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Abstract

The efficiencies of eight autoregressive model order determination criteria:
AIC, BIC, SIC, S, @, FPE4, CAT,, CAT,, for the selection of subset models are
compared using artificial and real series. Our observation is that BIC, S and FPE4
performed well in a wide range of models.

1.0 Introduction
A stationary mean corrected time seri&g {s said to follow an autoregressive model of orger
(denoted hYAR(p)) if it is a solution of the following difference equation

Xt X+ QX+ +a, X, =& (1.1)
where theo;’s are constants such that the characteristic equatiamz + a,z° +--- + a,z’=

0
has roots outside the unit circle, arg {s a white noise process of varianoe

Any stationary time series<{} can be expressed as an infinite-order autoregressive ngjddh[
practice, a stationary time series is modeled byAR{p) which is an approximation to the theoretical
model. The determination of the order represents a major abstamie either underestimation or
overestimation makes the model unreliable.

Contemporary autoregressive modeling techniques use automii@dor order determination
like Akaike's information criterion (AIC) [1], Bayesiamformation criterion (BIC) [2], etc. Interest is
often in the comparative performance of the order deterroimatiteria under certain conditions (see,
e.g. [4], [14] and [16]).

Constraining some of the's in equation (1.1) to zero makes it a subset order model widis
is a study of eight automatic order determination criteria: BIC, S, SIC,®, CAT,, CAT;, and FPE4 in
subset order model selection. Etuk [9] has shown that for full onddeling AIC and CAT excel while
the rest underestimate the order. He has also demonstratdtethabiparative performance depends on
the method of estimation of tlg's in (1.1) Here, we shall use the least squares method.

We shall use simulated as well as real series. Forrtifieial series we shall study the effect of
sample size on the comparative performance. Interest shall also bermidetg if
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model distance from the non-stationarity boundary affects theforpgnce. We shall use the least-
square-method based subset selection algorithm of Haggan and Oyetunji [12].

2.0  Model selection
For the realizationX,, X,z*---X,, of the time series ¥} we use the subset algorithm of
Furnival [11] after specifying a maximum lag. We compare the effaies of the criteria defined by

FPEa(p) = (1+ %)(1—%)02, @ = 012, (Bhansali and Downham, [5])

AIC(p)=NIng? +2p, p= 012, (Akaike, [1])
)

2
99
2

p
BIC(p)=NIng?-(N - p)ln(l—ﬁj+ pInN + pln p‘l[ ij, p= 012 (Akaike, [2]
g

p

SIC(p) =NIng; +pInN, p= 012 (Schwarz, [19])

1 1 1
CAT(p)= N(z?j_?, p=012---
P (Parzen, [17])

1
=—{1+= | =0
( Nj P

1 1 1
CATs(p) :—(z?j ey p= 0L12--- (Tong, [21])
p

®(p)=In o;+N72pcininN,c>1, p= 012, (Hannan and Quinn, [13])

Su(p)=(N+2p)o?, p= 012 (Shibata, [20])

Where02p andozp are respectively the least squares and the maximuliméke estimates of the residual
variance. Each of them chooses the model corresponding to its minimum.

3.0  Simulation results

Four AR(2) series with ¢, a,) equal to (0.00, -0.78), (0.00, -0.15), (0.00, 0.89) and (0.00, 0.10)
are simulated twenty independent times. We shall refer to éiseseries I, Il, Il and IV respectively. The
white noise process for each simulation is a sequence of pseddoranumbers generated using the
RAN function of the FORTRAN 77 language. The sequence was made normally distriboitminimize
the transient effect of starting values we ignored ttst 100 values. We ug¢ = 50, 150 and 250, for
each model, giving a total of 60 series for each model. Wethateseries Il and IV are nearly white
noise being far from the non-stationary boundary. Series | amzhlthe other hand are close to the
boundary. Table 3.1 gives the frequencies of correct selection by theaaritédre models.

As evident from Table 3.1, BIC outperforms the rest followedSbyrhe performances of the
criteria do not depend on the sample size.

