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Abstract 
 

This work is on computational result of integral quadratic objective 
functional with wave-diffusion effect, which is in the form: 
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where u(x,t) is the control and z(x,t) is the states of the system.  On the application of 
the Hamiltonian function we derived the states and controls which satisfy optimality 
condition. A suitable Fourier solution is applied to obtain the states and controls in the 
form of a series solution. Also, the states and controls in the form a series solution can 
also be obtained by use of EXTENDED CONJUGATED GRADIENT METHOD (ECGM) 
proposed by Ibiejugba [7] and Reju [8]. The work also consists of numerical solutions 
which are optimal. 
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1.0 Introduction 

An integral quadratic functional with wave-diffusion effect is being studied. We aim at 
determining the optimal states and controls of the integral quadratic objective functional with wave-
diffusion effect which is in the form  
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is the wave-diffusion equation part of (1.1). In (1.2), u(x,t) is called the source,  term that add heat to a 
unit bar at a rate u(x,t) per unit time per unit length. The objective functional depend on a multiplicity of 
variable called the controls. Controls which take values in “suitable” subspaces of the space of definition 
of the system under study are said to be admissible [1]. Here, “suitable” means well behaved spaces in 
En, the n-dimensional Euclidean space. For example, compact, covex sets are such “suitable” spaces.  

The integral quadratic functional 
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where i is a complex constant [see Awar [2] and Tejumola [3]].  
On the application of the Hamiltonian function to (1.1), we obtained the necessary condition for 

optimality which expresses the relationship between the states and controls of the wave-diffusion 
problem. We also apply a suitable Fourier solution to the optimal condition to obtained the states and 
controls in the form of a series solution. 
 Before we set out to establish the result of this paper, we state the following proposition.   
Proposition 1.1 (Krasnov [4]) 
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that, the parabolic surface z2(x,t) + u2(x,t) has the origin as the minimum point.  
 With the above conditions, we are now in a position to establish the main result of this paper. 
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2.0 Main result 
 Consider the wave-diffusion problem (1.1), in the form  

( ) ( ) ( )
t

txu

dt

txu

cx

txu

∂
∂+

∂
∂=

∂
∂ ,1,1,

2

2

22

2

 

as  

Min [ ] ( ) ( ) ]∫ ∫ +=
1

0

1

0

22 .,,, dxdttxztxuMinzuJ  subject to 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )1,0,,0,1,0

,,,, 1

xzxztztz

txutxztxztxz xxtt

===
+=+

   (2.1) 

0 ≤ x ≤1, 0 ≤ t ≤ 1.   
The Hamiltionian for (2.1) to that of Singh and Titli [5] is  
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Equation (2.4) gives    
( ) 0,2 =+ txuλ  or ( ) 0,2 =−= txuλ    (2.5) 

By virtue of (2.4) and (2.5), we have  
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Equation (2.7) is of physical significance under the conditions for optimality which expresses the 
relationship between the temperature, and the heat source at any point x of the unit conducting rod of our 
diffusion problem. We can treat (2.7) as a differential transform of any previously known solution of the 
diffusion equation. 
 On the application of a suitable Fourier transform there exist optimal states and controls of the 
system (2.1) which can be evaluated explicitly. 
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we have our new solution as   

( ) ( ) ( )∑∑
∞

−

∞

=

==
∂
∂

11
1

11

sinsin, ixtuixt
t

txZ ii ππα    (2.9) 

This implies that,  

( ) ( )

( ) ( )

( ) ( )

( ) ( ) 













=

−=

=

=

∑

∑

∑

∞

=

∞

=

∞

=

11

11

22

11
1

1

sin

sin,

sin,

ixtutz

ixtuitxz

ixtutxz

tut

ittttt

itxx

itt

it

π

ππ

π

α

                (2.10) 

