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Abstract

The temperature distribution in a heat conducting fiber is computed using the
Galerkin Finite Element Method in the present study. The weak form of the governing
differential equation is obtained and nodal temperatures for linear and quadratic
interpolation functions for different mesh densities are calculated for Neumann
boundary conditions. The results show that using a mesh of three quadratic elements
produces a maximum error of 0.622compared to 1.1832for a similar number of linear
elements. It is concluded that as the mesh is refined further progressively, the finite
element solution approaches the exact solution admirably. The results are displayed in
both graphical and tabular forms.

Nomenclature
g nodal degree of freedom pPfnode
[f°]: Internal load (source vector) of element
H: Convective heat transfer coefficient
[K]: Element characteristic matrix
K: Thermal conductivity
H: Length of element
L: Length of fiber
N: Number of degree of freedom
Q% Boundary flux of {' node of & element
Q: Heat flux
R Radius of the fiber
T: Temperature’F)
T Temperature of fluid in which fiber is immersed
Xa. X-coordinate of left node of element
Xp: X-coordinate of right node of element
@: Shape functions for linear and quadratic inteapoh
A: Kronecker delta

1.0 Introduction

The thermal performance of fibers used in telecommunicatideragsis of concern to both the
circuit and Physical design Engineer Burnett, [1]. Heat gestbiat some of the components (such as
transistors and resistors) if not dissipated rapidly enoodhe surrounding air can significantly impair
performance. It is therefore important to be able to deterthineemperature distribution in fibers while
in service so as to design means of dissipating the heat to the surrsunding
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Different methods of solution exist for solving etjoas governing heat conduction
Engineering and Science. These include the finieanent, finite difference and the finite volur
methods respectively (Williani8]). The finite difference and finiteolume methods have been u
extensively as the method of analyRavinder [6]stated that the reason for the widespread useesé
methods is as a result of less computational tieglired to obtain solutions. Pau[4], reinforced
Ravinder stipulatn and noted that even though the finite elementhous are probably the mc
accurate and versatile methods, they tend to hetwae consuming and require high level of knowle
not available to the common engine

Milosvakaya and Cherpak(3] solved the non linear conjugate heat conduction prohigsing
the finite difference method and showed that thikees®e produces convergent results. Ran[5]
proposed an unconditionally stable algorithm fomeucal finite-difference solution of linear a
nonlinear inverse heat conduction problems. Thete-difference analysis of ablation probler
including multidimensional problems with liquid rhdhyers, was facilitated by embedding then
inverse heat conduction problems. The accuracyhef finite-difference solution was assessed
comparing it with a solution using a more convemidfinite-difference method and an alternative
accurate solution of the ablation problem. Handeal [2] solved the heat conduction problem using
finite volume method and used test examples to illustrateffeetiveness of the method as an analy
tool for temperature analysis. Schneider and Z¢7] presented a control-voluriEased formulation
framework for the direct application of governingnserveion principles in the determination
algebraic equations for heat conduction problerhgyTdemonstrated convergence to the correct sol
on all test problems.

It can be seen from the literature that the podémf the finite element method for oining
solution to heat conduction problems has not beeengattention. In this paper, we present
application of the continuous Galerkin finite elarheethod to the analysis of temperature distriwuiin
a heat conducting fiber and compare the ion obtained with that with analytical technic

2.0 Governingdifferential equation
The governing differential equation for the tempera distribution T) is given by

d dT ), 2h 2h
‘&[KWJJFTT =~ Tm (2.1)
O<x<L
The associated boundary conditions are givy:
T(0) =To, q (L) =q (2.2)

Whereq is the heat flux and is given by the expres:ffj—r.