Table 3.1:Frequency out of 20 of correct picking of modeldagch criterion

Series Sample size| AIC| BIC| ® SIC | S CAT, | CAT; | FPE4

I 50 16 19 20 | 20 20 |5 17 20
150 13 20 20 | 20 19 |6 13 20
250 17 20 20 | 20 18 |5 17 19
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Series Sample size| AIC| BIC| @ SIC | S CAT, | CAT; | FPE4

Il 50 6 7 0 0 5 1 6 0
150 9 8 6 6 9 5 9 7
250 12 8 5 4 11 |8 12 9

1] 50 17 18 18 | 18 18 |3 17 18
150 14 19 18 | 19 17 |3 14 16
250 17 20 20 | 20 19 |5 17 20

v 50 3 3 0 0 1 3 3 0
150 6 6 0 1 5 4 6 3
250 6 3 0 0 5 3 6 3
Total 136 151 | 127 128 147 51 137 135

4.0 Real series results

We use a maximum lag of 15 here. Each model selected wastsdbjecdiagnostic checks
which include Box-Pierce [7] portmanteau statistic R test. fdrametric spectrum was compared with
the raw one for each of the models. Moreover the diagnostic aids: inverseralétion function (IACF)
and partial autocorrelation function (PACF) were used.
4.1. Series ABox and Jenkins, [6]) pp- 525

IACF and PACF recommend a\R(7) model (Etuk, [10])BIC, ®, SIC, SandFPE4 pick the
AR(3) model

X, —00381X,, -0[216X,_, —0[188X,_; = Etaz =0[D955 R =24[31 (4.1)
CAT, andCAT; choose th&R(2)
X, —00427X,_, —0[252X,_, = Etaz =0[1002R=100[D3 (4.2)
AIC chooses thAR(15) with significant lags 1, 2, 7, 14 and, of course, 15
X, —0[B88X,_, —0[220X,_, —0[74X,_, -00126X,_,,-00122X,_,. = é}UZ

=0[0934R=20015

Figure 4.1 shows the spectra of (4.1) and (4.2) superimposed on the noetgarapectrum.
That of (4.1) clearly agrees with the non-parametric one winéieof (4.2) does not as much. In support,
the R test is significant for (4.2) but not for the rest.

We then infer that (4.1) fits the data well. The model (4.3efoee over-fits it and (4.2) under-
fits it. Evidence here is therefore in favouBIC,®, SIC, S and FPE
4.2 Canadian Lynx numbers (1821 — 1934 ampbell and Walker, [8] pp. 430)

The logarithmic transformation was us&diC, @, AIC, SIC, S, FPErecommend

X, —1[094X, , +0B57X,_, + 027X, , —0[B24X,_,, + 0(B25X, ,, = £,0°

=0[2355R=19(28

which is shown adequate by both the spectrumRtebts (Etuk, [9]).CAT, and CAT; select a subset
AR(4) model with significant lags 1, 2 and 4, which is discrediteddil theR- and the spectrum tests.
We therefore infer tha€AT, andCAT; underestimate while the rest fare well.

4.3 Wolfer's sunspot series (1700 — 1958)aldmeier, [22])

FPE4, BIC,® andSICrecommend thAR(9)

X, —1[228X, , +0[B529X, , —0[57X,_, = £0° = 21632 R = 29[87 (4.4)
whoseR-value is not significant and whose spectrum agrees clostiythveit of the series (Etuk, 1987). It
is noteworthy that Morris [15] and Schaerf [18] each fitted a inedh lags 1, 2 and 9 significant as in
(4.4).AlIC selects lags 1, 2, 3, 4, 5 andCAT; selects lags 1, 2 and S;selects lags 1, 2, 3 and©AT,
selects lag zero meaning that it chooses the raw datefierence to any autoregressive model. Inference
here is therefore in favour 6PE4, BIC, ® andSIC.

(4.3)
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Figure 4.1 Some series A[ectra )indb)

Conclusion
On the overallBIC, FPE4 andS consistently perform best in subset modellidlfC, CAT, do not

perform well. CAT, and CAT; underestimateAIC fares better thailCAT,. SIC and ® also do well
especially for the real series. For subset modeling it may be recommendBILCiHERE4, S © or SICbe

used.
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