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Abstract

In this paper, we analyse insurance premium adjustnt in the context of an
epidemiological model where the insurer’s futurenfincial liability is greater than the
premium from patients. In this situation, it becormeextremely difficult for the insurer
since a negative reserve would severely increaseigk of insolvency, or might cause
bankruptcy. This situation might also make many @yl holders withdraw from the
insurance by simply terminating their premium paymits. It is proved that the benefit
reserve changes from negative to positive and fraoncave to convex under the
condition stated in Propositiorb.3 of this paper. As the premium tends to optimum
premium rate, the local maximum in the first archparoaches the local minimum in
the second arch and they all converge at a timenpdi,. As a result, the reserve benefit
shifts upwards as the premium rate increases. Itciencluded that a proper premium
rate between initial and optimum premium rates exiis order to fulfil certain reserves
requirements and an algorithm to determine this ualwas developed.
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1.0 Introduction

The idea of setting up an insurance coverage against infectiaxmnmmunicable disease is akin
to that of covering other contingencies like natural death andudash of property. Since mortality
analysis is based on ratios instead of absolute counts, we moduicgs(t), i(t) andr(t) respectively as
functions of the whole population, in each of the classes Spf,tRe epidemiological model discussed
later in this paper.

Let §(t), i(t) andr(t) be the probabilities of an individual being susceptible, irfecr removed
from an infected class at the time spotln an effort to build a bridge between epidemiological and
actuarial models, we analyse possible financial arrangsnagiaiinst premium adjustment resulting from
medical treatments given to insured patients.
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The traditional life table methods overlook epidemiological dyina and the dependence
between insurance payers and beneficiaries. It consequentyegiahe fair premium principle assumed
in industries. To obviate this deficiency and show that mattieahanodels can be used in analysing the
transmission dynamics and measuring the effectiveness abliogt strategies, as well as modelling
financial arrangements against premium adjustment from theeimgu insured patients resulting from
medical treatment is the research investigation contained in this paper

According to Anderson and May [1], over the last century, many botitshs to the
mathematical modelling of epidemiological and communicableadéséhave been made by a great
number of public health physicians, epidemiological mathemati@adsstatisticians. There brilliant
works range from empirical data analysis to differentialagign theory. Allen and Burgin [2] claimed
that some have achieved success in clinical data analysis eativefpredictions. Barnes and Fulford [3]
considered mathematical modelling with case studies under eahjgixjgeriment. And Brayer [4] studied
the deterministic compartment models in epidemiology. For a ctenpkview of a variety of
mathematical and statistical models, interested readersetarred to Hethcoat [6], Mollison et al [7].
Omorogbe and Omoregie [8], in their paper on epidemiological modattirarial mathematics, have
opined that from a social point of view an effective protecticairesy disease depends not only on the
development of medical technology to identify viruses and to iméadted patients, but also on a well-
design health-care system.

However, this paper extends Omorogbe and Omoregie [8] by examirengossibility of
premium adjustment from the insurer as well as giving an #ghgorfor determining an added-value
premium. For better understanding of this paper we give g €atailed treatment of the epidemiological
compartment model and actuarial analysis in the next section.

2.0  Epidemiological compartment model and actuarial analysis

To model an epidemic in epidemiological studies, a whole popul& usually separated into
compartment with labels such 8slandR. These acronyms are used in different patterns according to
the transmission dynamics of the studied disease. Generabikispe classS denotes the group of
individuals without immunity, or those susceptible to a certisease. In an environment exposed to
disease like the Niger Delta, some individuals come into comtigh the virus. Those infected who are
able to transmit the disease are considered in klasdividuals, removed from the epidemic due to either
death or recovery after medical treatment are counteth&sR. This is illustrated in the upper part of
Figure 2.1 describing the transfer dynamics among the three compartments.

Another merit of this partition, from an actuarial perspeci¢hat the three compartments play
significantly different roles in an insurance model. As dematedrin the lower part of figure 2.1, the
susceptible individuals who face the risk of being infected iregidemic each contribute a certain
amount of premium to the insurance funds in return for future coveragedital expenses incurred as a
result of infection. During the outbreak, the infected are elidifeclaiming benefits for expenditures
covered in the policy. Following an individual’'s death, a death befuefituneral and burial expenses
would be paid to specified beneficiaries. Interest will accrue on the propanaged insurance funds at a
certain rate.

Let us denote the qualitative relations f), I(t), R(t) functions by the following system of
differential equations known as tB&¢Rmodel.

S(t)=-8s@)! % t=0 (2.1)

I'(t) = AS(t)! %—m (t), t=0 (2.2)
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Figure 2.1 General transfer dynam-i(;; ;nd insurance principlersy compartments, landR.
R(t)=al(t), t=0 (2.3)
with given initial values§(0) = S,1(0) =lpandS +1o=N
The model is based on the following assumption:
(a) The total number of individuals representing the total populaize is kept constarit, = t) +

[(t) + R(t)

(b) Let s be the average number of contact sufficient for an individube infected with others per
unit time.

