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Abstract 
 

The efficiencies of eight autoregressive model order determination criteria: 
AIC, BIC, SIC, S, ΦΦΦΦ, FPE4, CAT2, CAT3, for the selection of subset models are 
compared using artificial and real series. Our observation is that BIC, S and FPE4 
performed well in a wide range of models. 
 

 
 

1.0 Introduction 
A stationary mean corrected time series {Xt} is said to follow an autoregressive model of order p 

(denoted by AR(p)) if it is a solution of the following difference equation 
    tptpttt XXXX εααα =++++ −−− L2211   (1.1) 

where the αi’s are constants such that the characteristic equation ++++ L
2

211 zz αα p
pzα = 

0 
has roots outside the unit circle, and {εt} is a white noise process of variance σ2.  

Any stationary time series {Xt} can be expressed as an infinite-order autoregressive model [3].  In 
practice, a stationary time series is modeled by an AR(p) which is an approximation to the theoretical 
model. The determination of the order represents a major obstacle since either underestimation or 
overestimation makes the model unreliable. 

Contemporary autoregressive modeling techniques use automatic criteria for order determination 
like Akaike’s information criterion (AIC) [1], Bayesian information criterion (BIC) [2], etc. Interest is 
often in the comparative performance of the order determination criteria under certain conditions (see, 
e.g. [4], [14] and [16]). 

Constraining some of the αi’s in equation (1.1) to zero makes it a subset order model. This work 
is a study of eight automatic order determination criteria: AIC, BIC, S, SIC, Φ, CAT2, CAT3, and FPE4 in 
subset order model selection. Etuk [9] has shown that for full order modeling AIC and CAT3 excel while 
the rest underestimate the order. He has also demonstrated that their comparative performance depends on 
the method of estimation of the αi’s in (1.1) Here, we shall use the least squares method. 

We shall use simulated as well as real series. For the artificial series we shall study the effect of 
sample size on the comparative performance. Interest shall also be in determining if  
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model distance from the non-stationarity boundary affects their performance. We shall use the least-
square-method based subset selection algorithm of Haggan and Oyetunji [12]. 

 
2.0 Model selection 

For the realization NXzXX L
2

21,  of the time series {Xt} we use the subset algorithm of 

Furnival [11] after specifying a maximum lag. We compare the efficiencies of the criteria defined by 
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( ) L,2,1,0,lnln 2 =+= pNpNpSIC pσ  (Schwarz, [19]) 
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( ) Lf ,2,1,0,1,lnln2ln 12 =+=Φ − pcNpcNp pσ  (Hannan and Quinn, [13]) 

( ) ( ) L,2,1,0,2 2 =+= ppNpS pN σ  (Shibata, [20]) 

where σ2
p and σ2

p are respectively the least squares and the maximum likelihood estimates of the residual 
variance. Each of them chooses the model corresponding to its minimum. 

 
3.0 Simulation results 

Four AR(2) series with (α1, α2) equal to (0.00, -0.78), (0.00, -0.15), (0.00, 0.89) and (0.00, 0.10) 
are simulated twenty independent times. We shall refer to them as series I, II, III and IV respectively. The 
white noise process for each simulation is a sequence of pseudorandom numbers generated using the 
RAN function of the FORTRAN 77 language. The sequence was made normally distributed. To minimize 
the transient effect of starting values we ignored the first 100 values. We use N = 50, 150 and 250, for 
each model, giving a total of 60 series for each model. We note that series II and IV are nearly white 
noise being far from the non-stationary boundary. Series I and III on the other hand are close to the 
boundary. Table 3.1 gives the frequencies of correct selection by the criteria of the models. 

As evident from Table 3.1, BIC outperforms the rest followed by S. The performances of the 
criteria do not depend on the sample size. 

