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Abstract

The special transcendental character of the characteristic equations of the
retarded differential systems makes it difficult to analyze the system equation.
Researchers have used various acceptable mathematical techniques to address the
issue. In this paper, the convergent properties of an integral equation equivalent of a
retarded system are used to establish the existence and uniqueness of the solution of
retarded differential equations. A step-by-step approximating technique is employed in
formulating a numerical method of solving an initial value problem of the retarded
system and the solution is presented in the form of a finite series. The asymptotic
stability properties of the solution are investigated. Results obtained are comparable to
the general solution form of the ordinary differential equations
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1.0 Introduction

In an attempt to analyse real life problems, the concept tifemetical model or formulation of
problems are readily employed [4]. The mathematical modela oftesen are differential equations.
Differential equations merely abstract the reality of dymasyistems by disregarding certain physical
facts which seem to be of minor influence, such that in cometicahysical situations the differential
equation does not guarantee the true picture of reality [10].intreduction of functional differential
equations [1], [2], [3], [4], [6] has helped to address the lapsdseddifferential equations in modeling
dynamic systems.

Retarded equations are special class of functional diffafesquations with time lag functions
incorporated only in the state of the system, which accoutihéopast states as well as the present states
[1]. A general retarded functional differential equation is given as,

X(t) = f(t, x(t), x(t-nh),n=1, 23, (1.1)
where Xx(t) is the state of the system at titmex(t) is the derivative of the state function with respect to
timet, and x(t —nh) is the time lag function, with h > 0 defining the delay interval.

The challenges of analyzing system (1.1) include the establigtohthe theory on the existence
and uniqueness of the solution, finding an analytic solution, and analyzingythp-a
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totic stability properties of the solution [7]. Necessand sufficient conditions for the existence and
uniqueness of the solution of (1.1) are of immense importance, emgérch to investigate these
conditions are found in the works of [4], [5], [6], [7] and [13].

Hale [6] provides necessary and sufficient conditions for gleb#stence and exponential
estimates of the solution of non-linear retarded system

x(t) = L(t, x(t —h))+b(t), t >0

x(t)= ¢, tOft, —ht,].
This is extended to the linear retarded system (1.1) by Driver [4] and Falb®l{8]set back in analyzing
system (1.1) lies in its special transcendental charadteéhe characteristic equations that makes it
difficult to find an analytic solution. [1], [2] and [4] employ the cept of exponential estimate in
solving the characteristic equation of (1.1), while [1], [4] &dutilize approximating techniques in
achieving their results. Different acceptable techniduze® been employed to investigate the necessary
and sufficient conditions for asymptotic stability propertieshef solution of (1.1), see ([1], [3], [4].[6],
[8], [9] and [12]).

This paper explores the convergent properties of the integradtion equivalent of (1.1) to
establish the existence and uniqueness of solution of the sy&lem.a step-by-step approximating
technique is used in formulating finite series solution whosgmptotic stability properties are
investigated for each delay interval by utilizing local Lipschitzzandition.

1.2 Notations

E" is an n—dimensional Euclidean space for> 0, with ||[n] as the Euclidean vector norm.

(1.2)

B, ([t0 —h,t], E”) is a Banach space of continuous differentiable function[tg)ﬁh, t], where {

h :[t0 —h,t] - E" } andhis continuous@(s) is a continuous differentiable function with norm in

B, ([to ~h,t], E”) defined as|@(s)|= sup [¢(s)|, andx(s) = x(t -h), t > t, defines the trajectory
to—h<ss<tg

segment inB,, ([t0 - h,t], E“).

