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Abstract

This paper examines thermally radiating fluid. Integral solutions are
presented which are evaluated numerically. A new and simpler approach to the
approximate form of the integral solutions is presented that gives rise to approximate
analytical solutions. It is shown that the resultsreveal the characteristics of the problem
and compare favourably well.
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1.0 Introduction

The study of thermal radiation, commonly known as radiation heasfémra occurs in many
engineering applications [1]. A distinguishing feature of réalialheat transfer is that it is associated with
the radiation heat flux, which is proportional to the differencaeadiVidual absolute temperatures of the
bodies each raised to the fourth power. Consequently, the importaramiation becomes intensified at
high temperatures. For example, high temperature phenomena epolwgh radiation sources are
common in solar physics-particularly in astrophysical stud¥sifi combustion applications such as
fires, furnaces, IC engines, in nuclear reactions such as isutheor in nuclear explosions [3], in
compressors in ships and in gas flares from petrochemical indd$t For air, the contribution of
radiation becomes significant when the wall temperature tiseimrange600(—1C,00CK. This situation
is encountered for re-entry space vehicles. Radiation effeeilso important for nitrogen-gas-soot
mixtures includingH,O, CO,, CO, CH,, NO, S0O,, N,O, NH, and C,H, in the temperature range
30C-300(K [5].

A primary difficulty in modelling radiation heat transferoptem is the involvement of a
nonlinear integro-differential equation of the radiation haat fh the governing energy equation. This
aspect of radiation heat transfer is unique and requires aalspgemputational treatment. At best
numerical computations are formulated to tackle such an equation, the other hand, fairly realistic
assumptions are made in order to proffer approximate andlgtitdions. The objective of the present
paper is the consideration of integral solutions, which are in @uatuated numerically. A new and
simpler approach to the approximate form of the integral solutionprésented that give rise to
approximate analytical solutions. The present considerationsiatioadheat transfer studies have great
import, thereby widening the applicability of the results.
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Nomenclature
O- fluid density
V - kinematic viscosity
T - temperature of fluid
T, - free stream temperature

Y - transverse co-ordinate
g - radiation flux

K - thermal conductivity

O - Stefan-Boltzmann constant

a - absorption coefficient or penetration depth
T, - wall temperature PI - Prandtl number

© - dimensionless temperature N - radiation parameter

C - specific heat at constant pressure

In Section 2, the mathematical formulations of the problem andahalimensional form of the
governing equations are established. Solutions to these equagarstaned in Section 3. The results of
the previous sections are discussed in Section 4. In Section Ealgemeluding remarks of the results of
the previous sections are given.

2.0  Mathematical formulations

The physical problem consists of an optically thin incompresHilelenally radiating fluid near a
vertical infinite plate. In some respects, the physics diiteon does not require details of the flow field
at the radiating surface, and that we need only be conceitiethe surface itself, as well as any other
surfaces that are radiating to the surface of interesT[@ steady state governing energy equation with
constant viscosityy and thermal conductivity that incorporates radiation heat flux and the general
radiation heat flux equation with constant absorption or penetratidh dejp one space coordinate as

in Cheng [7] are, respectively given as follows/:idz—-g —iﬂ =0,
M| ey
(2.1)
dz—?—San—lwaTe’ﬂ:O. (2.2)
& &

From equation (2.2), four different limits may be considered depeidirige absorption coefficient.
Thus, we definea <<1 as optically thin anda >>1 as optically thick. The limiting case =0

represents a non-participating medium (transparent) where thatioadflux is constan ﬂ=O :

whereasa = o corresponds to an opaque medium in whichO.

An example for condition of an optically thin environment is foundhim intergalactic layers
where the plasma gas is assumed to be of low density [6]. In this case equa}ibe¢omes

% =4a0(T*-T2). (2.3)
Furthermore, when it is assumed that the differences withifiuideare sufficiently small, thef *can be
expressed as a linear function of temperature in Taylor sabiest T_neglecting higher order terms.

Thus, T* O4T°T-3T% (2.4)

Equation (2.3) is now written as % =16a0T (T-T,) (2.5)

This is known as the linear differential approximation of Cogley-\Mitig8illes equilibrium model [8] of
the radiation flux.