From the constrained equation (2.1), we have that,  
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We now solve (2.13). However, since the sequence of equation (2.13) only differ by constant 
multiplicants, it suffices to solve just only one of the n-third order equations. [see Anthony and Jairo [6], 
Ibiejugba [7]].  By choosing the first equation we have  
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Equation (2.15) can be put in the alternative form, that is, the auxiliary equation for (2.15) as  
m3 + m2 + π2m – 1 = 0                  (2.16) 
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On solving (2.16) we find that the roots are 0.1002, - 0.5501 + 3.1108i and – 0.5501 – 3.1108i. If we take 
the norm of the complex conjugate roots, we find that in each case it is equal to 1.8030, which implies 
coincident root. Thus m3 + m2 + π2m – 1 = 0 has roots equal to 0.1002 and 1.8030 twice. By suppressing x 
we write the general equation of u(x,t) in the form  
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Solving equation (2.18) and (2.20) we have that, from (2.18),  
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Also we have that,  
( ) ( )txutxz it ,, = = m1 A exp (m1t) + m2 (B+ct) exp (m2t) 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) } ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )+






 −=




×




 −+


+×

−


=






 −










−
−−



×










−
−=







 −×










−
+













−
−



=

∑∑

∑

∑∑∑

∑∑∑

∑∑

∑∑∑

∑∑

∞

=

∞

=

∞

=

∞

=

∞

=

∞

=

∞

=

∞

=

∞

=

∞

=

∞

=

∞

=

∞

=

∞

=

∞

=

∞

=

tixuixutxz

tixu

ixutixuixu

ixutixuixu

tixuixu

ixutmixumixu

mm

m
tmixu

mm

m
ixum

I
i

I
i

I
i

I
it

I
i

I
i

I
i

I
i

I
it

I
i

I
it

I
i

I
i

I
it

I
It

I

1002.0expsin005884.0sin01061.0,

8030.1expsin0

31061.0sin00588.11002.0expsin00058.0sin0

3884.0sin01002.08030.1expsin01002.0sin0

1002.08030.1
8030.1

1002.0expsin01002.0sin0

1002.08030.1
1002.0

sin01002.0expsin0sin0

expsin0sin0

11

1

111

111

11

1
2

1
1

1

12

2
1

112

1

1
11

ππ

π

πππ

πππ

ππ

πππ

ππ

( ) ( ) ( )tixuixu
I

i
I

i 8030.1expsin01061.0sin005884.1
11








 − ∑∑
∞

=

∞

=

ππ                 (2.23) 

Here z(x,t) is the optimal state of temperature at any point x of the rod, while u(x,t) is the optimal 
control rate of flow of heat through the rod at any position . 
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 We now apply a computational approach which is similar to that of Reju[8]. By using the 
following parameters: ui(0) = 0.1, uit(0) = 0.1, i = 1, 2, …,N. In (2.22) and (2.23), we have the following 
results for the states and controls running the program in the Appendix for various x and t for the one 
dimensional wave-diffusion problem with N as presented in tables (2.1) and (2.2).  
 

Table 2.1: Optimal sssssssparabolic states and controls for the wave equation with diffusion effect 
 

