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Abstract

An extended discretized scheme is proposed to examine the convergence
profile of a quadratic control problem constrained by evolution equation with real
coefficients. With an unconstrained formulation of the problem via the penalty-
multiplier method, the discretization of the time interval and differential constraint is
carried out. An operator, to circumvent the cumbersome calculation inherent in some
earlier schemes, such as the function space algorithm, is established and proved. An
example is considered to test the effectiveness and superiority of this scheme as it
compares to other schemesin terms of convergence profile.
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1.0 Introduction

Many algorithms [2, 3, 4, 5, 6] have been developed to solve consftrguaelratic continuous
optimal control problems. Here, we are considering a new methaedrelzed Continuous Algorithm
(DCA) which is computationally more efficient. To numericaighieve this, the time interval and the
differential constraint are discretized via the Euler’s fdiamand finite difference method respectively.
An unconstrained formulation of the constrained problem was obtained th&ingpmbination of the
penalty and Multiplier methods [4, 5]. With this formulation, Bnbar form expression was obtained
which formed a strong footing for the construction of an operateedan [5] reviewed method on
function minimization by Fletcher and Reeves [2] and others [6,18F cbnstruction of this operator
circumvented the unusual cumbersomeness inherent in the functiom aparithm (FSA) [6] marred
with many integral evaluations over a given interval. To ¢hid, we are considering a generalized class
of quadratic control problems for our developed scheme.
1.1  Materials and method
1.1.1 Generalized Problem 1

T

MinJd (x,u,t), =J‘(px2 (t)+qu2(t))dt (1.1)

0

Subject to
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x(t) =ax(t)+bx(t-r)+cu(t), x(0)=x,, O0<t<T,

X(t) = h(t) ,t O[-r,0], @.2)

were,p, q, r are greater than zerg(t), u(t) are inR(the set of real numbera)y andc are constants not
necessarily positive, an&k = H[0,T] x L,°[-r,0] x L,[0, T], is the product of the Sobolev space
H[O, T] of absolutely continuous functiong*) such that bothx(e) and X(¢)are square integrable
over the interval [(0;] and the Hilbert spack,’[0, T] of equivalence classes of real-valued functions on

[0,T] with norm defined byix(®)] ., = ( j Ix(®)|° dt)?, x(t) O L,[0, T]

2.0 Discretization
By discretizing (1.1), (1.2), subdivide T, into n equal intervals tft.s] at meshpoints

Xy <X <X, <..<X,_, wheren-1is the number of partition points chosentaahily, thus havingrf +
1) partition points,withqj = j*4j, j = 0,1,2,...n, andAj = Ak is the fixed length of each subinterval for
= k. Byj*4j, itmeang multiplied byA,. By Euler's scheme or finite difference method

(k) =(x(k+1) - x(k)) /8,, k=0,1,2,3,..n-
% (t) = ax, (t ) +bx (& =) +cu (t) (2.1
We then have the generalized problem in discrefiaed as
> A (P70 0u ()
S;,;)Ch that
% () = (K () = X (6D, = ax, (8) +bx (& 1) +cu, (t,) (2.2)

3.0  Application of the penalty-multiplier method
Applying the penalty-multiplier method [2, 3, 5,]18 (2.2), we have

Min(X, U,,U,/] ) = i (Ak (pxz (tk ) + puk2 (tk ))+ :u[xk+1 (tk+1) - Xk (tk)

i=0
- Akaxk(tk) _Akbxk (tk - rk) _Akcuk (tk )]2
H(A(t)s Ko (tian) = % () — Ay ax, () —Abx () —Accu (t) (3.1

=S TRA AU A + KA £+X W) 4

X () Vi GV % G =) Y GM, + i G N, +X )% — 1) B,
+>§<2(tk _rk)q( +)§<(tk _rk)uk(tk)q< +/]k(tk))ﬂ<(tk)

_/]k (tk))& (tk) _/]k (tk))& (tk )Aka_/]k (tk))& (tk - I’k)b—/]k (tk)uk (tk )Ak(} (3.2)
where

Vi (te) = X1 (tn)s @ = u+2ub a+ Akzaz,u"' pA,, B =dh, + AkZCZ/L
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n =-2ppc, m =-2uhb, p, =-2udb+ Db,
O, =2uhc+ 20 %acu, v, =-2u- D8au, ¢ =puh’b’, q = 0, °bec