2.0 Problem statement
Consider a general initial value problem of system (1.1) of the form

x(t) = f(t, xt-h)),h>0
X(s) = @,,t, —h<s<t, }

where X(t) is derivative of the state function x(t) with respiectimet, and X(t — h)is a continuous time

lag function withh > 0 defining the delay interval. For a given initial conditig(s) = ¢,, t, —h< s<t,

system (2.1) admits a unique solution.
Theorem 2.1

Letx(t) andf be continuous 'Evalued function with domaii ={(x :[x(s) = o(9)] <
h, SD[t0 - nh,t] n 21)} such thatf :(to—nh,t) - D is a contraction irB,, ([to - h,t], E”) .

Then there exists a unique solution of (2.1).
Proof

(2.1)

The integral equation equivalent of system (2.1) is given as
t
Bra(®) = ¢, (to)+ [ f(s ¢,(9))ds (2:2)

AssumeX(t) = @, ,,(t) is a solution of (2.2) passing throudlzpo(s),to), ( ¢n+1(s),t) UB, ([tO -
h, t], E”)XEn ([t0 —) XE" theng,,(t) = f(t, ¢n(t—h)). Sincef is continuously differentiable on
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the close interva[tO —h,t], let there exists a positive real valme> 0 such thatf , gt-h)>m, for any
t, Oft, —h,t]. Suppose that 4t Ct, —ht], f(t,,@(t, —h)=¢,(s), wheret,~hss<t,,
it implies
8,(9)=f (t,.8(t, —h)>m. (2.3)

Since @,(s) is a solution on[tO —h,tl], then for everyt, > t; t, D[t0 —h,t], there exists a solution
6,(5)=f (t,,6(t, —h)), where t,—h<s<t,and @,(s)>@,(s). Therefore, fort, Oft, —h,t],
@.(s)=1(t, @, —h)) . Thus we have a sequence of nested solutﬁo¢§(s) } in the close interval
[tO - h,t]. Let f be a contraction irB,, ([t0 -h, t], E”)xE”. and for any real constant Qv < 1,

|f & gt —h))|smp|é(9) . t, —h<s<t (2.4)
holds. Thusf (t;, g(t—h)), f(t,, @t—h)),---, f(t,, #(t—h)) are closer for each>t, > t,.

Assume{¢n(s)} to be a bounded monotone increasing sequence of solution, for any positive

valueg > 0, there exists at least one positive inteégeP such that

[¢(s)|-£< ¢ (9=[p(9) (2.5)

Now, @, (S)<@,.,(S) for alln, hence for every n>1p (s) satisfies (2.5), and hence
|¢(s)|-£< .(s)<[e(s)|+ &
The norm||g(s)| = sup |¢(s)| defines the least upper bound aid lim @, (s)= @(s),t - h
to—hssst n-o

<s<t.  Also from (2.2),
lim 8,.(t) = lnigr;(qfn (t)+[ . f(s8.(9) )ds] =lim g, (t,) + [ lim( (s, 4,(s)ds)
=img, )+ [ [f(s mg,9)s =40 @9)

Therefore by (2.5) and (2.6), solution of system (2.1) converge t@{t)e where ¢(t) is a continuous
differentiable function orB,, ([t0 -h, t], E“).

Assuming@,.., (t) = ¢(t,) , +J't:_h f (S, ¢m(s))ds is another solution of (2.1) ({mo - h,t] such
that for any real valuk > 0 on[t0 - h,t]
[#0a® = 8@ =], 1(s. .5~ [ (s ¢, (s>)d% < ko[ max|V(9)] . 2.7)
where Vol=lt =, =, andV(5)] =, (9) - (5

By the contraction off in B, ([t0 - h,t], E“) x EN, kis the Lipschitz constant arids bounded with a
fixed point @(t) . Thus (2.5) is the unigue solution of (2.1).