In general the optically thin boundary layer is a physicablistic model, however, it is worth
mentioning that an optically thick model may be used if the thelawal has become very thick or the
medium is highly absorbing. This is otherwise known as Rosselamdxapption. Therefore, it follows
from equation (2.2) that

M __40 9T (2.6)
&  3a &’
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For the purpose of this study, we shall only consider the dytitéh condition. The application
of equations (2.3) and (2.5) to equation (2.1) gives respectively

Ll 4O—CY(T“ -T2)=0 @2.7)

P po
and KIT_16 T3T-T.)=0. 2.8)

v OV e
The associated boundary conditions are givenby T=T, aty=0, (2.9
and T=T,6 asy — oo. (2.10)
In order to facilitate the analysis, it is now convenient toothice the following non-dimensional

2
quantities: Yzly,®=l,6W=L,N=4JaL T3, Pr= pVC
L T, T, pwvc K

where L is a characteristic length of the plate. The governing equaonsand (2.8) are now written in
non-dimensional form as

VZ4C)

W—Prl\l(@“—l):o, (2.11)

Z;e -4PrN(©-1) (2.12)
The boundary conditions (2.9) — (2.10) are written as

0=0, atY=0, (2.13)

©=1las¥Y - » (2.14)

Here the parameters entering the problem [reradiation parameter anBr, Prandtl number. The
mathematical formulations of the problem are now complete.

3.0  Method of solution
Here solutions are advanced for equations (2.11 — 2.12) with thef #e equations (2.13) —
(2.14). Multiplying both sides of equation (2.11) Ii(oG/OY) and integrating with the aid of the

boundary conditions, the following integral solution [2, 9] is obtained

1/2
Y:( S j for_9¢ (3.1)

2PN/ “e \[75-5ri4 '

A similar solution is hereby deduced to the linear equation (2.12) as
1 J'ow d¢

20PN “° 72 -27+1
The results (3.1) and (3.2) are physically meaningful for nunie@ntagrations. An exact solution to
equation (2.12) is hereby deduced as follows:

o=(o, —1)exp(—2w/PrNY)+ 1. (3.3)

It is inferred from the exact solution (3.3) that in the presesf an intense radiation (i. & — ),
© - 1. This is a limiting value, where all other values ®f due toN <o asymptotically approach.
Figure 3.1 clearly depicts this situation.

The main results of the investigation are herein considered. Fooam®witz and Stegun [10], if
b << a, then the approximate value

(3.2)

(a+ b)k =a“+ka“"b (3.4)

holds. It is seen from equation (3.1) thebd + 4 << {° provided { =1. Therefore, the approximate
relation
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-1/2 1 2 5
(ZS_SZ+4) :Zs/z_zls/z-l_zzla/z
is obtained according to equation (3.4). Consequently, an implicit analaicgion in® given by

_ 1 ( 5 j” _-132+1950,, +2860° —132+1950 + 2860°
~ 429\2PIN @2 o2
is derived from the result (3.1).
Similarly, for ¢ =1, it is inferred from equation (3.2) thal2{ +1<< ¢?. Therefore, the relation
2 -2 11 1
(Z 2(+1) e + 7 (3.7)
is another valid approximation according to equation (3.4). Inctsg, the implicit analytical solution
can be written as

)
1 1 1 1 1
Y=——| [In(®,)+ -—-In(®) + -— 3.8

(ZPrNj [ (©w) 402 0O © 407 @j (38)

The new approximate analytical solutions (3.7) and (3.8) are useglit@ate respectively the integral
solutions (3.1) and (3.2) using numerical integrations.

(3.5)

(3.6)

4.0  Discussion of results

The problem of thermally radiating and optically thin incompi#ediuid past a vertical infinite
plate has been solved analytically and numerically. Firstly, integi@i@ans are obtained for the resulting
nonlinear and linear steady-state energy equations. Secondly, apgge®nalytical solutions (3.7) and
(3.8) are used to validate the integral solutions (3.1) and (3.2)hwainé evaluated using Simpson’s rule
with a double precision arithmetic (40 digits is used im tbmputations wittMAPLE package in a
Macintosh Pentium 4 Machine). Tables 5.1 and 5.2 display the computations and typicetgravalnes
used for the computations are indicated. In particular, as thetPraumber Pr is a measure of the
relative importance of the viscosity and thermal diffusitythe fluid, it is set equal to a fixed value of
0.71 throughout the investigations, which physically corresponds to an astrapbysig (air) at 2¢C.