2.1 Finite element modeling
To determine the temperature distribution in tHeerfj we first derive the weak form of t
governing differential ecation given below

d dT) 2h__ 2

&(Ka e T
_E(Kd_T L2he_2he 2.3)
dx\ dx r r m
_E(Kﬂ- +£hT—£h'|' =0

dx\ dx r r m
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The residual for the differential equation is given as

R(x,a)=- dd (Kd—Tj+£hT—£hT

dT r
The Galerkin residual equations are given as:

["R(x a)gydx=0, i =123,N
Substituting equation (2.4) into (2.5), we obtain:

& _g(Kﬂj J2hp 2l o
Xa| dx dx r r

x,[ d(, dT 2h 2 _
EITE

Integrating the first term of equation (2.6) by parts, we obtain:

B dT Xb_ Xy, dT d@ X, 2h % :
{K—Q} I K——dx}+anTqu,dx IXanga,dx—O

dx Xa dx dx

Xa

dx dx dx

%o
ijKd—T%dmijz—thqu=ij2—hngqu+[KiTq}
Xa  dx dx Xa r Xa r dx ™ Iy,

Assuming an approximate solution fbin the form
N

T(% &)= afy + 8l * -t Ay =D 3P,
i=L

N dao
dr _ Sa A
dx 437 dx
and substituting equations (2.8) and (2.9) into (2 7) gives

% 2h & X, 2 dT
xa dxz' I (”Z 4= I T mquXJ{Kd_d

Rearrangmg equatlon (2.10), we obtaln

dr 1 x,  dT dg X, 2h X, 2h
K — — [Pk =—=Zedx +[ P Tgdx - [P T ,@dx =0
{ ¢}xa ' jxa X an r aox '[Xa r m#A X

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

be( dx i Jadx+z.[xb(2h¢fqo)adx IXbZhT @ [ dTgp}: (2.11)

Equation (2.11) can be written as:

K7 ) =(r +{e}

Equation (2.12) is the finite element model for the problem, where

%[ . d@ 99  2h
j(dxdx r%,)jjdx

ij—T @dx

(2.12)
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X
Q° —{ ar qq} (2.13)

g = nodal degree of freedom.
The shape functions for quadratic interpolation are:

iy = (125 (- %
i)

X 2X
o=

The shape functions for linear interpolation are given as

X
Aoy = X2 “%
X
@(x) X1

The shape functions for both linear and quadratic interpolation camritien compactly as:
@i (x) = 5ji , Whereé'ji is called a Kronecker delta and has the property
1 if j=i
5“ =
0 it j#i

3.0 Numerical example

Use the finite element method to find the temperature distoibbui a heat conducting fiber with
convection heat loss from the surface. The governing differential eqisgoen by:
(kAT BBy e
Cdxl dx r r
T(0) = 2006F, g(10) = 10BTU/sec-ii K = 2BTU/sec-in%F, h = 10°BTU/sec.iR’F, r = 0.002n, Ty, =
50°F.
3.1 Solution
3.1.1 6- Node &- Linear element solution

In solving the problem, we shall use a linear interpolatiometd for the solution. First, we will
discretize the domain into mesh of two equal linear elementiveédinear elements and observe the
behavior of the solution. First we will need to calculate éleament characteristics/stiffness matrix,

noting that
[<iha b=t Q)

%[ o 9@ 99 2h
a— d
J.( dx dx rﬂﬂjx
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wherex, = coordinate of left end of element,
X, = coordinate of right end of element. For a choice of limgarpolation shape functions, the
element characteristic matrix will be in the form

|<11 K12 al fl Ql

K21 K22 a'2 f2 Q2
wherea,, & = nodal degree of freedom,
f1, f, = source vector terms,
Q1, Q@ = heat flux

Kn:r Ki X, =X | d [ X —X +2_h Xp =X | X =X |
ol dx{x,—x Jdx{ x, =X rix, =—x \ X=X
K,2n 2_K 4h_2,

-5
Ky 2 K 4h 2 4007) 006666
2 r 3 2 3r 2 3x0.002

K12:J-2 Ki X, =X | d [ X=X +2_h X, =X | X=X dx
o dx{ X, =X Jdx{ X, =X rix, =x A X, =%