 
Table 3.1: Frequency out of 20 of correct picking of model by each criterion 

 
Series Sample size AIC BIC ΦΦΦΦ SIC S CAT2 CAT3 FPE4 
I 50 

150 
250 

16 
13 
17 

19 
20 
20 

20 
20 
20 

20 
20 
20 

20 
19 
18 

5 
6 
5 

17 
13 
17 

20 
20 
19 
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Series Sample size AIC BIC ΦΦΦΦ SIC S CAT2 CAT3 FPE4 
II 50 

150 
250 

6 
9 
12 

7 
8 
8 

0 
6 
5 

0 
6 
4 

5 
9 
11 

1 
5 
8 

6 
9 
12 

0 
7 
9 

III 50 
150 
250 

17 
14 
17 

18 
19 
20 

18 
18 
20 

18 
19 
20 

18 
17 
19 

3 
3 
5 

17 
14 
17 

18 
16 
20 

IV 50 
150 
250 

3 
6 
6 

3 
6 
3 

0 
0 
0 

0 
1 
0 

1 
5 
5 

3 
4 
3 

3 
6 
6 

0 
3 
3 

Total 136 151 127 128 147 51 137 135 
 
4.0 Real series results 

We use a maximum lag of 15 here. Each model selected was subjected to diagnostic checks 
which include Box-Pierce [7] portmanteau statistic R test. The parametric spectrum was compared with 
the raw one for each of the models. Moreover the diagnostic aids: inverse autocorrelation function (IACF) 
and partial autocorrelation function (PACF) were used. 
4.1. Series A (Box and Jenkins, [6]) pp. 525  

IACF and PACF recommend an AR(7) model (Etuk, [10]). BIC, Φ, SIC, S and FPE4 pick the 
AR(3) model  

3124,09550188021603810 2
321 ⋅=⋅==⋅−⋅−⋅− −−− RXXXX ttttt σε  (4.1) 

CAT2 and CAT3 choose the AR(2) 

03100,1002025204270 2
21 ⋅=⋅==⋅−⋅− −− RXXX tttt σε   (4.2) 

AIC chooses the AR(15) with significant lags 1, 2, 7, 14 and, of course, 15 

1520,09340

12201260174022003880 2
1514721

⋅=⋅=
=⋅−⋅−⋅−⋅−⋅− −−−−−

R

XXXXXX ttttttt σε
 (4.3) 

Figure 4.1 shows the spectra of (4.1) and (4.2) superimposed on the non-parametric spectrum. 
That of (4.1) clearly agrees with the non-parametric one while that of (4.2) does not as much. In support, 
the R test is significant for (4.2) but not for the rest.  

We then infer that (4.1) fits the data well. The model (4.3) therefore over-fits it and (4.2) under-
fits it. Evidence here is therefore in favour of BIC,Φ, SIC, S and FPE4. 
4.2 Canadian Lynx numbers (1821 – 1934) (Campbell and Walker, [8] pp. 430) 
 The logarithmic transformation was used. BIC, Φ, AIC, SIC, S, FPE4 recommend  

2819,23550

32503240127035700941 2
1110421

⋅=⋅=
=⋅+⋅−⋅+⋅+⋅− −−−−−

R

XXXXXX ttttttt σε
 

which is shown adequate by both the spectrum and R-tests (Etuk, [9]). CAT2 and CAT3 select a subset 
AR(4) model with significant lags 1, 2 and 4, which is discredited by both the R- and the spectrum tests. 
We therefore infer that CAT2 and CAT3 underestimate while the rest fare well. 
4.3 Wolfer’s sunspot series (1700 – 1955) (Waldmeier, [22]) 
 FPE4, BIC,Φ and SIC recommend the AR(9) 

8729,32216157052902281 2
921 ⋅=⋅==⋅−⋅+⋅− −−− RXXXX ttttt σε  (4.4) 

whose R-value is not significant and whose spectrum agrees closely with that of the series (Etuk, 1987). It 
is noteworthy that Morris [15] and Schaerf [18] each fitted a model with lags 1, 2 and 9 significant as in 
(4.4). AIC selects lags 1, 2, 3, 4, 5 and 9; CAT3 selects lags 1, 2 and 3; S selects lags 1, 2, 3 and 9; CAT2 
selects lag zero meaning that it chooses the raw data in preference to any autoregressive model. Inference 
here is therefore in favour of FPE4, BIC, Φ and SIC. 
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5.0 Conclusion 
On the overall, BIC, FPE4 and S consistently perform best in subset modelling. AIC, CAT2 do not 

perform well. CAT2 and CAT3 underestimate; AIC fares better than CAT2. SIC and Φ also do well 
especially for the real series. For subset modeling it may be recommended that BIC, FPE4, S, Φ or SIC be 
used. 
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Figure 4.1: Some series A s[ectra )in db) 