4.0 Construction of operatorV
We now formulate the bilinear form expression adljB] for equation (3.2)

(2 (t) V2, (1) :g{xkl(tk)xkz(tk)ak U () U (t) B + Yiea(te) vi ot 2

% (6 Uz () B + X2 () U () B + Wiea(B) X2 (8) Vie + Vit ) % ()
Vi () %o (b =DM+ Yio () Xt =M+ V(U DN + Y 8 U {6,
X () X2 (b = 1) P + %o (G Xea (& = 1) P + X (b — T )Xot — 1o +

X (e = UG () G+ X (b~ T)UG ) G+ Aa(t) Vi) + A L) Vi (L)

A () %2 (t) = Ao ()Xot ) = Aca(t) X At )ady = A Lt )% (b )ad,

X2 (te = M)A (t)AD =X, (b = 1) A AD = A (U (B ) A C

At (t)AC 7 (4.1)
Vii Vi, Vi Vi (% {t)
V,, V., V.. V u, (t
Vz,, (tk) _ V21 sz V23 V24 e AL
s Vo Vi Vg | b At)
Vo Vi Vi Vi \AAL)

\/llxkz(tk) +V12Jk Z(tk) +V1J\< Z(tk) +Vll{]k {tk)

—_ V21Xk2(tk) +V2£Jk Z(tk) +V2pk 2(tk) +V ZZ(lk gtk)

[ VirXea ) *+ Vol o6) +Vah £6) +V o £8) (4.2)
V41Xk2(tk) +V4£Jk Z(tk) +V4pk 2(tk) +V AZ(lk gtk)

where z, (t,) = (X (t,), u, (), K (& ). A ¢))
Setting X, (t) = (X (tar) =% (G)) /Ay in (4.1)

We have,

2 % ()X (6D, + U (60 () B + 1% (6) % o8B,
k=0

1% (6 )Xo () D + X () X (B A+ 4% (6 ) X, ()
X (U () O + X (t U (8 )y + X5 (B ) X ot ) Ay v,
X (6D X (e = 1 )M + X (8 ) X, (8 =1 )M,

X, () XA Xy (e = 1M, + X, (4 )Xo (8 =1 )M,

X () D U, (BN + X (G U ()N + X (8 ) A U 4t )N,
+Xk2 (tk)ukl(tk)nk + Xkl(tk))(l(Z(tk - rk) pk + Xk Z(tk))(k l(tk - rk) pk
X2 (tk Iy ) Xea (b = )G 4.3)
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Now, we shall state the theorem establishing tlezaiprV
Theorem 4.1
Let the initial guess of the solution by conjugatadient method be

Z (to) = (%(to) Ut Mt 9. At )

Then the control operatdfassociated witVz, , (t, ) is given by
V11 V12 Vl3 V14

V = V21 sz V23 V24
V31 V32 V33 V34
V41 V42 V43 V44

where the entries will be supplied in the proof.
Proof of Theorem 4.1

Solve for X, (t,) by setting u,,(t.) = h,(t) = A4,(t) =0, in (4.3)and using
remark () and (i) below,

(i) % (t=1) = x.(5) :{ h(s) =sO[-r,0]

X (s), sO[O0,T -r]

(i) whenh,(t,)=0, then x,(@ -r)=X,()
So (4.3) becomes

i (Xkl(tk )Xk2(tk )ak + /’IXkl(tk )Xk 2(tk )Ak2 + /'ka l(tk )Xk Z(tk )Ak

1% (6 )Xo (6D + 1% (5 X o(6) + X ot U (8 ) O,

¥ (6% AV + X (0 XAV + Xt X 8DV

X (6 X2 (B AV + X (8 %o (G = 1AM, + X (8) X (8 — 1) My

X () X (b = MAM, + X, (6 ) X, (b — 1 )m,

X (b U (B AN+ X, (U (BN + X1 (8 )X ot =) Pi

+Xk2(tk)xkl(tk - rk) P +C X (tk ) Xkl(tk - rk) + /]klxk Z(tk)Ak

—B@%, (t) A = AbX, 5(t)) (4.4
Having used remarks (i) and (ii) above, collectdtlerms to obtain