L)k

2 r 2 3
Substituting foriK, handr we obtain

_2,.2007) _ 996666
2 3x0.00z

K :jz K— X=X |df X=X +2_h X=X | X=X )y
2odol dx x, = x Jax =% ) 1 U = x | X, =%

£K+1(2_hj K, 2h

2 3Ur 2 3r
Substituting the values &, h andr gives
-5
_2,.2007) _ 996666
2 3x0.00z

2 d{ Xx,=-x)d ([ x,—X 2h( X, =X ) X, =X
K,, = K— 2 — 2 +— 2 2 dx
22 J‘O{ dX[XZ—XJdX(Xz—XJ I’[XZ—XJ[XZ—Xlﬂ
1 2(2h) K 4h
=ZK+= =
2 3LUr 2 3r
Substituting folK, handr,

-5
K, =2+-397) _1 006666
2" 3x0.00z
J-XbZh m¢dX

Therefore,
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f, = jozz—hTm X2 7 X g4y
r Xz - X1
-5
Z2hy _2X107  5h_ 05
. 0.002
fo= [ 20T, X ax
r X2 - Xl
-5
:2_h m :ﬂxSO: 05
‘ 0.007

In matrix form,
Element 1
The element characteristic matrix is given as:

1.006666 - 0.996666||a, 05| [Q!

1

1
+

—-0.996666 1.006666||a, 0.5 Q;

Since the domain is discretized into a mesh of éiggal linear elements, the element characterisditix
will be the same for all the elements. The onlyedénce will be the associated nodal degree otitree
(primary variables i.e. nodal temperatures) andsteondary variables (heat flux). Taking advantaige

this, the element characteristic matrices for #reaining elements are given below.
Element 2

Element characteristic matrix is given as:
1.006666 -0.996666||a, 05 Q7

—-0.996666 1.006666]|a, 05 |Q2

where Q; implies the boundary flux of the first node of #ezond element.
Element 3
Element characteristic matrix is given as:

1.006666 - 0.996666||a, 05 Q!

-0.996666 1.006666||a, 05 Q}

Element 4:
Element characteristic matrix is given as:

1.006666 - 0.996666||a, 05 Q!

—-0.996666 1.006666||a, 05 Q,
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Element 5
Element characteristic matrix is given as:

1.006666 —0.996666||a; 05

Qr

—-0.996666 1.006666||a, 05

Q;

The next step is to assemble the element charstatamatrices for all the five elements. We obtihie

system characteristic matrix below:

(100666 -0996666 O 0 0 0 1la] (5 Q
-0996666 2013332 —-0.996666 0 0 0 a,| |10 Q+Qf
0 -0996666 2013332 -0996666 0 0 | _ 10 N Q+Q Imposing
0 0 -0996666 2013332 -0.996666 0 3, 10 |@+qQ
0 0 0 -0996666 2013332 —099666@a,| |10 QL+
| 0 0 0 0 -0996666 100666 ||a;| |5 Qs
continuity of the flux at the interelement boundamg have:
Q;+Qf =0
Q;+Q' =0
Q;+Q =0
Q;+Q’ =0

Also, imposing the boundary conditions we obtain
T(0) = 200F =&,

q@0) =Q; =10

On imposition of the boundary conditions and in@ment continuity of the secondary boundary

variables, we obtain the following:
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(100666 —-0996666 O 0 0 0 200 (o5 Q¢
-0.996666 2013332 —0996666 0 0 0 a, 10/ |oO
0 -0996666 2013332 -0996666 0 0 a | _ 10 N 0 | The above
0 0 -0996666 2013332 —0.996666 0 a, 10| |0
0 0 0 -0996666 2013332 —0.996666 a, 10/ |0
| 0 0 0 0 —-0996666 100666 || a, 05| |10
system of equations become
1+199.333
2.013332 - 0.996666 0 0 0 a, 10
- 0.996666 2.013332 - 0.996666 0 0 a, 10
0 - 0.996666 2.013332 - 0.996666 0 a, = 10
0 0 - 0.996666 2.013332 -0.996666 ||a. 10
| 0 0 0 - 0.996666 1.006666 || a, 155
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a; = 200.0000
a, = 196.4835
az = 195.9067
ay = 198.2577
as = 203.5839
as = 211.9920
3.1.2 5-Node é- Linear element solution
For four linear elements, the assembled systemxmatshown below.

