 
Johnson [4] the JSSP and similar scheduling problems are combinatorial optimization problems and 
commonly classified as NP-hard ordering problems. Due to the NP-hardness it is almost impossible to 
solve these problems exactly, even for small  
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problem instance. Exact methods exist, like the branch and bound approach by Carlier and Pinson [2] but 
they are only of theoretical relevance due to the exponential runtime complexity.  

In real-word production environments, provable optimality is not the criteria for a solution to be 
satisfied. Instead it suffices to compute results close to the optimum but in a reasonable amount of time. 
The later is achieved by heuristic methods that are dominating in the field of JSSP. The most popular and 
important ones are local search approaches like Tabu search (Barnes and Chambers, [1]) and evolutionary 
algorithms, especially generic algorithms (Yamada and Nakano, [10]). 

Graves and Hollywood [7] and [8] proposed a constant – inventory tactical planning model 
(TPM) for a Job shop. However, the work of Graves and Hollywood [8] has been identified to have the 
following limitations: 
(i) In Graves and Hollywood (TPM) model, a job visits at most one workstation in each period. It is 
not possible for one job to travel through more than one station in each period. 
(ii) The smoothing parameter iα  in the method is constrained to be ,10 ≤< tα  which entails that 

the planned lead time must be at least one time period. This is restrictive in the multi – station setting, as 
the planned lead time has to be set less than the minimum planned lead time of all the stations in the 
network. 
(iii) The setting of the period length is short relative to the frequency of job movements between each 
pair of stations. 

This paper addresses the above limitations of Graves and Hollywood [8] by the continuous time 
control productive planning model. For better understanding of the work presented in this paper, a slightly 
detailed treatment of the standard shop scheduling problem and the Graves and Hollywood [8] model are 
considered in the next two sections. 
 
2.0 The standard job shop problem 

In order to provide a common basis for the following sections, we describe the most elementary 
concepts and formalisms with respect to the standard job shop scheduling problem (JSSP). 

The classic n × m minimum-makespan job shop scheduling problem is given by a finite set J of n 
jobs { ιJ } 1 ≤≤ i n and a set M of m machines {iM } ≥≤ i1 m (Jain and Meeran, [9]). Each job Ji has to 

be processed on every machine. For this purpose, a job is subdivided into a set of mi operations { ij0 }; 

imjIni ≤≤≤≤ ,1  which have to be scheduled in a strictly sequential way according to a given 

technological order. This is also referred to as the precedence constraint. Thus Oik denotes the operation 
of Job Ji that has to be processed on machine km  for a certain uninterrupted processing time Tik where 

each machine can process one job at a time (capacity constraint). The time span needed to complete all 
operations of all jobs is known as the makespan Cmax. Given the starting time tik ≥ 0 for each operation the 
definition of the minimum make span C*max with respect to all feasible schedules can be simply written as 

*C = Min ( maxC ) = Min (max ( ikik Tt + ), for all Feasible Schedules and ,Jji ∈∀  Mmk ∈  for 

3,2,1, =ki . 
In order to illustrate the formal specification we will present now on example of a 3 x 3 JSSP (3 

jobs, 3 machines). The technological order of operation (machine sequences) is shown in table 1. The first 
number in each column represents the machine iM on which the operation has to be processed whereas 

the number within the parentheses denotes the required processing time ikt . 
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Table 2.1: A 3*3 JSSP illustration table 
 

Job Machine sequence 
1 1(3) 2(3) 3(3) 
2 1(2) 3(3) 2(4) 
3 2(3) 1(2) 3(1) 

 
3.0 Graves and Hollywood model 

In this section of this paper, we give a slightly detailed review of the work of Graves and 
Hollywood [8].  The key assumption of the model is the linear control rule, which is stated as   
   itP = iti Qα       (3.1) 

where itP  is the production at station i  in time period t, itQ  is the Queue level or work in progress (WIP) 

level at the start of the period t, the parameter ,iα  10 ≤≤ iα , is a smoothing parameter. Both itP  and 

itQ  are measured in units of the workload at station i  eg hour of work. This rule states that the 

production itP  at station i  is a fixed portion iα  of the Queue itQ , where iα/1  is the planned lead time. 

