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Abstract 

 
This paper examines thermally radiating fluid. Integral solutions are 

presented which are evaluated numerically. A new and simpler approach to the 
approximate form of the integral solutions is presented that gives rise to approximate 
analytical solutions. It is shown that the results reveal the characteristics of the problem 
and compare favourably well. 
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1.0  Introduction 

The study of thermal radiation, commonly known as radiation heat transfer, occurs in many 
engineering applications [1]. A distinguishing feature of radiation heat transfer is that it is associated with 
the radiation heat flux, which is proportional to the differences of individual absolute temperatures of the 
bodies each raised to the fourth power. Consequently, the importance of radiation becomes intensified at 
high temperatures. For example, high temperature phenomena or high-power radiation sources are 
common in solar physics-particularly in astrophysical studies [2], in combustion applications such as 
fires, furnaces, IC engines, in nuclear reactions such as in the sun or in nuclear explosions [3], in 
compressors in ships and in gas flares from petrochemical industry [4]. For air, the contribution of 
radiation becomes significant when the wall temperature is in the range 6000−10,000K . This situation 
is encountered for re-entry space vehicles. Radiation effect is also important for nitrogen-gas-soot 
mixtures including H2O, CO2, CO, CH4 , NO, SO2, N2O , NH1 and C2H2 in the temperature range 
300− 3000K  [5]. 

A primary difficulty in modelling radiation heat transfer problem is the involvement of a 
nonlinear integro-differential equation of the radiation heat flux in the governing energy equation. This 
aspect of radiation heat transfer is unique and requires a special computational treatment. At best 
numerical computations are formulated to tackle such an equation, or on the other hand, fairly realistic 
assumptions are made in order to proffer approximate analytical solutions. The objective of the present 
paper is the consideration of integral solutions, which are in turn evaluated numerically. A new and 
simpler approach to the approximate form of the integral solutions is presented that give rise to 
approximate analytical solutions. The present considerations in radiation heat transfer studies have great 
import, thereby widening the applicability of the results. 

 
 
e-mail: p.mebine@yahoo.com;  
Telephone: (+234) 0805 3329 308 



Journal of the Nigerian Association of Mathematical Physics Volume 14 (May, 2009), 335 - 340 
Thermally radiating fluid: Approximations,   P. Meb ine,  J of NAMP 

Nomenclature 
ρ - fluid density 
ν  - kinematic viscosity 
T  - temperature of fluid 
T∞ - free stream temperature 

Tw  - wall temperature 

Θ - dimensionless temperature 
c  - specific heat at constant pressure 
In Section 2, the mathematical formulations of the problem and the non-dimensional form of the 

governing equations are established. Solutions to these equations are obtained in Section 3. The results of 
the previous sections are discussed in Section 4. In Section 5, general concluding remarks of the results of 
the previous sections are given. 
 
2.0 Mathematical formulations 

The physical problem consists of an optically thin incompressible thermally radiating fluid near a 
vertical infinite plate. In some respects, the physics of radiation does not require details of the flow field 
at the radiating surface, and that we need only be concerned with the surface itself, as well as any other 
surfaces that are radiating to the surface of interest [6]. The steady state governing energy equation with 
constant viscosity ν  and thermal conductivity κ  that incorporates radiation heat flux and the general 
radiation heat flux equation with constant absorption or penetration depth α  in one space coordinate y  as 

in Cheng [7] are, respectively given as follows:  
κ
ρc

∂2T

∂y2 − 1

ρc

∂q

∂y
= 0,     

 (2.1) 

 
∂2q

∂y2 − 3α 2q −16σαT 3 ∂T

∂y
= 0.    (2.2) 

From equation (2.2), four different limits may be considered depending on the absorption coefficient α . 
Thus, we define α <<1 as optically thin and α >>1 as optically thick. The limiting case α = 0 

represents a non-participating medium (transparent) where the radiation flux is constant 
∂q

∂y
= 0

 

 
 

 

 
 , 

whereas α = ∞ corresponds to an opaque medium in which q = 0. 
An example for condition of an optically thin environment is found in the intergalactic layers 

where the plasma gas is assumed to be of low density [6]. In this case equation (2.2) becomes  

 
∂q

∂y
= 4ασ T 4 − T∞

4( ).     (2.3) 

Furthermore, when it is assumed that the differences within the fluid are sufficiently small, then T 4can be 
expressed as a linear function of temperature in Taylor series about T∞ neglecting higher order terms. 