2 Ka(t) ot + p+ 2, +2m, + 2D, + G 1+ X, (G)IAY, + Dt + DM,
k=0

+Xk1(tk)[xk2(tk)(Aka + Ak,u + Ak 'Tk) + sz(tk)Akzlu] + ukl(tk)[ XkZAk n, Now,
X, (9 + N + g+ Ry (LM XLt +1) A+ X L +1)(M + P +¢)]

+/]k1(tk)[xk2 (tk)(_aAk - bAk) + sz(tk - I )Ak D (4.5)
rewrite (4.5) as,

D X (b Vg + Xy GOV + U GV 0+ B 6V 5+ A £V 4 (4.6

k=0

Vi (t) = X, (t)(-ad, —bA) + X ,(t, —1)A, (4.7
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where,

Vi (t) = MXe,(t + 1A, + X, + )M+ p +6) (4.82) -,
Vi (te) = XD +%,(9 + 0 +0) (4.80)
determineVyy(ty), set

Q, (t,) = (X, (t )l + p+2v, +2m +2p +6 ]+ X, (A, (v + 1+ m)] (4.9)
and  f,(6) = X (O)IA (M, +Y, + 1) + X (t) 1, (410

Now, Q,(t,) and f,(t,) are continuous functions on T0. V,(t,) is continuous and at least twice
differentiable on [0F]. HenceQ, (t,) —V,,(t) and f,(t.) —V,(t,) are continuous on [T}
X(.)OD,[o, T] such that x(0) = x(T) =0 and by [10]

[E%a(T QL) =VA(] + X% (R f(t) ~VLQ]} dt, © (4.11)

Hence, d%( f (t) _vll(tk )) =Q,(t) - Vi) (4.12) his is a
S0 f,(t) ~Via(t,) = Q(t) ~Vut,), 05 4, < T. oo
Let \711(tk) _Vll(tk) = fl(tk) -Q 1(t|<) = Q(tk) (4'13) diﬁe[iearll

equation that needs to be solved. So we impos®libeving initial conditions

V,;(0) = p, and V,,(0)=r,, (4.14) there p;
andr, are to be determined.

Let Q(S) = L(q(ty)) and Vi4(s) = L(Vii(ty) denote the Laplace Transform aft) and Vi (ty)
respectively. Taking the Laplace transform of (4, ¥& have

SZVll(S) ~PS— 1~ Viu(s) =Q(s) (4.15)
S, S r
Vii(s) = S?(_)1+ Sfl_ . Szl_ 1 (4.16)

We take the inverse Laplace Transform of (4.16) asitig convolution theorem for the first term to
obtain

Vii(t,) = [ a(s,) sinht, - s, )it + p, cosh Jr, sintt( ) (4.17)
But Q,(T)-V,,(T) =0, Q,(0)-V,,(0)= Oand Q, (0)= p, (4.18)
SV, (0) = p,
From (4.17)

T : . and (4.18),
Viy(T) = [a(s,)sinh(T = s, )+ p, coshT Jrr, sinfi( ) (1.2¢ we have

0 From (4.19)
, we have
r, = h(r){ j q(s)sinh(T -s,)ds, - p,coshT }+Q, T )} (4.20)

where Qy(T) = Viy(T). But, q(s,) = fl(g)—Ql(Sk) in (4.13). Substituting (4.13) into (4.20) and
integrating, we obtain
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Vi (t,) = ~sinh(T )f, (O)+ [ 1,6, Joosh -, ok,

‘le(%)Sinhﬁk -§ ), + p, coshi, ¥r, sint( ) (4.21)

Similarly following the same logic as from (4.2) (4.21), we can solve fang(ty) by settingx(ty) =
hio(t) = Me(t) = 0, in (4.2) to obtain

Vao () = Uo(t) B (4.22)
Vi, () = U, (t)d, (4.23)
V,, () = U, t)AC, (4.24)
f,(t) = U, (t )An, and Q,(t) =y, ()0, +n +q,) (4.25)

Vio(t) =Vii(t) andr, = r; except thaty(ty) replaced;(ty) andQy(ty) replaces?; (t) In equation (4.21).
Again solve forh(ty) by settingxo(t) = Ue(t) = Aw(td) = 0 in (4.2), implying that ,»(t) = 0.and
collecting like-terms, after some simplificatione Wwave,

