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Abstract 
 

In this paper, we analyse insurance premium adjustment in the context of an 
epidemiological model where the insurer’s future financial liability is greater than the 
premium from patients. In this situation, it becomes extremely difficult for the insurer 
since a negative reserve would severely increase its risk of insolvency, or might cause 
bankruptcy. This situation might also make many policy holders withdraw from the 
insurance by simply terminating their premium payments. It is proved that the benefit 
reserve changes from negative to positive and from concave to convex under the 
condition stated in Proposition 5.3 of this paper. As the premium tends to optimum 
premium rate, the local maximum in the first arch approaches the local minimum in 
the second arch and they all converge at a time point tm. As a result, the reserve benefit 
shifts upwards as the premium rate increases. It is concluded that a proper premium 
rate between initial and optimum premium rates exist in order to fulfil certain reserves 
requirements and an algorithm to determine this value was developed. 
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1.0 Introduction 
The idea of setting up an insurance coverage against infectious or communicable disease is akin 

to that of covering other contingencies like natural death and destruction of property. Since mortality 
analysis is based on ratios instead of absolute counts, we now introduce s(t), i(t) and r(t) respectively as 
functions of the whole population, in each of the classes S, I, R of the epidemiological model discussed 
later in this paper. 

Let s(t), i(t) and r(t) be the probabilities of an individual being susceptible, infected or removed 
from an infected class at the time spot, t. In an effort to build a bridge between epidemiological and 
actuarial models, we analyse possible financial arrangements against premium adjustment resulting from 
medical treatments given to insured patients. 
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The traditional life table methods overlook epidemiological dynamics and the dependence 

between insurance payers and beneficiaries. It consequently violates the fair premium principle assumed 
in industries. To obviate this deficiency and show that mathematical models can be used in analysing the 
transmission dynamics and measuring the effectiveness of controlling strategies, as well as modelling 
financial arrangements against premium adjustment from the insurer to insured patients resulting from 
medical treatment is the research investigation contained in this paper. 

According to Anderson and May [1], over the last century, many contributions to the 
mathematical modelling of epidemiological and communicable disease have been made by a great 
number of public health physicians, epidemiological mathematicians and statisticians. There brilliant 
works range from empirical data analysis to differential equation theory. Allen and Burgin [2] claimed 
that some have achieved success in clinical data analysis and effective predictions. Barnes and Fulford [3] 
considered mathematical modelling with case studies under empirical experiment. And Brayer [4] studied 
the deterministic compartment models in epidemiology. For a complete review of a variety of 
mathematical and statistical models, interested readers are referred to Hethcoat [6], Mollison et al [7].  
Omorogbe and Omoregie [8], in their paper on epidemiological model in actuarial mathematics, have 
opined that from a social point of view an effective protection against disease depends not only on the 
development of medical technology to identify viruses and to treat infected patients, but also on a well-
design health-care system. 

However, this paper extends Omorogbe and Omoregie [8] by examining the possibility of 
premium adjustment from the insurer as well as giving an algorithm for determining an added-value 
premium. For better understanding of this paper we give a fairly detailed treatment of the epidemiological 
compartment model and actuarial analysis in the next section. 

 
2.0 Epidemiological compartment model and actuarial analysis  

To model an epidemic in epidemiological studies, a whole population is usually separated into 
compartment with labels such as S, I and R. These acronyms are used in different patterns according to 
the transmission dynamics of the studied disease. Generally speaking, class S denotes the group of 
individuals without immunity, or those susceptible to a certain disease. In an environment exposed to 
disease like the Niger Delta, some individuals come into contact with the virus. Those infected who are 
able to transmit the disease are considered in class I. Individuals, removed from the epidemic due to either 
death or recovery after medical treatment are counted in class R. This is illustrated in the upper part of 
Figure 2.1 describing the transfer dynamics among the three compartments. 