3.0  Mathematical formulation
An analytic solution of (2.1) is not easily obtained unlike gsiealent ordinary differential
system. A numerical method based on the concept of stepfhwgspeoximation by varying the delay
interval is formulated and solution is presented in form of a finfiese
The procedure involved the approximation of solution of the sy$fte eachT;; i = 1, 2, 3,..n
delay subinterval as the delay h varies on a regular basis. Themsantihe preceding
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interval is use to approximate the solution on the immediate succertingal, with the time functiort)(
depending on the origin of each subinterval under consideration izingarthe time variants

(f(t,x(t—h))) of (2.0) with respect tx(t) results in a simple linear first order retarded equation
represented by the initial value problem

X(t)=ax({t-h), h>0
(3.1)
% (S) =@, t,—h<s<t,
where ‘a’ is a scalar an&(s) = ¢,, is the initial value att,—h<s<t,--- . System (3.1) admits a

unique solution or[tO - h,t). Consider (3.1) on;Bub-interval,
T: t,-hst<t,

t,<t<t,+h

N

T,: t,+hst<t,+2h
T, t,+2h<t<t,+3n
T: t,+(n-Dh<t<t,+nh,,

for h > 0, the solution is formulated using a step-by-step concept of ap@taimfor each delay
subinterval as follows. By step-by-step approximatommsidering (3.1) af; :t, —h<t

<t,, X(t) =a[ %()dt + ¢, = af gyt + ¢ =agt + ¢ (3.2)
At t =t,— h, x(t) = ¢,, and substituting farand x,(t) in (3.2), we obtained
X, (t) =@, +ag,(t—(t, —h)). (3.3)

ForT,;t, <t <t,+h,
X(t) =a[ x(t)dt +c, =a[ (g, + agy(t ~(t, ~h))dt +c,
2
ag + &y~ (=) + ¢, (3.4a)
At t=t,, x,(t)=¢, +ag,(t— (t, —h)), and substituting for t and(t) in (3.4a), we obtained,

t? -
Xz(t) = ¢o + a¢0(t _(to - h)) + a2¢o( 2
ForT; t, +h<t<t, +2h,

x(t) =af % (O)dt + ¢, = af (4, +ady(t ~(t, ~ ) +a’¢y(

b (t-t)(t, - ) (3.4b)

t*—t?

2

t? -
2

—(t—t,)(t, —h)))dt + c,.(3.5a)

ALt=t-hx, (=6 +ad, -t~ ) + &8 (Lo (- t)(t - )

substituting fort andx(t) in (3.5a) we obtained

X3(t) = ¢o + a¢0((t - (to + h))+ a2¢o(t2 _|t§ +(t - (to + h)to(to - h))]
, , , 2'2 (3.5b)
+aigyt “;f n”_ - “;ﬁ W _ (- (t, + )t — ).

ForT, t,+(n—-Dh<t<t,+nh,
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X,(0) =af X )dt +c,,

° j +(t = (t, — M)t (t, —h))dt +

= (0, +an (0=~

3/t _ )3 2 _ 2 A
+aj((a3¢{t (t=h)” - +h) —(t—(t0+h)to)(t0—h)D]dt t

3 2l

+af (an-l¢o(tn_l ‘(tO( r":frl‘)'!l)h)n_l . (t=(t, — (n-Dh)...t,(t, — h) Ddt +c,

t=t,—(n-Dh, x,0=%,).,
X, = ¢ +ady(t— (, —h»+a¢{t2 oo (to+h>t0(to—h»j

+ a%{“ SRV Gl 20 S S h)]+...

3 2
(" = (t, +(n-Dh)"* (36
+av ( o= —o=(t—(t, —(n-Dh) ...to(to—h)j
+an%(t” —(tor: nh)" N "t —(t, +rin—1)h)n_1 —oo=(t = (t, + nh)(t, — (N -Dh)...(t, _h)J

4.0  Stability analysis
Considering the resulting approximate solution of system (3.1pomTg i = 1, 2, 3,...n delay
subinterval with a corresponding initial condition as stated below,

T,: t,—h<t<t,andx,(t,—h)=g,.