 X T Z* ( X,T) U* (X,T) 
N = 1 : .1            .1 3.848228E-02 3.427516E-02 
N = 2 : .1            .1 7.319763E-02 6.519523E-02 
N = 1 : .1            .2 4.580888E-02 3.828762E-02 
N = 2 : .1            .2 8.713367E-02 7.282738E-02 
N = 1 ; .1            .3 5.458026E-02 4.306506E-02 
N = 2 : .1            .3 1.1038178 8.191462E-02 
N = 1 : .1            .4 6.508185E-02 4.875835E-02 
N = 2 :  .1            .4 .123793 9.274389E-02 
N = 1 : .1            .5 7.765546E-02 5.554814E-02 
N = 2 : .1            .5 .1477095 .1056588 
N = 1 : .1            .6 9.271046E-02 .0636508 
N = 2 : .1            .6 .1763458 .121071 
N = 1 : .1            .7 .1107371 7.332543E-02 
N = 2 ; .1            .7 .2106344 .1394733 
N = 1 : .1            .80000001 .1323224 8.488232E-02 
N = 2 : .1            .80000001 .2516921 .1614558 
N = 1 :  .1            .90000001 .1581695 9.869307E-02 
N = 2 : .1            .90000001 .3008563 .1877254 
N = 1 : .2 .1 7.319763E-02 6.519523E-02 
N = 2 : .2 .1 .1184363 .1054881 
N = 1 : .2 .2 8.713367E-02 7.282738E-02 
N = 2 ; .2 .2 .1409852 .1178372 
N = 1 : .2 .3 .1038178 8.191462E-02 
N = 2 : .2 .3 .1679808 .13256406 
N = 1 :  .2 .4 .123793 9.274389E-02 
N = 2 : .2 .4 .2003013 .1500628 
N = 1 :  .2 .5 .1477095 .1056588 
N = 2 : .2 .5 .2389989 .1709596 
N = 1 : .2 .6 .1763458 .121071 
N = 2 : .2 .6 .2853335 .195897 
N = 1 : .2 .7 .2106344 .1394733 
N = 2 ; .2 .7 .3408137 .2256725 
N = 1 : .2 .80000001 .2516921 1614558 
N = 2 : .2 .80000001 .4072465 .2612409 
N = 1 : .2 .90000001 .3008563 .1877254 
N = 2 ; .2 .90000001 .4867957 .303746 
N = 1 : .2 .1 .1007479 8.973353E-02 
N = 2 : .3 .1 ..1184363 .1054881 
N = 1 :  .3 .2 .1199292 ..1002383 
N = 2 : .3 .2 .1409852 .1178372 
N = 1 :  .3 .3 .142893 .1127458 
N = 2 : .3 .3 .1679808 .1325406 
N = 1 : .3 .4 .1703865 .127651 
N = 2 : .3 .4 .2003013 .1500628 
N = 1 : .3 .5 .2033046 .1454269 
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 X T Z* ( X,T) U* (X,T) 
N = 2 ; .3 .5 .2389989 .1709596 
N = 1 : .3 .6 .2427191 .6664 
N = 2 : .3 .6 .2853334 .195897 
N = 1 : .3 .7 .2899134 .1919685 
N = 2 : .3 .7 .3408136 .2256725 
N = 1 :  .3 .80000001 .3464245 .2222248 
N = 2 : .3 .80000001 .4072464 .2612409 
N = 1 :  .3 .90000001 .4140932 .2583818 
N = 2 : .3 .90000001 .4867957 .303746 
N = 1 : .4 .1 .1184363 .1054881 
N = 2 : .4 .1 7.319763E-02 6.519522E-02 
N = 1 :  .4 .2 .1409852 .1178372 
N = 2 : .4 .2 8.713365E-02 7.282737E-02 
N = 1 :  .4 .3 .1679808 .1325406 
N = 2 : .4 .3 .1038178 .0819146 
N = 1 : .4 .4 .2003013 .1500628 
N = 2 : .4 .4 .123793 9.274387E-92 
N = 1 : .4 .5 .2389989 .1709596 
N = 2 : .4 .5 .1477094 .1056588 
N = 1 :  .4 .6 .2853335 .195897 
N = 2 : .4 .6 .1763457 .121071 
N = 1 :  .4 .7 .3408137 .2256725 
N = 2 : .4 .7 .2106344 .1394732 
N = 1 :  .4 .80000001 .4072465 .2612409 
N = 2 : .4 .80000001 .2516921 ..1614557 
N = 1 :  .4 .90000001 .4867957 .303746 
N = 2 : .4 .90000001 .3008562 .1877254 
N = 1 : .5 .1 .1245313 .1109167 
N = 2 : .5 .1 -1.088687E-08 -9.69665E-09 

 
 Results summary 

z* = -1.088687E – 08, U* = -9.69665E –09, at N = 2, X* = .5, T* = .1 
 

Table 2.2: Optimal parabolic states and controls for the wave equation with diffusion effect 
 