(c) At any time a fraction of the infected leave the classstantaneously: is also considered to be
constant.

(d) There is no entry into or departure from the population, excepblyoswough death from the
disease. For the purpose of setting up an insurance model, therdphiodactors like natural
births and deaths are negligible, as the time scale of aemigids generally shorter than the
demographic time scale.

Since the probability of a random contact by an infected perstnansusceptible individual is
S/Nthen the instantaneous increase of new infected individuA(Sis)I = SSVN. The third assumption
implies that the instantaneous number of people flowing out ohfhetéd class into the removal class
Risal.

Let us divide equations (2.1) - (2.3) by the constant total populatiohsiZéen, we obtain

s(t) = Pi(t)s(t), t= 0, (2.4)
i'(t) = AiO(D) —ai(t), t> O, (2.5)
rt) = 1 —(t) —i(t), t> 0, (2.6)

whereg(t), i(t) andr(t) are probability functions defined on the interval [0,1]
With these probability functions(i), i(t) and r(t), we now incorporate actuarial methods to
formulate the quantities of interest for an infectious diseaseanee.

Journal of the Nigerian Association of Mathematicd&hysics Volumel4(May, 2009) 407 - 416
Actuarial analysis on epidemiological models D. E. A. Omorogbeand S. O. Edobor, J of NAMP



3.0 Annuity for premium payments and annuity for hospitalization

We assume a premium payment plan in a simple annuity fashionsinvtrk. Individual
premiums are collected continuously as long as the covered persaims susceptible, whereas medical
expenses are continuously reimbursed to each infected policylloldieg the whole period of treatment.
Once the individual recovers from the disease, the protection ends right awa

Following the international Actuarial Notation, the actuari@sgnt value (APV) of premium

payments from an insured person for the whole epidemic is deno@} kjth the superscript indicating

payments from class s, and APV of benefit payments from the insur@enoted by% with the

superscript indicating payments to class I.
On the debit side of the insurance product, the total discounted future clauanidy

a0 = [es(t)dt, (3.1)
while on the revenue side, the total discounted future premium is

s o 4

ao = jo e “s(t)dt, (3.2)

whereg is the force of interest. Our study in this paper is based onnldarmentaEquivalence principle
in Actuarial Mathematics for the determination of level premiums, lwiequires:

E[present value of benefits]Epresent value of benefits];
Therefore, the level premium for the unit annuity for hospitalisation plan is

E(Eioj = 3605 (3.3)

Just like in life insurance, where the force of mortaktyefined as the additive inverse of the
ratio of the derivative of the survival function to the survifeadction itself, we define here the force of

infection asy’ = S(—(tt)) > 0, and the force of removal aﬁ = % t>0,
S I

Specifically from (2.4) and (2.5), we see that = —A(t) andy =-/£5(t) +a. Note that the above
definitions imply that

s(t) = exd— j:) /der}: exd— ,BJ';i(r)dr}, t>0, (3.4)

and i(t) = exp{— j; y;dr}: exp{— ﬁj; S(r)dr + at}, t>0, (3.5)
Proposition 4.1 in th&IRmodel in (2.4) and (2.5),

(1+%j5.io + a0 =%. (3.6)

Proof
From (2.4) and (2.5), we obtain th&t) +i'(t) =-ai(t), t > 0. Integrating wrr fromt =0 to a

fixed t gives s(t) +i(t) -1= —a'[;i(r)dr, t>0. Multiplying both sides bye™ and integrating with

. - =i 1
respect to t from O te yields ao +ao —

5 = —%52. where the right hand side comes from exchanging

the order of integrals,

[ expd]'i(rydrt = % [[ [lir)drd(expe-db) =% [ expa)i(r)dr = %55.
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Notice that the right hand side represents the perpetual anhli@yintuitive interpretation of the
left hand side is that if every one in the insured group isrdegawith a perpetual annuity, the APV of

expenses from classaccounts forag and similarly that of expenses from class | aaéisto the cost.
Recall that at any time a fracti@nof the infected subgroup move forward to class R. and efaittem
would receive a perpetual of valued Hs well at the time of transition. Therefore, the APV of exgens

from this compartment would béa/é’)a'o It is reasonable that it should sum up to the value of a unit
perpetual annuity regardless of the policyholder’s location among compastment

With this relation in mind, we could easily find the net levadrpium for the unit annuity for
hospitalization plan, as follows:

—I

a0 l-(o+a)ao
4.0  Lump sum for hospitalization

The analogy of the plan is with whole life insurance in ac@banathematics. When a covered
person is diagnosed being infected with the disease and hosgit#izemedical expenses is to be paid
immediately in lump sum and insurance protection ends. Then the ocABbenefit payments to the

infected denoted b)leo can be obtained as
Ao B j: e s(t)i(t)dt, (4.1)

since the probability of being newly infected at tinieAs(t)i(t)
Proposition4.1

1 s 1
1. 1_i a—1 —i
and 3 0+5A0:an ta, (4.3)

(see proof in Omorogbe and Omoregie [8])
Therefore, for the annuity for hospitalisation plan, the quantitatelations among these
insurance factors could be describe by the following ODE systems:

Pt) = P,e?S(t), t>0 (4.4)
B'(t) = €%I(t), t>0 (4.5)
V') = P,e*S(t)-el(t), t>0 (4.6)

where P, :5(Ko) is determined by the equivalence principle. By applyRunge-Kuttamethod of
order four (RK-4 method), we should obtain

o = P(t)/ N/ Py, a0 = B(t)/N  and (V(ao) =V(t)/N.
(See Omorogbe and Omoregie, [8])

5.0 Premium adjustment

Premium is simply the amount of money an insured patient or perserigthe insurer within a
specified time interval. The fact that mortality riseish age leads to the consequence that an insurer’s
future financial liability is always greater than futurevenue from benefit premiums. Therefore the
benefit reserve is normally positive in traditional life irswe products. Unlike the “U” shape of
mortality curve, a unique feature of epidemics is thatrfection rate rapidly increases at the beginning
and then drops down after reaching a peak. Figure 5.1 illustratgscal path of a benefit reserve
function obtained from the insurance quantities system (4.4) 6}, (here the benefit premium is
determined by the means employed in (3.7).
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Although the equivalence principle is applied from time 0 andi§,dangerous for an insurer to
have a long standing negative reserve, which indicates thausb more expenses are paid out than
premiums collected and that the insurer actually becomes a delatbpolicyholders. A negative reserve
could severely increase an insurer's risk of insolvency, anevdrst scenario might even cause
bankruptcy. Another potential hazard is that the insurance polimally becomes a certificate of debts.
It is likely that a policyholder might withdraw from the inaoce simply by stopping payment of
premiums. Therefore a prudent insurer would require additionalipme in order to keep reserve above
an early warning level, which we choose to be zero in our analysis.

Before giving an algorithm for determining an added-value premium, we woulib Istedy for a
moment the trend of a benefit reserve funcii@) and its dependency on functidg$) andI(t).
Proposition5.1

For the SIR model in (2.1) - (2.3§t) is a monotonically decreasing function, and R(t) is a
monotonically increasing function; B(0) < aN/ S, thenl(t)is a monotonically decreasing function. If

S(@) >aN/ B, 1 (t) increases up to the time whés(t) =aN/ , and then decreases after. (see proof
in Omorogbe and Omoregie, [8])
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Figure 5.1 Benefit reserve functio¥(t) for Annuity for Hospitalisation (AH) plan for caar infection of a community
in Niger Delta region of Nigeria (See table in Oogivte and Omoregie, [8]Pan = 106.51.Double arch structure as explained in
Proposition 5.3.

Proposition5.2 (Single Arch Structure)
In the insurance quantities system (4.4) — (4.6), the benefit re¥gyse concave, if the premium

P >%-l (5.1)

where the constart = 1, + S, —aN/ Slog(S,)) and S, =t 0T - 0o S(t).

Proof
To check the concavity df (t), we look atV"(t),

V()= RSO -1'0 =5 P S0 10250 10 +a1 0
B

= I(t)[a—ﬁ(PAH +1)S(t)}
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It follows that when P, >a'_l\{[_1' forall t >0, V(t) is concave downward. Sinc8(t) is

£S(1)

monotonically decreasing, thus condition (5.1) is required.
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Figure 5.2 Benefit reserve functio¥(t) for AH plan for cancer infection in a communityNtiger-Delta region of Nigeria,
P.4=843.38, Single arch structure as explained in &sitpn 5.2.