Table 51: Comparison of numerical and approximate valoegfjuations (3.1) and
(3.6) at variations of radiation parameter with#0.71 and_,, = 2.4

N=0.2 N=0.5 N=1.0
Y Num. | Approx. | R. Error | Num. | Approx. | R. Error Num. | Approx. | R. Error
0.0 | 2.4000 | 2.4000 | 0.0000 2.4000 | 2.4000 0.0000 2.4000 | 2.4000 0.1149
0.2 | 2.0709 | 2.0690 0.0019 1.9300| 1.9265 0.0035 1.8007 | 0.0000 0.9298
0.4 | 1.8442 | 1.8395 0.0047 1.6563| 1.6468 0.0095 1.5050| 1.7951 0.1476
0.6 | 1.6790 | 1.6702 0.0088 1.4793| 1.4606 0.0187 1.3340| 0.0056 0.8720
0.8 | 1.5539 | 1.5398 0.0141 1.3577| 1.3265 0.0312 1.2269| 1.4880 0.1835
1.0 | 1.4566 | 1.4359 | 0.0207 1.2708 | 1.2244 0.0466 1.1567 | 0.0170 0.8162
1.2 | 1.3793 | 1.3509 | 0.0284 1.2071| 1.1433 0.0638 1.1096 | 1.2993 0.2243
14 | 13172 | 1.2798 0.0374 1.1596 | 1.0764 0.0834 1.0774| 0.0347 0.7433
1.6 | 1.2665 | 1.2191 0.0474 1.1237| 1.0196 0.1041 1.0555| 1.1692 0.2871
1.8 | 1.2248 | 1.1665 0.0583 1.0964| 0.9700 0.1264 1.0405| 0.0577 0.7088
2.0 | 1.1902 | 1.1202 0.0700 1.0756| 0.9255 0.1501 1.0304| 1.0721 0.3167
2.2 | 1.1614 | 1.0790 0.0834 1.0596| 0.8845 0.1751 1.0235| 0.0846 0.6962
2.4 |1.1373 | 1.0419 0.0954 1.0475] 0.8451 0.2024 1.0187| 0.9947 0.3225
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Figure 5.1: Temperature profiles (exact solution, equeft3)) as a function of
Y for variations in the radiation parameter wPr = 0.7 ancJ., = 2.4

Table 52: Comparison of exact, numerical and approximatees for equations (3.3), (3.2) and (3.8) at Vi of radiation
parameter with Pr = 0.7 and, = 2.4.

N=0.2 N=0.5
Y | Exact | Num. | Approx. | R.Error | Exact | Num. | Approx. | R.Error

0.0 | 2.4000| 2.4000 | 2.4000 0.0000 | 2.4000| 2.4000| 2.4000 0.0000
0.2 | 2.2041| 2.2041 | 2.2164 0.0123 | 2.1031| 2.1031| 3.0615 0.9584
0.4 | 2.0356| 2.0356 | 0.1833 1.8523 | 1.8692| 1.8692| 2.6860 0.8168
0.6 | 1.8907| 1.8907 | 0.1857 1.7050 | 1.6849| 1.6849| 2.3637 0.6788
0.8 | 1.7661| 1.7661 | 0.1882 15779 | 1.5396| 1.5396| 2.0860 0.5464
1.0 | 1.6589| 1.6589 | 0.1908 1.4681 | 1.4252| 1.4252| 0.1865 1.2387
1.2 | 1.5667| 1.5667 | 0.1936 1.3731 | 1.3350| 1.3350| 0.1906 1.1444
1.4 | 1.4874| 1.4874 | 0.1966 1.6774 | 1.2640| 1.2640| 0.1951 1.0689
16| 1.4192| 1.4192 | 0.1997 1.2195 | 1.2080| 1.2080| 0.2000 1.0080
1.8 | 1.3506| 1.3506 | 0.2031 1.1475 | 1.1639| 1.1639| 0.2055 0.9584
2.0 1.3101| 1.3101 | 0.2067 1.1034 | 1.1291| 1.1291| 0.2117 0.9174
2.2 | 1.2667| 1.2667 | 0.2106 1.0561 | 1.1018| 1.1018| 0.9253 0.1765
2.4 ] 1.2294| 1.2294 | 0.9823 0.2471 | 1.0802| 1.0802| 0.8263 0.2539