In particular station i  must process iα  of the work in queue on average in each period in order to realize 

the planned lead time. This is approximated by (3.1) in which the production requirement is assumed to 
be precisely iα  of the queue. 

The Queue level itQ  satisfies the standard inventory balance equation  

itQ  = itltiti APQ +− −− ,1,     (3.2) 

where itA  is the amount of work that arrives at station i  at the start period t. by putting (3.1) into (3.2), 

we have  itiltiiit APP αα +−−= −,)1(     (3.3) 

which is a first order smoothing equation with iα  as the smoothing parameter and the arrivals model to a 

station from another station is 

ijtjijijt PA ξ+Φ= −1,       (3.4) 

ijtA  is the amount of work arriving station i form station j at the start of period t, ijΦ  is a positive scalar 

and ijtξ  is a random variable. The model assumes that one unit (eg hour) of work at station j generates 

ijΦ  time units of work at station i, on average. ijtξ  is a term that introduces uncertainty into the 

relationship between production at j and arrivals to i. It is assumed that the term is an identical random 
variable with zero mean and a known variance.  Then, the arrival stream to a station i is given by 

itijtit NPA +Σ=      (3.5) 

where itN  is identical random variable for the work load from new jobs that enter a shop at station i at 

time t. Substituting for ijtA , we find: 

    ,, itltjijit PA ξ+−ΣΦ=     (3.6) 

where ,ijtitit N ξξ Σ+=  

Note that itξ  represents arrivals that are not predictable from the production levels of the 

previous period, and consists of work from new jobs and noise in the flow. By assumption, the time series 

ijtξ  is independent and identically distributed over time. 
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To present the analysis for the model, we rewrite the equations for production (3.3) and for 

arriving work (3.6) in matrix form. 
     ttt DAPDP +−= −1)1(    (3.7) 

     tA = ittP ξ+Φ −1     (3.8) 

where Pt = {P1t,…,,Pnt}; At = {A1t,…, Ant}
1; 

and 1},,{ ntitit ξξξ L=  are column vectors of random variables, n is the number of stations, I is the 

identity matrix, D is a diagonal matrix with },,{ 1 nαα L  on the diagonal, and Φ  is an n-by-n matrix with 

element ijΦ . By putting (3.8) into (3.7) we have the recursion: 

Pt = (1-D + DΦ ) Pt-1 + D itξ .     (3.9) 

By iterating this equation and assuming the system to be infinite, we re-write Pt as an infinite series 

  Pt = 
α

0
∑

s
(1 – D + Φ )s D sti −,ξ                   (3.10) 

We denote the mean and the covariance for the noise vector itξ  by },,{ 1 nµµµ L= , and }{ ijσ=∑ , 

respectively. The first two moments of Pt are given by: 

E [Pt] = 
0

α
∑

s
(1 – D + Φ )s D µµ 1)1( −Φ−=                (3.11) 

and S = var(Pt) = 
0

α
∑

s
BsD∑ DB1s, where 

B = I – D + DΦ                   (3.12) 
and provided that P( Φ ) < 1, where P( Φ ) denotes the spectral radius of Φ  (see Graves [6]). We note 
that S provides the production variance for each station as well as the covariance for each pair of work 
stations. 
 
4.0 Continuous time control model 
 In this section we derive a continuous time production function that allows work to travel through 
more than one station within a single time period. 
 We rewrite the control rule (3.1) for each sub-period s as. 

V mssus ...2,1);,(),( == λαλλ    (4.1) 

where V ),( sλ  is the production in sub-period S of length ),(, su λλ  is the queue length at start of sub-
period S and α  is the smoothing parameter. Similarly to Graves and Hollywood (2006), we interpret 

α/1  as the planned lead-time; however, we now permit 1α  to assume any positive value, thus, we permit 
the planned lead-time to be less than one time period. 
 We proceed to develop an expression for Pt in terms Qt and At. These variables have the same 
definition as Graves and Hollywood [8]; Pt is the production in period t, Qt is the queue length at the start 
of the period t, At is the arrival of work to the station period t. We assume that At does not arrive at the 
start of the period, but arrives uniformly over period t. In particular, we assume that the arrival amount at 
the start of each sub-period is equal to At/m 
 We began with the following boundary condition for the queue length at the start of the first sub-
period within each time period. 
    U( mAQS tt /)1,( ===λ  for S=2,…,m  (4.2) 