 X T Z* (X,T) U* (X,T) 
N = 1 : .1            .1 3.848228E-02 3.427516E-02 
N = 2 : .1            .1 7.319763E-02 6.519523E-02 
N = 3 : .1            .2 .1007479 8.828762E-02 
N = 4 : .1            .2 .1184363 .1054881 
N = 5 ; .1            .2 .1245313 .1109167 
N = 1 : .1            .2 4.580888E-02 3.828762E-02 
N = 2 : .1            .2 6.508185E-02 4.875835E-02 
N = 3 :  .1            .2 .1199292 .1002383 
N = 4 : .1            .2 .1409852 .1178372 
N = 5 : .1            .2 .1482406 .1239013 
N = 1 : .1            .3 5.458026E-02 4.306506E-02 
N = 2 : .1            .3 .1038179 8.191462E-02 
N = 3 : .1            .3 .142893 .1127458 
N = 4 ; .1            .3 .1679808 .1325406 
N = 5 : .1            .3 .1766254 .1393615 
N = 1 : .1            .4 6.508185E-02 4.875835E-02 
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 X T Z* (X,T) U* (X,T) 
N = 1 : .1            .1 3.848228E-02 3.427516E-02 
N = 2 :  .1            .4 .123783 9.274389E-02 
N = 3 : .1            .4 .1703865 .127651 
N = 4 : .1 .4 .2003013 .1500628 
N = 5 : .1 .4 .2106093 .1577853 
N = 1 : .1 .5 7.765546E-02 5.554814E-02 
N = 2 ; .1 .5 .1477095 .1056588 
N = 3 : .1 .5 .2033046 .1454269 
N = 4 : .1 .5 .2389989 .1709596 
N = 5 :  .1 .5 .2512983 .1797575 
N = 1 : .1 .6 9.271046E-02 .0636508 
N = 2 :  .1 .6 .176358 .121071 
N = 3 : .1 .6 .2427191 .16664 
N = 4 : .1 .6 .2853335 .195897 
N = 5 : .1 .6 .3000173 .2059783 
N = 1 : .1 .7 .1107371 7.332543E-02 
N = 2 ; .1 .7 .2106344 .1394733 
N = 3 : .1 .7 .2899134 .191985 
N = 4 : .1 .7 .3408137 .2256725 
N = 5 : .1 .7 .3583527 .2372861 
N = 1 ; .1 .80000001 .1323224 8.488232E-02 
N = 2 : .1 .80000001 .2516921 .1614558 
N = 3 : .1 .80000001 .3464245 .2222248 
N = 4 :  .1 .80000001 .4072465 .2612409 
N = 5 : .1 .80000001 .4282043 .2746849 
N = 1 :  .1 .90000001 .1581695 9.869307E-02 
N = 2 : .1 .90000001 .3008563 .1877254 
N = 3 : .1 .90000001 .4140932 .2583818 
N = 4 : .1 .90000001 .4867957 .303746 
N = 5 : .1 .90000001 .5118473 .3193775 
N = 1 ; .2 .1 7.319763E-02 6.519523E-02 
N = 2 : .2 .1 .1184363 .1054881 
N = 3 : .2 .1 .1184363 .1054881 
N = 4 : .2 .1 7.319763E-02 6.519522E-02 
N = 5 : .2 .1 -1.67166E-08 -1.488904E-02 

 
Result summary 

Z* = -1.67166E –08, U* -1.488904E –08 at N = 5, X* = .2, T* = .1 
The computational simulations for the integral quadratic functional with wave-diffusion control 

problem exhibit the most unique characteristics phenomena. The following remarks are in order in the 
analysis of the simulated solutions. 
(i) A sudden change in the input u(x,t) gives rise to a corresponding sudden optimal change in the 
state z(x,t)  
(ii)  In the parabolic control problems, we observed that the optimal solution (states and controls) are 
exponential in time and periodic in space. 
(iii)  The exponential time contribution exhibits a damping influence on the periodic space 
perturbations of the optima. 
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3.0 Conclusion  

The result in (2.22) and (2.23) which is the states and controls of the system (2.1) is optimum. 
The computational results in table (2.1) and (2.2) buttress the truth for convergence  
as N increases. We can also use the EXTENDED CONJUGATED CRADIENT METHOD (ECGM) 
proposed by Reju [8] and others to obtain the solutions of (2.22) and (2.23) as required. 
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