Xl(t) = ¢0 + a¢o(t - (to - h))
T, ity st <ty +h, andXx(t,) =@, +ag,(t—(t, —h)),

% (1) = @, +agy(t - —h) + 612¢o(t2 b ()G -N) Ty, +h<st<t, +2h,

and Xz(to +h) = ¢o + a¢0(t (t —h)) +a ¢o

-(t ) (6% —h),
t2 —t2

S+ (t=(t )ty (t h))J

X(t) = ¢ +ag,((t - (t, + b)) +a’ ¢0(

e e e IR, S )

T;t,+(n-Dh<t<t,+nh,andx(t, + (Nn-1)h) = x (1),
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t? -t
2!
(t3 - (to + h)3 + (t2 B (to + 2h)2 _

3 2!

X = ¢0 + a¢o (t- (to —-h))+ az¢o( —(t- (to + h)to(to - h))]

+ as¢o( (t = (t; + )ty (t, - h))"'

+ an_l¢0((tn_1 ot . ——==(t=(t;, ~(n-Dh) .4, (& _h)j
(n-D!
The

g %(tn —(tOri b -t + r(in—l)h)”‘l = (t, + ), ~(N=Dh)..¢ _h)J

asymptotic stability properties will now be analyzed for anyngkain the initial condition
X(s) =@, t,-h<s<t.

Definition 4.1Han [8]
) The solution x(t) of system (3.1) is Lyapunov stable if for ang>0, there exists

5=5(t-h, £)>0 such that iflp(s)| < I then||x(t —nh,#(s))| <&, t, —h< s<t,.
(i) The solutionx(t) of (3.1) is asymptotically stable if it is Lyapunov stabled dhere exists a
5, = &,(t - h) satisfying|¢(s)| < &, such thax(t - nh,#(s))| - 0 as t— w.
(iii) The solutionx(t) is uniformly asymptotically stable if it is stable, and li@rmore there exists
J, > 0(independent ofh) such that if|(s)| < J,, then |x(t —nh,#(s))| - 0 ast - o.
Theorem 4.1

Assume f : B, x D - E" for D O E" is continuous, satisfy local Lipschitzian condition on

[tO + nh,t], n= 012..., and global Lipschitzian condition o[mO -h, w),and is compact ilD . The
resulted solutiorv((t -nh, ¢0(S)) of (3.1) is,

() Lyapunov stable if for any change in the initial conditieft) = ¢,(s), t, ~h<s<t,, the
solution X(t —nh, @,(s)) remained valid on the entiﬁt% -h, 00).

(ii) Asymptotically stable if limifx(t = nh, @(s))| = 0 for an infinite increment in timet)(

Proof
Since (3.1) is continuous on ea{:rt0 +nh,t] forn=0,1 2 ... and by the approximating

technique formulation, let there exist solutions,

x(t) = f(t-nh, g,(s)) andX(t) = f(t—nh, @,(5)), for t,—h<s<t,.  (4.1)
satisfying (3.1). If for any pre-determined constaat>0 there exists ad = J(t -h, 5), for
0<t-h<J<e,suchthafx(t) - X(t)| < J holds, it follows that,

[ft=h #5(9)- F(t-h Fo(9) <e. (4.2)
This implies thatx(t —nh, ¢0(S)) is valid or{t0 -h, 00), and is Lyapunov stable.

If J, is a constant, and<t-h<d, <& such thatd, =J,(t —h)>0, then (4.1) implies
x(t) = x(t)[ < 9. Also since (3.1) is locally Lipschitzian on [t,+nht], then
X; (t —-nh, ¢0(S)), i=1 2 3 ...n of (3.3), (3.4) and (3.6) are monotone functional solutions on the
bounded interva[t0 +(n-Dh, t, + nh] :
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By Weierstrass—Bolzano concept of boundeness in a close interval,