We model the queue length at the start of sub-period S by the standard balance equation 
    U mAsvs t /)1,()1,( −−− λλ     (4.3) 
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Substituting (4.1) into (4.3) we have. 
    U mAsUs t /)1,()1(),( +−−= λλαλ   (4.4) 

for S = 2,…,m.  Then, the production function is given as 

     ),(),(
11

sUXsVP
M

s

M

s
t λαλ ∑=∑=

==
   (4.5) 

Using equation (4.2) and (4.4) we find: 

),()1(),(
1

mUAQsU tt
s

M

λλαλλα −−+=∑
=

 (4.6) 

Putting equation (4.6) into (4.5) we have. 
),(),1( mUAQP ttt λλα−−+=    (4.7) 

But we need to find U ( m,λ ) from (4.7) above. 
We can write from equation (4.2) that  

U( m,λ ) = −1( t
m Qx1) −αλ  + mAx t

m /)1()1(1( 1−−++−+ λαλα L  (4.8) 

Using equation (4.8), we can rewrite equation (4.7) as 
Pt = tt AQ )()( λτλβ +     (4.9) 

where     m)1(1)( λαλβ −−=                  (4.10) 

and     ))1(1(
11

)( mαλ
α

αλλτ −−






 −−=  

)()(1 1
α
αλλβ −−                 (4.11) 

 Thus, we have a linear control for the production in each time period, where the production 
depends on both the work queue at the start of the period plus the arrivals during the period. The 
coefficients for the linear control rule depend on the size of the subintervals. 
 To get some insight into the structure and behaviour of the model, we examine the continuous-
time limits for )(λβ  and )(λτ  as the length of the sub-period goes to zero. This corresponds to a 

continuous-time control that is independent of λ , and as a result we assume that the control rule (4.1) 
holds of every instant in time. We obtain the continuous-time limit of )(λβ : 

])1(1[lim)(lim 0
m

xox αλλββ −−== →→ ])1(1[lim /1
0

λαλ−−= →x
α−−= e1  

For )(xτ , we find that  

}))1(1()(1lim)(lim 1
00

m
xx αλλττ α

αλ −−


 −== −

→→
α

αα
−+−= e

11
1

α
β

α
α −=−−= − 1)1(

1
1 e  

We now restate (4.9) for a continuous-time control as: 

ttt AQP τβ +=                  (4.12) 

where β and τ are given above.  The balance equation for the queue length for a single station is now 
given by:  111 −+−−−= tttt APQQ                 (4.13) 

Equation (4.13) differs from the balance equation in (3.2) of Graves and Hollywood [8] because of the 
new assumption that arrivals occur continuously throughout a period. Hence, we define Qt to be the queue 
length at the start of the period t, prior to any arrivals in that period. By substituting (4.12) into (4.13), we 
have: 

ιβτ
ι

ι
−−∑−=

−

=
tt AQ )1()1(

1

1
                (4.14) 
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If we assume that the arrivals are dιι  with mean µ  and variance 2σ , we find the two moments 
for the queue length for (4.14) 

α
µµ

β
τ =−=Ε )1(

)( tQ                 (4.15) 

    
2

22

2

))1(
)(

ββ
στ

−
−=tQVar                 (4.16) 

In the same vein, we obtain the two moments for the production variable: 
    µ=][ tPE                   (4.17) 

   222
2

))1(()( σττβ
β +−= −tPVar                 (4.18) 

Note that the expected queue length (4.15) and expected production length (4.17) for our 
continuous-time model are identical to Graves and Hollywood [8] on equations (3.5) and (3.7). We can 
see that the expected lead-time corresponds to the planned lead-time α/1 . The variance (4.16 and 4.17).  
However, is different from that of Graves and Hollywood [8]. 

In (3.6) and (3.8). The production variables differ from Graves and Hollywood [8] due to the 
uniform workflow assumption of our continuous-time model. 
 
5.0 Conclusion 

In this paper, we derived a continuous-time production model that allows work to travel through 
more than one station within a single time period. With the relaxation of the period size limitation, we are 
able to match the time period within the production time frame, which is our major contribution to Graves 
and Hollywood [8] in which work flows between stations at the start of each time period; thus visit at 
most workstation in each period. 
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