Table 52: Comparison of exact, numerical and approximataes for equations (3.3),
(3.2) and (3.8) at variations of radiation paramat¢h Pr = 0.7 and.,, = 2.4. (continued)

N=1.0

Y Exact | Num. | Approx | R.

. Error
0.0 | 2.4000| 2.4000| 2.4000 | 0.0000
0.2 | 1.9994| 1.9994| 2.0120 | 0.0126
0.4 | 1.7135| 1.7135| 0.1894 | 1.5241
0.6 | 1.5093| 1.5093| 0.1957 | 1.3136
0.8 | 1.3636| 1.3636| 0.2029 | 1.1607
1.0 | 1.2596| 1.2596| 0.2114 | 1.0482
1.2 | 1.1853| 1.1853| 0.8881 | 0.2972
1.4 | 1.1323| 1.1323| 0.7555 | 0.3768
1.6 | 1.0944| 1.0944| 0.6372 | 0.4572
1.8 | 1.0874| 1.0874| 0.5247 | 0.5627
2.0 | 1.0481| 1.0481| 0.3646 | 0.6835
2.2 | 1.0344| 1.0344| 0.3329 | 0.7015
2.4 | 1.0245| 1.0245| 0.3055 | 0.7190
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From the exact result (3.3), it is observed that increasingatfiation parameter decreases the
temperature exponentially (see Figure 5.1). A salient feasuthe presence of an asymptocity. The
curves approach the abscissa asymptotically implying@hatl is a limiting case. This is the value due
to an intense radiation (i. & — o).

The results shown in Table 5.1 compare the numerical evaluati@yuation (3.1) and the
approximate analytical solution (3.6) with different valueshefiadiation parameted for 0<Y <2.4.

It is observed that the approximate analytical solution tively consistent in accordance with the
numerical integration as the relative errors (i. e. R. Error) rede&urthermore, it is seen that the relative
errors increase with an increasing radiation paramet¥r iasreases. It is observed tHat — 1 for large
values of N from the numerical calculations. For example, putbhg= 2000, the value of
[1—1.000121055650152228005933309826897266

675 (40 digits) for all values <Y <2.4. Consequently® =1 is a limiting value adN - oo. This is
observed from the exact result (see Figure 1).

Table 5.2 compare the results of exact, numerical and approximate values iohaq3aB), (3.2)
and (3.8) at different values df. It is seen that the numerical integration preservegxthet structure,
and compares favourably well with the approximate analytical solution. Oage #gs observed that for
large values diN,© - 1. Specifically, puttingN =200C in the numerical integration of equation (3.2)

gives © - 1.000121056501522280593330 982689726675 (40 digits) for all values of
0<Y <24. This implies that the two integral solutions (3.1) and (82)® converges td, which is
the value adN - .

From the numerical integrations (3.1) (see Table 5.1) and(&e8)Table 5.2), it is observed that
the approximate analytical solution (3.6) due to the approximatgarel(3.5) gives a better result to the
equation (2.11) than the equation (2.12) due to the linear approxiroétio& nonlinear term of the fluid
temperature in equation (2.3). In any case, the solution due tmelaeization is a good tool for testing
and validating numerical schemes of the equation (2.11).

5.0 Conclusion

The problem of thermally radiating and optically thin incompidediuid past a vertical infinite
plate has been examined. Integral, analytical and numericdiossluare presented. The effect of
radiation transfer has been investigated. It is observed that iacnei@sliation reduces the temperature.

It is primarily observed that the values ®f - 1 for large values of the radiation parameter. This
limiting value of © suggests a boundary layer character of the steady-state oéttire temperature
field. It is evident that the approximate analytical sohgioeveal the characteristics of the problem and
compare favourably well with the numerical integrations.
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