[ty +h, go(s)-%( 1, + . B(9))| = H {toxh ¢°(S))_2)_(( Lhal ¢°)(S))H,

[%,(t +2h, 5(9) - %ty + 20, By(9))] = H x(t, + h, ¢o(s));2x(to +h, ¢-O(S))H,

X(ty +h, #6(5) —X(t; + zﬁo(s))H,

[%:(t + i, #4(5)) = %,(t + nh, By (9)) = H >

holds. Therefore,

[x(t, +h, @4(5)) ~ X(t, + h, ()] < %[t + D, Bo(8)) ~ %[t + 1, B, ()|

+%(t + 20, B5(9) = X, (t, + 20, Bo(S))] + %, (ts + N, Bo(3)) = Xalt, + 1, B5(9))

:Hx(to +h, ¢0(S))2n Xt +h, @0 () H (4.3)

By the continuity of f on [t0 + nh,t], the solutionsx ( -h, ¢, (S)) and xn( -h, ¢ (S)) converge to

@(t) and @ (t) respectively. Thud forms a compact set b, and
lim|l20-2)
n- oo 2"

| )

Therefore the resulted solution of (3.1) is asymptotically stable.

=0. (4.4)

5.0 [llustration
Consider the retarded system of the form,
X(t) =1+ x(t -1

X M)=1 x,(t-9)=1and tO[1,c0) GD
By step-by-step approximatiox, (t) on1<t <2,

%, (t) :j L+ %, (t —D)dt +c, :jzdt +G (5.2)
Solving (5.2) at an initial state of, (1) =1,

X (t)=2t-1 =1-2[- (t-1)], (5.3a)
and x(t-)=1-2-(t-2)]. (5.3b)

Consideringx, (t) on 2<t <3,
X, (t) :j L+ x,(t —1))dt +c, :j @+2(t-2)+dt+c, =t? -2t +, (5.4)
Solving (5.4) at an initial state of (2) =1- 2[— (t —1)]
xz(t):t2—2t+3=1_2[ (t-1) - (t‘z) } (5.5a)
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and X, (t —1)=1—2{—(t -2)- (t —2|3)2}. (5.5b)

Considering(t) on3<st<4,

X(t) =] Q+x,-Ddt+c,=| (1+{(t—2)+

(t_?)2:|+l)dt +C3 :J-(tz _4t+7)dt+03 (56)

_ 2
Solving (5.6) at an initial state of, (3) =1— 2{— (t-1) Gl 2,2) } '

X () =%—2tz +71-9 =1—2{— -y-4 2 ¢ ;!3)3] (5.73)

and xs(t—l):1—2{—(t—2)— (t _;)2 _( _371)3}. (5.7b)

Therefore forx, () onn<t<n+1
X, (1) = [ L+ x,,(t-D)dt +c,

t-2?2 (t-3° (t-4)° _(t—n)”}

xn(t):1—2{—(t—1)—

2! 3 4 nl
_12)2 —_ N3 _\4 n
and X, (t —1)=1—2[— (-p-2 =9 -9 (n+D) } .
2! 3 4! nl
Indeed, the general solution of (5.1) is expressed as
x (t) =1-2exp(- (t—i)),1<i < n, (5.8a)
wherei measures the change in time laggnd
x (t—1) =1-2exp(- (t - (i +1))). (5.8b)

The result (5.8a,b) above is comparative to the iterativiaadefor an equivalent ordinary differential
equation of (5.1)

Also by Theorem 4.1, the solutiott) is asymptotically stable, ifx, (t) = X, (t)| < d such that
!im”xl(t) ~ X%,(t)| = 0. Using solutions (5.3a), (5.5a) and (5.7a) with the initial conditions, then

lim[X, (t) = X, (8)] = lim 2exp(-(t =) = 0

This implies that every solution of system 5.1 is asymptoticalylet

6.0  Conclusion

The theorem on the existence and uniqueness of solution of ddeged system is established
and proved using the continuity and Lipschitzian conditions. An approxiseéi@on of the system for
each n-subinterval and the asymptotic stability property isyam@l Results obtained are comparable to
general solution form of the ordinary differential system.
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