Another merit of this partition, from an actuarial perspective, is that the three compartments play 
significantly different roles in an insurance model. As demonstrated in the lower part of figure 2.1, the 
susceptible individuals who face the risk of being infected in an epidemic each contribute a certain 
amount of premium to the insurance funds in return for future coverage of medical expenses incurred as a 
result of infection. During the outbreak, the infected are eligible for claiming benefits for expenditures 
covered in the policy. Following an individual’s death, a death benefit for funeral and burial expenses 
would be paid to specified beneficiaries. Interest will accrue on the properly managed insurance funds at a 
certain rate. 

Let us denote the qualitative relations of S(t), I(t), R(t) functions by the following system of 
differential equations known as the SIR model.  

( ) ( )
0,)( ≥−=′ t

N

t
ItStS β     (2.1) 

( ) ( ) ( ) 0,)( ≥−=′ ttI
N

t
ItStI αβ    (2.2) 
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Figure 2.1: General transfer dynamics and insurance principle among compartments S, I and R. 
     ( ) ( ) 0, ≥=′ ttItR α     (2.3) 
with given initial values S(0) = S0,I(0) = I0 and S0 + I0 = N 

The model is based on the following assumption: 
(a) The total number of individuals representing the total population size is kept constant, N = S(t) + 

I(t) + R(t) 
(b) Let β be the average number of contact sufficient for an individual to be infected with others per 

unit time. 
(c) At any time a fraction α of the infected leave the class I instantaneously. α is also considered to be 

constant. 
(d) There is no entry into or departure from the population, except possibly through death from the 

disease. For the purpose of setting up an insurance model, the demographic factors like natural 
births and deaths are negligible, as the time scale of an epidemic is generally shorter than the 
demographic time scale. 
Since the probability of a random contact by an infected person with a susceptible individual is 

S/N then the instantaneous increase of new infected individuals is β(S/N)I = βSI/N. The third assumption 
implies that the instantaneous number of people flowing out of the infected class I into the removal class 
R is αI. 

Let us divide equations (2.1) - (2.3) by the constant total population size N.  Then, we obtain  
s'(t) = -βi(t)s(t), t ≥ 0,     (2.4) 
i '(t) = βi(t)s(t) – αi(t), t ≥ 0,    (2.5) 
r(t) = 1 – s(t) – i(t), t ≥ 0,    (2.6) 

where s(t), i(t) and r(t) are probability functions defined on the interval [0,1] 
With these probability functions s(i), i(t) and r(t), we now incorporate actuarial methods to 

formulate the quantities of interest for an infectious disease insurance. 
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3.0 Annuity for premium payments and annuity for hospitalization 

We assume a premium payment plan in a simple annuity fashion in this work. Individual 
premiums are collected continuously as long as the covered person remains susceptible, whereas medical 
expenses are continuously reimbursed to each infected policyholder during the whole period of treatment. 
Once the individual recovers from the disease, the protection ends right away.  

Following the international Actuarial Notation, the actuarial present value (APV) of premium 

payments from an insured person for the whole epidemic is denoted by sa0  with the superscript indicating 

payments from class s, and APV of benefit payments from the insurer is denoted by sa0 with the 

superscript indicating payments to class I. 
On the debit side of the insurance product, the total discounted future claim is given by  

∫
∞ −=
0

0 ,)( dttsea ti δ      (3.1) 

while on the revenue side, the total discounted future premium is 

∫
∞ −=
0

0 ,)( dttsea ts δ      (3.2) 

where δ is the force of interest. Our study in this paper is based on the fundamental Equivalence principle 
in Actuarial Mathematics for the determination of level premiums, which requires: 

E[present value of benefits] = E[present value of benefits]; 
Therefore, the level premium for the unit annuity for hospitalisation plan is  

s

i
i

a

a
aP −=






0

0
0       (3.3) 