Proposition5.3(Double Arch Structure)

If

N oy <Ny 62
@O @oo

then the benefit reserygt) changes from concave to convex, with a point of infledtisnch that

aN
S(ty) =———. (5.3)

(1+ I:)AH )ﬁ

wheret; is an increasing function of the premium rajg,

andP,,.= IS((ttm)) . (see proof in Fend and Garrido, [5])

We would show in the next proposition thgtis an increasing-then-decreasing function with
respect toP,y. Therefore, as the premium rates increase, the local mmimould eventually move
backward on the time scale. As one can imagine, when the pairitection gets closer to the next local
minimum, the curve in between becomes flatter. It is a natorgécture that as the premilPpy rises to

a critical value P;H, there must be a corresponding time point wheaverlaps witht,,, as shown in
figure 4. thus,

aN - (),
L+ 1(t,)/S(,,)]
which implies thatS(t,,) + 1 (t,,) =aN/ B. It is not surprising to obtain the same critical valu¢hie

following proposition.
Proposition5.4

For the insurance quantities system in (4.4) — (4.6), the reStyés concave and strictly
increasing, if
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Py > Py = %exp{% —1) -1, (5.4)

where the constare = 1, + S, —aN/ £ 10g(S,).
Proof

| (t)

To ensure thalV'(t) > O, we needP,,, > % for all t,
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Figure 5.3 Benefit reserve functio¥(t) for AH plan for cancer infection in a Niger-Delta commiyriin Nigeria,P,=202.17.
Double arch structure and strictly increasing gedared in Proposition 5.4.
or equivalently,
logPan > logl(t) — logS(t) for allt.

let f(t) = logl(t) — logS(t)
then
=10 _SO_A _
"O=T0 80 - N [s®)+1®)]-a,
by (2.1) and (2.2). Sincg(t) + I(t) = N — R(t)is monotonically decreasing, at the titpavhen
S(ty,) +1(ty) =aN/ g, (5.5)

f'(t) changes from positive to negative dft)i reaches its maximum at timg ThusP, is required to
be greater thatftm)/S(tm)

') _ di) _ (BSO/IN-a)I®) __,, aN_
S(t) dsit) -AsH)It)/N AS(t)’

Integrating to find the orbits of tH&,l)plane gives:

[ (t) + S(t) —%Iog S(t) =c, (5.6)

wherec is a constant of integration for each specific orbit, saylo + S —aN/ 109(S,). Combining
(5.5) and (5.6), we can solve 8(t)andl(t), as

St,) = exp-£2, (5.7)
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_aN _ _&x
I(t,,) —? exp{l aNj (5.8)

Hence logP,, > f(t,). (5.9)
Substituting (5.7) and (5.8) into (5.9) gives the condition (5.4).
From the above analysis, we realise that as the premius te P,,, , the local minimum in the

second arch and the point of inflection move towards each other, which impliéisethocal maximum in
the first arch approaches the local minimum in the second aratelasThey all converge at the time
point t,. thereforeV(t,) should shift upwards as the premium rates increase. We canhafea proper

premium rate betweelﬁ’(AB;w) and P/:H exists in order to fulfil certain requirements on the ne=sser
However, it can not be found in a closed algebraic expressionadinste easy algorithm can determine
the value.

(a) Clearly defined an early warning level which the nasdunction should never go below. For
example V(t) = 0, for all t.

(b)  Start by setting premium rate B(® = E’(ﬁio:n).

(c) Increase the premium each time by a monetary unit,Rdy= P + 001.

(d) Calculate the resulting(t,), and see if it is greater than zero. If yBS) gives a reasonable
adjusted premium. Otherwise, repeat the last step.

(e) By the fair premium principle, a survival benefit shoulcabr@rded to the remaining susceptible
policy holders when the policy duratibends. The benefit amount is determined/fy/S(t)

6.0  Discussion and conclusion

One of the problems of insurance is a situation where the fuhanecfal liability is greater than
future revenue from premiums. This is a dangerous condition fomaaoyer as much more expenses are
paid out than premiums collected and the insurer actually becordebdtar to all policyholders. A
negative reserve could severely increase an insurdt’'sfrissolvency, and in worst scenario might even
cause bankruptcy. Another potential hazard is that the insurarice yidiually becomes a certificate of
debt. This might make many policyholders withdraw from the inggramply by stopping payment of
premiums. Therefore a prudent insurer would require additionalipme in order to keep reserve above
an early warning level, which we choose to be zero in ouysisaMe were able to prove thgtis an
increasing-then-decreasing function with respect to premiusmiPgat We also observed from (5.3) that
is an increasing function of the premium rate i.e. as we incteaggremium, the point of inflection gets
closer to the next local minimum and the curve in between bectiates. It is natural that as the

premiumP,y rises to a critical vaIuP,:H , there must be a corresponding time point whewmerlaps with

tn as shown in Figure 5.3. From the analysis on this paper, it is discovered hvantiiem tends tcP,_*\H ,

the local minimum in the second arch and the point of inflectionenimwards each other which implies
that the local maximum in the first arch approaches the lnoamum in the second arch as well. They
all converge at the time poitit. which implies the reserve functi®f{t,) should automatically shift as the

premium rate increases. It is concluded that a proper premiurbe’emeenl?’(ﬂlo;{) and P,:H exist in

order to fulfill certain reserves requirements. A simplifialdjorithm to determine this value was
developed.
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