_ - 0625
0808333-07958333 O 0 0 a 195 o}
—-07958333 1616666 —07958333 0O 0 a 195 Q+q
0 —-07958333 1616666 -07958333 0O o= 195 +HQE+Q ron
0 0 —07958333 1616666 —0.7/95833@, 195 Q+q
0 0 0 —07958333 08083334, |
- - 062%

applying the boundary conditions and enforcingdbetinuity of the secondary variables at intereleime
boundary, we obtain the reduced system of matritest is

T(0) =&, = 200,
q(10)=Q; =10
1.61666 -0.7958333 0 0 a, 1604166
0.7958333 1.616666 -—0.7958333 0 a;| |125
0 —0.7958333 1616666 -0.7958333|4a, 125
0 0 —0.7958333 10.808333|| a, 10.625
The solution is
a; = 200.0000
a, = 196.0524
a; = 196.6928
a, =201.9414
as = 211.9630

3.1.3 4-Node &- linear Element Solution
The element characteristic matrix for the firsiadat is given by:

0.61111 -0.59444| a, 0.833 Q;

-0.59444 061111 |a, 0.833 Q;
Assembling the three element characteristic matrise obtain:

061111 -059444 0 0 q 0.8333 Qll
—0.59444 1.22222 -0.59444 0 a, 1.66666 Q; + Qf .
= + Imposing
0 -0.59444 1.22222 -0.59444| a, 1.66666 Q22 + Qf
0 0 -0.59444  0.61111}|a, 0.8333 Q§

the boundary conditions and interelement continoitthe secondary variables, we obtain:
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a; = 200.0000
a, =195.7286
az = 199.6247
a, = 211.9066
3.1.4 3-Node €-Linear element solution
The element characteristic matrix for the firshadat is given as:

0416666 -0.391667|(a, 125 [Qf

—-0.391667 0.416666 |a, 125 |Q;

Assembling the element characteristic matricegHertwo matrices, we obtain the system charadterist
matrix below:

0.416666 - 0.3916667 0 a, 125) |Qf
- 0.391667  0.8333332 -0.391667 |{a, =1 250" +{Q! + Q2
0 -0.3916667  0.416666 ||a, 125] |Q2

Imposing the boundary conditions,
0.8333332 -0.3916667 ||a, 80.83334

- 0.3916667 0.416666 ||a, 1125

Solving the system of equations above, we get:

a; = 200.0000

a, = 196.5067

a3 =211.7164
3.2 Quadratic element interpolation solution

In this section, we will seek the nodal temperaturg using quadratic interpolation functions

Using equation (2.11) together with shape funcf@mnguadratic interpolation, we compute the quadrat
element characteristic matrix. To simplify the céddion of the element characteristic matrix fdfetent
meshes, we generate an expression for the enfrigte eelement characteristic matrix in terms of the

length of each element Fhus
{2 2o 2o
o h' h' h h

oo d X 2x\d 2X

K=, K[d(l‘wj(l h/jd (*wj(l‘hﬂdx n
_7K 2h’(2h)
"3 15

Moo d 2x\ d | 4x h 2h X 2Xx ) 4x X
Kﬂ:ode(l‘WJ(l h/)d[h/( hfﬂd oTﬁl‘Wjﬁl‘ﬂW(l‘ﬂdx