Just like in life insurance, where the force of mortality is defined as the additive inverse of the 
ratio of the derivative of the survival function to the survival function itself, we define here the force of 

infection as ,
)(

)('

ts

tss
t =µ  t ≥ 0, and the force of removal as ,

)(

)('

ti

tii
t =µ  t ≥ 0, 

Specifically from (2.4) and (2.5), we see that .)()( αβµβµ +−=−= tsandti i
t

i
t   Note that the above 

definitions imply that  

{ } { },)(expexp)(
00 ∫∫ −=−=
tt s

r drridrts βµ  t ≥ 0,  (3.4) 

and   { } { },)(expexp)(
00 ∫∫ +−=−=
tt i

r tdrrsdrti αβµ  t ≥ 0,  (3.5) 

Proposition 4.1 in the SIR model in (2.4) and (2.5), 

.
1

1 00
δδ

α =+






 +
si

aa     (3.6) 

Proof 
From (2.4) and (2.5), we obtain that S'(t) +i '(t) =-αi(t), t ≥ 0.  Integrating wrt r from t = 0 to a 

fixed t gives ∫ ≥−=−+
t

tdrritits
0

.0,)(1)()( α   Multiplying both sides by e-δt and integrating with 

respect to t from 0 to ∞ yields .
1

000
iis

aaa
δ
α

δ
−=−+  where the right hand side comes from exchanging 

the order of integrals, 
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Notice that the right hand side represents the perpetual annuity. The intuitive interpretation of the 
left hand side is that if every one in the insured group is rewarded with a perpetual annuity, the APV of 

expenses from class S accounts for 
s

a0  and similarly that of expenses from class I adds 
i

a0  to the cost. 
Recall that at any time a fraction α of the infected subgroup move forward to class R. and each of them 
would receive a perpetual of value 1/δ as well at the time of transition. Therefore, the APV of expenses 

from this compartment would be 
i

a0)/( δα  .It is reasonable that it should sum up to the value of a unit 
perpetual annuity regardless of the policyholder’s location among compartments.  

With this relation in mind, we could easily find the net level premium for the unit annuity for 
hospitalization plan, as follows: 

.
)(1

)(
0

0

0

0
0 i

i

s

i
i

a

a

a

a
aP

αδ
δ

+−
==     (3.7) 

4.0 Lump sum for hospitalization 
The analogy of the plan is with whole life insurance in actuarial mathematics. When a covered 

person is diagnosed being infected with the disease and hospitalized, the medical expenses is to be paid 
immediately in lump sum and insurance protection ends. Then the APV of benefit payments to the 

infected denoted by 
i

A0  can be obtained as 

∫
∞ −∆
0

0 ,)()( dttitseA ti δβ    (4.1) 

since the probability of being newly infected at time t is βs(t)i(t) 
Proposition 4.1 

,
11

000 saA si

δδ
=+     (4.2)  

and     ii
aAi −+=+ 0

1
000

11 α
δ
α

δδ
   (4.3) 

(see proof in Omorogbe and Omoregie [8]) 
Therefore, for the annuity for hospitalisation plan, the quantitative relations among these 

insurance factors could be describe by the following ODE systems:  

0),()( >=Ρ′ − ttSePt t
AH

δ    (4.4) 

0),()( >=Β′ ttIet tδ     (4.5) 

0),()()( >−=′ ttIetSePtV stt
AH

δ    (4.6) 

where )( 0
i

AH APP =  is determined by the equivalence principle. By applying Runge-Kutta method of 
order four (RK-4 method), we should obtain 

./)()(/)(,//)( 07:07:0 NtVaVandNtBaPNtPa
i

t
i

tAH

s
t ===  

(See Omorogbe and Omoregie, [8]) 
 