Thus,  T 4 ≅ 4T∞
3T − 3T∞

4.    (2.4) 

Equation (2.3) is now written as   
∂q

∂y
=16ασT∞

3 T − T∞( )    (2.5) 

This is known as the linear differential approximation of Cogley-Vincenti-Gilles equilibrium model [8] of 
the radiation flux. 

In general the optically thin boundary layer is a physically realistic model, however, it is worth 
mentioning that an optically thick model may be used if the thermal layer has become very thick or the 
medium is highly absorbing. This is otherwise known as Rosseland approximation. Therefore, it follows 
from equation (2.2) that  

∂q

∂y
= − 4σ

3α
∂ 2T 4

∂y 2
.     (2.6) 

y  - transverse co-ordinate 
q - radiation flux 
κ  - thermal conductivity 
σ  - Stefan-Boltzmann constant 
α  - absorption coefficient or penetration depth 
Pr - Prandtl number 
N  - radiation parameter 
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For the purpose of this study, we shall only consider the optically thin condition. The application 
of equations (2.3) and (2.5) to equation (2.1) gives respectively 

κ
ρc

∂2T

∂y2 − 4σα
ρc

T 4 − T∞
4( )= 0     (2.7) 

and   
κ
ρc

∂2T

∂y2 − 16

ρc
T∞

3 T − T∞( )= 0.     (2.8) 

The associated boundary conditions are given by  T = Tw  at y = 0,   (2.9) 
and    T = T∞  as y → ∞.                 (2.10) 
In order to facilitate the analysis, it is now convenient to introduce the following non-dimensional 

quantities: Y = 1
L

y, Θ = T

T∞

, Θw = Tw

T∞

, N = 4σαL2

ρνc
T∞

3, Pr= ρνc

κ
, 

where L  is a characteristic length of the plate. The governing equations (2.7) and (2.8) are now written in 
non-dimensional form as 

∂2Θ
∂Y 2

− PrN Θ4 −1( )= 0,                 (2.11) 

∂2Θ
∂Y 2

− 4PrN Θ −1( )                 (2.12) 

The boundary conditions (2.9) – (2.10) are written as 
Θ = Θw at Y = 0,                 (2.13) 
Θ =1 as Y → ∞                  (2.14) 

Here the parameters entering the problem are N , radiation parameter and Pr, Prandtl number. The 
mathematical formulations of the problem are now complete. 
 
3.0 Method of solution 

Here solutions are advanced for equations (2.11 – 2.12) with the aid of the equations (2.13) – 
(2.14). Multiplying both sides of equation (2.11) by 2 ∂Θ ΘY( ) and integrating with the aid of the 
boundary conditions, the following integral solution [2, 9] is obtained 

Y = 5

2PrN

 
 
 

 
 
 

1/ 2
dς

ζ 5 − 5ζ + 4Θ

Θ w∫ .     (3.1) 

A similar solution is hereby deduced to the linear equation (2.12) as 

Y = 1

2 PrN

dς
ζ 2 − 2ζ +1Θ

Θ w∫     (3.2) 

The results (3.1) and (3.2) are physically meaningful for numerical integrations. An exact solution to 
equation (2.12) is hereby deduced as follows: 

Θ = Θw −1( )exp −2 PrNY( )+1.   (3.3) 

It is inferred from the exact solution (3.3) that in the presence of an intense radiation (i. e. N → ∞), 
Θ →1. This is a limiting value, where all other values of Θ due toN < ∞  asymptotically approach. 
Figure 3.1 clearly depicts this situation. 