- Ly (2
3 15 Lr
O e
o r h h' /h h

Kp=| Ki(l—l,j(l 23‘) d X,[l—z—f(j dx-+
o dx{ h h' Jdx| h h

_K (Zhj
=— h
3 30 (r
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_ |, d4x X d x _ i 2h| 4 X X 2X
SR G - ) G e S |
8K 1 (Zhj
~HIE
3 15 r
_ |, d 4x d 4x X n 2h 4x X
K22 _J-o {K&W(l h/jdx h/ [1 Wjj|dx+ o |:h/ [1 h/jh/ [1 h/ jj|dx
' d 4x x\)d |[—-x 2X W 2h( 4x X - X 2X
<=l Km(*w)a{ﬂlﬂ}“* e
S e o
dx h h o r|h h h h
3
Ko =] k9 _—,’({1—2—3(} iif[l—i,j dx+ [ 2N _—f([l—z—fjif[l—l,j dx
0 dx\ h h' ] Jdxh h ° r|h h" Jh h
%)
r
e d [ —x 2x|)d(-x 2% W2hi —=x(, 2X)|—X 2X
[ e ) W ) e
:L+£h/(2_h)
3 15 \r
/
f= ZrhT (1—:0(1—%% 2hT (6hj
/
= [ 20T (1= X ax= 2, [ 2h
2 by r 3

h’ h’

_ ¢ 2h X 2h
fs_jo TTm(_ h/[ h/Dd __T (6hj

Expressing the element characterlstlc matrix foy alement of lengthy in terms of the data of the
problem, we obtain the following:
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2hh' T,
7 -8 1[4 2-1]a 4h(:]r/T Q
% 8 16 -8[+— | 2 16 AL @1 21
I
1 -8 7 12 4fla) |y | (@
6r

3-Node € - Quadratic element solution
Using equation (3.1) with/ = 10 and the data on the problem, we obtain tHewing system
characteristic matrix:

048 —-0.526666 0.063333||a, 0.833 Q
-0.526666 112 —0.526666< a, r =13.3333- +<0
—0.063333 -0.526666 048 a, 0.833 Q,
Imposing the boundary conditio$§0) =a; = 200 and @= 10, we obtain:
112 -052666(a, 10866633

—-0526666 048 a, —-183326

a; = 200.0000
a, = 196.7326
az = 212.0397
3.2.2 5-Node é- Quadratic element solution
Using equation (3.1) withh = 5 and the data in the problem and assemblyeftdlkulting two
element characteristic matrix, we obtain the follaywsystem characteristic matrix.

094 -106333 0131666 0 0 1(a 0.41666 Q
-1.06333 216 -1.06333 0 0 a, 1.66666 0
0131666 -1.06333 188 -1.06333 0.131661a, =1 0.833332 +<0 Imposing
0 0 -106333 216 -1.06333||a, 1.66666 0
| 0 0 0131666 -1.06333 094  |lag 0.41666 Q2
the boundary conditions and solving the resultirzdrin, we obtain
a; = 200.0000
a, = 196.0830
az = 196.7467
a, = 202.0073
as = 212.0343

3.2.3 7-Node é- Quadratic element solution
The system characteristic matrix is given as:
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[ 14044 -159777 019888 0 0 0 a 0277777 [Q
=159777 321777 -159777 0 0 0 a, 111111 0
0.198888-159777 280888 -159777 019888 O a, 0.55555 0
0 0 =159777 321777 -159777 O 0 a,r=<111111 ;+40
0 0 0.198888-159777 280888 —-159777 0.19888||a, 055555 0
0 0 0 0 —159777 321777 -159777|a, 111111 0
i 0 0 0 0 019888 -159777 140444 a, 0277777 Q¢
a; = 200.0000
a, = 196.8809
a; = 195.8047
a, = 196.7553
as =199.7470
as = 204.8201
a; = 212.0466