5.0 Premium adjustment 

Premium is simply the amount of money an insured patient or person pays to the insurer within a 
specified time interval. The fact that mortality rises with age leads to the consequence that an insurer’s 
future financial liability is always greater than future revenue from benefit premiums. Therefore the 
benefit reserve is normally positive in traditional life insurance products. Unlike the “U” shape of 
mortality curve, a unique feature of epidemics is that the infection rate rapidly increases at the beginning 
and then drops down after reaching a peak. Figure 5.1 illustrates a typical path of a benefit reserve 
function obtained from the insurance quantities system (4.4) – (4.6), where the benefit premium is 
determined by the means employed in (3.7). 
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Although the equivalence principle is applied from time 0 and 5, it is dangerous for an insurer to 
have a long standing negative reserve, which indicates that so much more expenses are paid out than 
premiums collected and that the insurer actually becomes a debtor to all policyholders. A negative reserve 
could severely increase an insurer’s risk of insolvency, and in worst scenario might even cause 
bankruptcy. Another potential hazard is that the insurance policy virtually becomes a certificate of debts. 
It is likely that a policyholder might withdraw from the insurance simply by stopping payment of 
premiums. Therefore a prudent insurer would require additional premium in order to keep reserve above 
an early warning level, which we choose to be zero in our analysis. 

Before giving an algorithm for determining an added-value premium, we would like to study for a 
moment the trend of a benefit reserve function V(t) and its dependency on functions S(t) and I(t). 
Proposition 5.1 

For the SIR model in (2.1) - (2.3), S(t) is a monotonically decreasing function, and R(t) is a 
monotonically increasing function; If ,/)0( βαNS ≤  then I(t)is a monotonically decreasing function.  If 

)(,/)0( tINS βα> increases up to the time when ,/)( βαNtS =  and then decreases after.  (see proof 
in Omorogbe and Omoregie, [8]) 

 

 
Figure 5.1: Benefit reserve function V(t) for Annuity for Hospitalisation (AH) plan for cancer infection of a community 

in Niger Delta region of Nigeria (See table in Omorogbe and Omoregie, [8]), PAH = 106.51. Double arch structure as explained in 
Proposition 5.3. 

 
Proposition 5.2 (Single Arch Structure) 

In the insurance quantities system (4.4) – (4.6), the benefit reverse V(t) is concave, if the premium 

,1−
∞

>
S

N
PAH β

α
    (5.1) 
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Proof 

To check the concavity of ),(tV  we look at ),(tV ′′  
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It follows that when ,0,1
)(

>−> tallfor
tS

N
PAH β

α
 V(t) is concave downward. Since S(t) is 

monotonically decreasing, thus condition (5.1) is required. 
 

 
Figure 5.2: Benefit reserve function V(t) for AH plan for cancer infection in a community in Niger-Delta region of Nigeria, 

PAH=843.38, Single arch structure as explained in Proposition 5.2. 
 
Proposition 5.3 (Double Arch Structure)  

If  

,11
0

−<<−
∞S

N
P

S

N
AH β

α
β
α

   (5.2) 

then the benefit reserve V(t) changes from concave to convex, with a point of inflection tf such that 

    .
)1(

)(
β

α
AH

f P

N
ts

+
=     (5.3) 

where tf is an increasing function of the premium rate PAH, 

and 
)(

)(
.

m

m
AH tS

tI
P = .  (see proof in Fend and Garrido, [5]) 

We would show in the next proposition that tm is an increasing-then-decreasing function with 
respect to PAH. Therefore, as the premium rates increase, the local minimum would eventually move 
backward on the time scale. As one can imagine, when the point of inflection gets closer to the next local 
minimum, the curve in between becomes flatter. It is a natural conjecture that as the premium PAH rises to 

a critical value *
AHP , there must be a corresponding time point when tf overlaps with tm, as shown in 

figure 4. thus, 
 

[ ] ),(
)(/)(1 m

mm

tS
tStI

N =
+β

α
 

which implies that ./)()( βαNtItS mm =+  It is not surprising to obtain the same critical value in the 

following proposition. 
Proposition 5.4 

For the insurance quantities system in (4.4) – (4.6), the reserve V(t) is concave and strictly 
increasing, if  
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where the constant ).log(/ 000 SNSIc βα−+=  
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To ensure that  ,0)( >′ tV  we need ,,
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Figure 5.3: Benefit reserve function V(t) for AH plan for cancer infection in a Niger-Delta community in Nigeria, PAH=202.17. 