The main results of the investigation are herein considered. From Abramowitz and Stegun [10], if 
b << a , then the approximate value 

a + b( )k ≈ ak + kak−1b     (3.4) 

holds. It is seen from equation (3.1) that −5ζ + 4 << ζ 5 provided ζ ≥1. Therefore, the approximate 
relation   
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ζ 5 − 5ζ + 4( )−1 2
≈ 1

ζ 5 2 − 2

ζ15 2 + 5

2ζ 13 2     (3.5) 

is obtained according to equation (3.4). Consequently, an implicit analytical solution in Θ given by 

Y = 1
429

5
2PrN

 
 
 

 
 
 

1 2

− −132+195Θw + 286Θw
5

Θw
13 2 − −132+195Θ + 286Θ5

Θ13 2

 

 
 

 

 
  (3.6) 

is derived from the result (3.1). 
Similarly, for ζ ≥1, it is inferred from equation (3.2) that −2ζ +1<< ζ 2. Therefore, the relation  

ζ 2 − 2ζ +1( )−1 2
≈ 1

ζ
− 1

2ζ 3 + 1

ζ 2      (3.7) 

is another valid approximation according to equation (3.4). In this case, the implicit analytical solution 
can be written as  

Y = 1
2PrN

 
 
 

 
 
 

1 2

ln(Θw ) + 1
4Θw

2 − 1
Θw

− ln(Θ) + 1
4Θ2 − 1

Θ
 

 
 

 

 
   (3.8) 

The new approximate analytical solutions (3.7) and (3.8) are used to validate respectively the integral 
solutions (3.1) and (3.2) using numerical integrations. 
 
4.0 Discussion of results 

The problem of thermally radiating and optically thin incompressible fluid past a vertical infinite 
plate has been solved analytically and numerically. Firstly, integral solutions are obtained for the resulting 
nonlinear and linear steady-state energy equations. Secondly, approximate analytical solutions (3.7) and 
(3.8) are used to validate the integral solutions (3.1) and (3.2), which are evaluated using Simpson’s rule 
with a double precision arithmetic (40 digits is used in the computations with MAPLE  package in a 
Macintosh Pentium 4 Machine). Tables 5.1 and 5.2 display the computations and typical parameter values 
used for the computations are indicated. In particular, as the Prandtl number Pr is a measure of the 
relative importance of the viscosity and thermal diffusivity of the fluid, it is set equal to a fixed value of 
0.71 throughout the investigations, which physically corresponds to an astrophysical body (air) at 200C. 
 

Table 5.1: Comparison of numerical and approximate values for equations (3.1) and  
(3.6) at variations of radiation parameter with Pr  = 0.71 and �w = 2.4 

 
 
Y 

N = 0.2 N = 0.5 N = 1.0 
Num. Approx.  R. Error  Num. Approx.  R. Error  Num. Approx.  R. Error  

0.0 
0.2 
0.4 
0.6 
0.8 
1.0 
1.2 
1.4 
1.6 
1.8 
2.0 
2.2 
2.4 

2.4000 
2.0709 
1.8442 
1.6790 
1.5539 
1.4566 
1.3793 
1.3172 
1.2665 
1.2248 
1.1902 
1.1614 
1.1373 

2.4000 
2.0690 
1.8395 
1.6702 
1.5398 
1.4359 
1.3509 
1.2798 
1.2191 
1.1665 
1.1202 
1.0790 
1.0419 

0.0000 
0.0019 
0.0047 
0.0088 
0.0141 
0.0207 
0.0284 
0.0374 
0.0474 
0.0583 
0.0700 
0.0834 
0.0954 

2.4000 
1.9300 
1.6563 
1.4793 
1.3577 
1.2708 
1.2071 
1.1596 
1.1237 
1.0964 
1.0756 
1.0596 
1.0475 

2.4000 
1.9265 
1.6468 
1.4606 
1.3265 
1.2244 
1.1433 
1.0764 
1.0196 
0.9700 
0.9255 
0.8845 
0.8451 

0.0000 
0.0035 
0.0095 
0.0187 
0.0312 
0.0466 
0.0638 
0.0834 
0.1041 
0.1264 
0.1501 
0.1751 
0.2024 

2.4000 
1.8007 
1.5050 
1.3340 
1.2269 
1.1567 
1.1096 
1.0774 
1.0555 
1.0405 
1.0304 
1.0235 
1.0187 

2.4000 
0.0000 
1.7951 
0.0056 
1.4880 
0.0170 
1.2993 
0.0347 
1.1692 
0.0577 
1.0721 
0.0846 
0.9947  

0.1149 
0.9298 
0.1476 
0.8720 
0.1835 
0.8162 
0.2243 
0.7433 
0.2871 
0.7088 
0.3167 
0.6962 
0.3225 
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Table 5.2: Comparison of exact, numerical and approximate values for equations (3.3), (3.2) and (3.8) at variations of radiation 

parameter with Pr = 0.7 and �w = 2.4. 
 