Vaa(t) = R, (t)(t — 1) (4.26)
Via(te) = he,(t)C, (4.27)
Vis(t) = —bA,(t)C (4.28)
fs(tk) = h<2(tk - rk)mAk (4.29)
Q, () = h,(t —r)(p + M)+ X, (t)c, (4.30)

Vis(t) =Viu(t), ra=r,
Except thatfs(t,) replacesfi(ty) and Qa(t) replaces Qs(ty) in equation (4.21). Finally, we solve for
Ao () by settingX, (t,) = Uy, (t) = R, (t) =0 in (4.2) implying thatX,, (t,) =0

Following the same the logic as in equations (t4%.21), we have

Vau () = —CA, (6 )A, 4.31
Vi () = =bA, (6 ) A, 4.32
Vi (t) =0 4.33
f,(t) = A (LA, 4.34
Q,(t) = A, (t)(-A (a+b)) 4.35

V() =V,(t,), r,=r, except thatf,(t,) replaces f,(t,) and Q,(t,) replacesQ,(t,) in (4.21).
This completes the proof of theorem 4.1

A program is written using the conjugate gradiemthod (CGM) to execute and see how it
compares favourably with other schemes such afuttition space algorithm(FSA) , extended conjugate
gradient method (ECGM), imbedding extended conpigaadient method (MECGM), used to solve the
same control problem. The result is shown in tHviong table with the penalty parameter fixed per
cycle and the multiplier parameter varied for eviegyation within the cycle

5.0 Data and analysis
Example 5.1
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Minj(x2 (t) + u?(t))dt

such that
Her

A, =.1is the stepsizey is the penalty constank,is the multiplier, and ris the delay term.
Table 5.1 shows the numerical solutions of othgorhms compared to DCA

Table 5.1 Numerical solutions of other algorithms

Penalty/multiplier | Algorithm |Number | Objective funct. | Constrained | Augmented
parameters of Satisfaction | Lagrangian
iterations

1 2 3 4 5 6

pu=.275)=-10.15 DCA 2 1.1164 32..1949 11.9109

M=20,A=.1455 FSA 87 1.09513 8.39*10° 1.2629
ECGM 4 1.10993 4.8034*10" 1.119540
MECGM | 4 1.11309 8.6749*10" 1.09035

p =.30,A=-.3683 | DCA 2 1.1153 19.9758 15.8079

M =40,1=.2914 FSA 63 1.09973 5.6424*10° 1.3254
ECGM 4 1.11227 3.0816*10" 1.1246
MECGM | 3 1.29763 6.8655*10° 0.75898

M =1, A=-.295 DCA 2 1.1127 5.8934 39.2521

K =60, A=.4507 FSA 63 1.0997 5.6421*10" 1.3254
ECGM 4 1.1130 2.6634*10" 1.1290
MECGM |3 1.1134 1.3200*10° 1.7528

6.0 Conclusion

For each cycle in the table, the performance ofi @gorithm is seen as it relates to convergence
profile of the given hypothetical problem with te@me test data. In Row 1, for instance, DCA congpare
much more favourably with the Imbedding ExtendedjGgate Gradient Method(MECGM) than to
either Function Space Algorithm(FSA) or Extend&dnjugate Gradient Method(ECGM) judging from
its higher objective value in the second and thyrcles, but trails behind Imbedding Extended Cgaia
Gradient Method(MECGM) for every cycle except tioe first cycle.

It is interesting to note that one needs as marwasty (20) times the number of iterations in the
Function Space Algorithm (FSA)(87) or (63) to ohtapproximately the same numerical values as those
obtained via the Discretized Continuous Algorithi8®) or Imbedding Extended Conjugate Gradient
Method(MECGGM)

Finally, it can be seen that DCA is second to MEC@®Merms of convergence profile, though
they compare much more favourably in terms of rnemds iterations, such as 2 and 3 for DCA and
MECGM respectively. So, it can be concluded th@®AlDhas revealed its superiority over either FSA or
ECGM inherently and computationally cumbersomeldis iteration number, if explored will mean less
computational time, small memory utilization andsdecostly. Therefore, DCA is a new numerical
algorithm via the imbedding of both penalty and tiplier methods for obtaining approximate solutions
to quadratic optimizatioproblems
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