Double arch structure and strictly increasing as explained in Proposition 5.4. 
or equivalently, 

logPAH > logI(t) – logS(t),  for all t. 
let  f(t) = logI(t) – logS(t),  
then 

)(

)(
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by (2.1) and (2.2).  Since S(t) + I(t) = N – R(t) is monotonically decreasing, at the time tm when  
,/)()( βαNtItS mm =+     (5.5) 

)(tf ′  changes from positive to negative and f(t) reaches its maximum at time tm. Thus PAH is required to 
be greater than I(tm)/S(tm). 
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Integrating to find the orbits of the (S,I)-plane gives:  
 
 
 

,)(log)()( ctS
N

tStI =−+
β

α
    (5.6) 

where c is a constant of integration for each specific orbit, say, c = I0 + S0 – ).log(/ 0SN βα   Combining 

(5.5) and (5.6), we can solve for S(t) and I(t), as  

,1exp()(
N

c
tS m α

β−=      (5.7) 
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α
    (5.8) 

Hence     ).(log mAH tfP >      (5.9) 

Substituting (5.7) and (5.8) into (5.9) gives the condition (5.4). 

From the above analysis, we realise that as the premium tends to *
AHP , the local minimum in the 

second arch and the point of inflection move towards each other, which implies that the local maximum in 
the first arch approaches the local minimum in the second arch as well. They all converge at the time 
point tm. therefore V(tm) should shift upwards as the premium rates increase. We can infer that a proper 

premium rate between )( 7:0
i

tAP  and *
AHP  exists in order to fulfil certain requirements on the reserves. 

However, it can not be found in a closed algebraic expression. Instead, an easy algorithm can determine 
the value. 
(a) Clearly defined an early warning level which the reserve function should never go below. For 
example, tallfortV ,0)( ≥ . 

(b) Start by setting premium rate at ).( 7:0
)0( i

tAPP =  

(c) Increase the premium each time by a monetary unit, say, .01.0)1()( += −nn PP  
(d) Calculate the resulting V(tm), and see if it is greater than zero. If yes, P(n) gives a reasonable 
adjusted premium. Otherwise, repeat the last step. 
(e) By the fair premium principle, a survival benefit should be awarded to the remaining susceptible 
policy holders when the policy duration t ends. The benefit amount is determined by V(t)/S(t). 
 
6.0 Discussion and conclusion 

One of the problems of insurance is a situation where the future financial liability is greater than 
future revenue from premiums. This is a dangerous condition for any insurer as much more expenses are 
paid out than premiums collected and the insurer actually becomes a debtor to all policyholders. A 
negative reserve could severely increase an insurer’s risk of insolvency, and in worst scenario might even 
cause bankruptcy. Another potential hazard is that the insurance policy virtually becomes a certificate of 
debt. This might make many policyholders withdraw from the insurance simply by stopping payment of 
premiums. Therefore a prudent insurer would require additional premium in order to keep reserve above 
an early warning level, which we choose to be zero in our analysis. We were able to prove that tm is an 
increasing-then-decreasing function with respect to premium rate PAH. We also observed from (5.3) that tf 
is an increasing function of the premium rate i.e. as we increase the premium, the point of inflection gets 
closer to the next local minimum and the curve in between becomes flatter. It is natural that as the 

premium PAH rises to a critical value *
AHP , there must be a corresponding time point when tf overlaps with 

tm as shown in Figure 5.3. From the analysis on this paper, it is discovered that the premium tends to *
AHP , 

the local minimum in the second arch and the point of inflection move towards each other which implies 
that the local maximum in the first arch approaches the local minimum in the second arch as well. They 
all converge at the time point tm. which implies the reserve function V(tm) should automatically shift as the 

premium rate increases. It is concluded that a proper premium rate between )( :0
i

tAP  and *
AHP  exist in 

order to fulfill certain reserves requirements. A simplified algorithm to determine this value was 
developed. 
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