4.0 Rsesults and discussion

The temperature at the nodes for different mestssgulinear and quadratic interpolation
functions are shown in Table 4.1. The temperatatgmints between nodes are also shown in Table 4.1
The numerical value of the calculated nodal degfefreedom shows progressive improvement of the
temperature with convergence characteristic. Ths®lake point wise error is not greater than 7 pdrce
for all points considered along the domain showémg admirable rate of convergence to the exact
solution. Successive decrease in the length oéldm@ents produces solutions which approach thet exac
solution. Figure 4.1 shows the result obtainedgidie linear element and the exact. It can be Hesn
within the ranges 2.4 — 2.6, 5.2 — 6.0 and 6.88; there is a marked difference between the saisitio
obtained using the analytical and the linear fitement solution. The reason for this deviatioadsa
result of the fact that the gradient of the solutidgthin these ranges is very high. . Local medimeenent
can be used to remedy this situation if linear elet® are used to discretize the domain of the .fiber
Figure 4.2 shows the result obtained using quadfitite elements compared with the exact. It can b
seen that the finite element solution is admiraldge to the exact at all points along the domain.

Table 4.2 Showing nodal temperatures along the fiber fogdr, quadratic interpolation and exact solution

Distance/ | Nodal temperatures for C — Linear Nodal temperatures for C- | Exact Nodal
No of Elements for different Meshes Quadratic Element for temperature
Element different Meshes
5 4 3 2 1 2 3

0 200 200 200 200 200 200 200 200

1.7 197.01 197.31) 197.82 198.81 196.81 196.83 896.896.83

2 196.48 196.84| 197.43 198.60 196.41 196.49 196.896.50

2.5 196.36 196.05 196.79 198.25 196.05 196.08 896.096.08

3.3 196.18 196.20] 195.72 197.69 196.y7 195.79 095.895.80

3.4 196.32 196.28] 195.84 197.67 195.y7 195.79 095.895.80

4 195.90 196.34| 196.54 197.20 19591 195.93 195.995.94

5 196.84 196.69| 197.71 196.50 196.75 196.74 196.6P6.75

5.1 196.42 196.90, 197.83 198.81 196.87 196.86 $96.7196.87

6 198.25 198.79| 198.88 199.54 198.32 198.27 198.198.30

6.6 199.53 200.05 199.62 201.37 199.62 199.56 B899.499.58
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Distance/ | Nodal temperatures for C — Linear Nodal temperatures for C- | Exact Nodal
No of Elements for different Meshes Quadratic Element for temperature
Element different Meshes
5 4 3 2 1 2 3
6.8 199.10 200.47] 199.93 201.98 200.12  200.00 499.200.07
7.5 201.45 201.94| 202.94 204.11 202.07 202.00 201.202.01
8 203.58 203.94| 204.78 205.63 203.70 203.63 203.783.63
8.5 205.68 205.95| 206.62 207.15 205.50 205.44 204.205.44
10 211.992 | 211.96] 211.71 211.71 212.03 212.03 212.212.04
214
212
210 /
__ 208
g /
‘e’ 206 /
=]
E 204
)]
g 202 / = ==-linear
@ (4
200 A Exact
/(
198 \
196 =
194
0 2 4 6 8 10 12
Distance along the fibre
Figure 4.1 Graph showing temperature linear element andtexac
214
212
210

208 I/
206

204

= Quadratic

202

/ = === Fxact
200 /
196 e

Temperature(°F)

194

0 5 10 15

Distance along fibre

Figure 4.2: Graph showing temperature linear element and exact
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5.0 Conclusion

Finite element analysis of the temperature distidouin a heat conducting fiber has been
presented. It has been shown that the present thetmobe used to predict the temperature distabuti
accurately with successive mesh refinement. Thoeke muadratic finite elements have been shown to
produce a more accurate solution to the equati@verging the temperature distribution in a heat
conducting fiber than linear finite elements. Thetemtial of the finite element method has been
successfully demonstrated.
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