 
Y 

N = 0.2 N = 0.5 
Exact Num. Approx. R. Error Exact Num. Approx. R. Error 

0.0 
0.2 
0.4 
0.6 
0.8 
1.0 
1.2 
1.4 
1.6 
1.8 
2.0 
2.2 
2.4 

2.4000 
2.2041 
2.0356 
1.8907 
1.7661 
1.6589 
1.5667 
1.4874 
1.4192 
1.3506 
1.3101 
1.2667 
1.2294 

2.4000 
2.2041 
2.0356 
1.8907 
1.7661 
1.6589 
1.5667 
1.4874 
1.4192 
1.3506 
1.3101 
1.2667 
1.2294 

2.4000 
2.2164 
0.1833 
0.1857 
0.1882 
0.1908 
0.1936 
0.1966 
0.1997 
0.2031 
0.2067 
0.2106 
0.9823 

0.0000 
0.0123 
1.8523 
1.7050 
1.5779 
1.4681 
1.3731 
1.6774 
1.2195 
1.1475 
1.1034 
1.0561 
0.2471 

2.4000 
2.1031 
1.8692 
1.6849 
1.5396 
1.4252 
1.3350 
1.2640 
1.2080 
1.1639 
1.1291 
1.1018 
1.0802 

2.4000 
2.1031 
1.8692 
1.6849 
1.5396 
1.4252 
1.3350 
1.2640 
1.2080 
1.1639 
1.1291 
1.1018 
1.0802 

2.4000 
3.0615 
2.6860 
2.3637 
2.0860 
0.1865 
0.1906 
0.1951 
0.2000 
0.2055 
0.2117 
0.9253 
0.8263 

0.0000 
0.9584 
0.8168 
0.6788 
0.5464 
1.2387 
1.1444 
1.0689 
1.0080 
0.9584 
0.9174 
0.1765 
0.2539 

 
Table 5.2: Comparison of exact, numerical and approximate values for equations (3.3),  

(3.2) and (3.8) at variations of radiation parameter with Pr = 0.7 and �w = 2.4. (continued) 
 

 
Y 

N = 1.0 
Exact Num. Approx

. 
R. 
Error 

0.0 
0.2 
0.4 
0.6 
0.8 
1.0 
1.2 
1.4 
1.6 
1.8 
2.0 
2.2 
2.4 

2.4000 
1.9994 
1.7135 
1.5093 
1.3636 
1.2596 
1.1853 
1.1323 
1.0944 
1.0874 
1.0481 
1.0344 
1.0245 

2.4000 
1.9994 
1.7135 
1.5093 
1.3636 
1.2596 
1.1853 
1.1323 
1.0944 
1.0874 
1.0481 
1.0344 
1.0245 

2.4000 
2.0120 
0.1894 
0.1957 
0.2029 
0.2114 
0.8881 
0.7555 
0.6372 
0.5247 
0.3646 
0.3329 
0.3055 

0.0000 
0.0126 
1.5241 
1.3136 
1.1607 
1.0482 
0.2972 
0.3768 
0.4572 
0.5627 
0.6835 
0.7015 
0.7190 

Figure 5.1: Temperature profiles (exact solution, equation (3.3)) as a function of 
Y for variations in the radiation parameter with Pr = 0.7 and �w = 2.4 
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From the exact result (3.3), it is observed that increasing the radiation parameter decreases the 
temperature exponentially (see Figure 5.1). A salient feature is the presence of an asymptocity. The 
curves approach the abscissa asymptotically implying that Θ =1 is a limiting case. This is the value due 
to an intense radiation (i. e. N → ∞).  

The results shown in Table 5.1 compare the numerical evaluation of equation (3.1) and the 
approximate analytical solution (3.6) with different values of the radiation parameter N  for 0 ≤ Y ≤ 2.4. 
It is observed that the approximate analytical solution is relatively consistent in accordance with the 
numerical integration as the relative errors (i. e. R. Error) revealed. Furthermore, it is seen that the relative 
errors increase with an increasing radiation parameter as Y  increases. It is observed that Θ →1 for large 
values of N from the numerical calculations. For example, putting N = 2000, the value of 
�→1.000121055650152228005933309826897266 
675 (40 digits) for all values of 0 ≤ Y ≤ 2.4. Consequently, Θ =1 is a limiting value as N → ∞ . This is 
observed from the exact result (see Figure 1). 

Table 5.2 compare the results of exact, numerical and approximate values of equations (3.3), (3.2) 
and (3.8) at different values of N . It is seen that the numerical integration preserves the exact structure, 
and compares favourably well with the approximate analytical solution. Once again, it is observed that for 
large values ofN, Θ →1. Specifically, putting N = 2000 in the numerical integration of equation (3.2) 
gives 0059333056501522281.00012105→Θ   6759826897266  (40 digits) for all values of 
0 ≤ Y ≤ 2.4. This implies that the two integral solutions (3.1) and (3.2) for Θ converges to 1, which is 
the value as N → ∞ . 

From the numerical integrations (3.1) (see Table 5.1) and (3.2) (see Table 5.2), it is observed that 
the approximate analytical solution (3.6) due to the approximate relation (3.5) gives a better result to the 
equation (2.11) than the equation (2.12) due to the linear approximation of the nonlinear term of the fluid 
temperature in equation (2.3). In any case, the solution due to the linearization is a good tool for testing 
and validating numerical schemes of the equation (2.11). 
 
5.0 Conclusion 

The problem of thermally radiating and optically thin incompressible fluid past a vertical infinite 
plate has been examined. Integral, analytical and numerical solutions are presented. The effect of 
radiation transfer has been investigated. It is observed that increase in radiation reduces the temperature. 

It is primarily observed that the values of Θ →1 for large values of the radiation parameter. This 
limiting value of Θ suggests a boundary layer character of the steady-state nature of the temperature 
field. It is evident that the approximate analytical solutions reveal the characteristics of the problem and 
compare favourably well with the numerical integrations. 
 

References 
[1] Chung, T. J., 2002, Computational Fluid Dynamics, Cambridge University Press, UK. 
[2] Bestman A. R., Adjepong S. N., 1988, Unsteady Hydromagnetic Free-convection Flow with Radiative Heat Transfer in a Rotating 

Fluid, Space Sci. 143 73 - 80. 
[3] Ghoshdastidar, P. S, 2004, Heat Transfer, Oxford University Press, UK. 
[4] bowei, J. F. N., Sikoki, F. D., 2005, Water Pollution Management and Control, Doubletrust Publications Company, Port Harcourt, 

Nigeria. 
[5] Kumari, M., Nath, G., 2004, Radiation effect on mixed convection from a horizontal surface in a porous medium, Mechanics Research 

Communications, 31, pp. 483 - 491. 
[6] Middleman, S., 1998, An Introduction to Mass and Heat Transfer, John Wiley & Sons, Inc. 
[7] Cheng, P., 1964, Two-dimensional radiating gas flow by a moment method, AIAAJ, 2, pp. 1662 - 1664. 
[8] Cogley, A. C. L., Vincenti, W. G., Gilles, E. S., 1968, Differential approximation for radiative heat transfer in a nonlinear equations-

grey gas near equilibrium, Am. Inst. Aeronaut. Astronaut. J., 6, pp. 551 - 553. 
[9] Alabraba, M. A., Aghoghophia, O., Alagoa, K. D., 2007, Heat and mass transfer in the unsteady hydromagnetic free-convection flow 

in a rotating binary fluid I, Jnamp, 11, pp 533 - 543. 
[10] B M. Abramowitz, I. A. Stegun, 1964, Handbook of Mathematical Functions, Dover, New York. 
 
 

 


