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Abstract 
 

The temperature distribution in a heat conducting fiber is computed using the 
Galerkin Finite Element Method in the present study. The weak form of the governing 
differential equation is obtained and nodal temperatures for linear and quadratic 
interpolation functions for different mesh densities are calculated for Neumann 
boundary conditions. The results show that using a mesh of three quadratic elements 
produces a maximum error of 0.622 compared to 1.1832 for a similar number of linear 
elements. It is concluded that as the mesh is refined further progressively, the finite 
element solution approaches the exact solution admirably. The results are displayed in 
both graphical and tabular forms. 

 
 
Nomenclature 

aj: nodal degree of freedom of j th node 
[fe]: Internal load (source vector) of element 
H: Convective heat transfer coefficient 
[K]: Element characteristic matrix 
K: Thermal conductivity 
H: Length of element 
L: Length of fiber 
N: Number of degree of freedom 
Qi

e: Boundary flux of ith node of eth element 
Q: Heat flux 
R: Radius of the fiber 
T: Temperature (oF) 
Tm: Temperature of fluid in which fiber is immersed 
xa: x-coordinate of left node of element 
xb: x-coordinate of right node of element 
Ø: Shape functions for linear and quadratic interpolation 
∆: Kronecker delta 

 
 
1.0 Introduction 

The thermal performance of fibers used in telecommunication systems is of concern to both the 
circuit and Physical design Engineer Burnett, [1].  Heat generated in some of the components (such as 
transistors and resistors) if not dissipated rapidly enough to the surrounding air can significantly impair 
performance.  It is therefore important to be able to determine the temperature distribution in fibers while 
in service so as to design means of dissipating the heat to the surroundings  
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Different methods of solution exist for solving equations governing heat conduction in 

Engineering and Science. These include the finite element, finite difference and the finite volume 
methods respectively (William, [8]
extensively as the method of analysis. 
methods is as a result of less computational time required to obtain solutions. Paulo 
Ravinder stipulation and noted that even though the finite element methods are probably the most 
accurate and versatile methods, they tend to be very time consuming and require high level of knowledge 
not available to the common engineer.. 

Milosvakaya and Cherpakov 
the finite difference method and showed that the scheme produces convergent results. Randall 
proposed an unconditionally stable algorithm for numerical finite
nonlinear inverse heat conduction problems. The finite
including multidimensional problems with liquid melt layers, was facilitated by embedding them in 
inverse heat conduction problems. The accuracy of the finite
comparing it with a solution using a more conventional finite
accurate solution of the ablation problem. Hansen et al 
finite volume method and used test examples to illustrate the effectiveness of the method as an analytical 
tool for temperature analysis. Schneider and Zedan 
framework for the direct application of governing conservat
algebraic equations for heat conduction problems. They demonstrated convergence to the correct solution 
on all test problems. 

It can be seen from the literature that the potential of the finite element method for obta
solution to heat conduction problems has not been given attention. In this paper, we present the 
application of the continuous Galerkin finite element method to the analysis of temperature distribution in 
a heat conducting fiber and compare the solut

 
2.0 Governing differential equation

The governing differential equation for the temperature distribution (
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The associated boundary conditions are given b
     

Where q is the heat flux and is given by the expression 

2.1 Finite element modeling 
To determine the temperature distribution in the fiber, we first derive the weak form of the 

governing differential equation given below:
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ifferent methods of solution exist for solving equations governing heat conduction in 
Engineering and Science. These include the finite element, finite difference and the finite volume 

[8]). The finite difference and finite volume methods have been used 
extensively as the method of analysis. Ravinder [6] stated that the reason for the widespread use of these 
methods is as a result of less computational time required to obtain solutions. Paulo 

on and noted that even though the finite element methods are probably the most 
accurate and versatile methods, they tend to be very time consuming and require high level of knowledge 
not available to the common engineer..  

Milosvakaya and Cherpakov [3] solved the non linear conjugate heat conduction problem using 
the finite difference method and showed that the scheme produces convergent results. Randall 
proposed an unconditionally stable algorithm for numerical finite-difference solution of linear and
nonlinear inverse heat conduction problems. The finite-difference analysis of ablation problems, 
including multidimensional problems with liquid melt layers, was facilitated by embedding them in 
inverse heat conduction problems. The accuracy of the finite-difference solution was assessed by 
comparing it with a solution using a more conventional finite-difference method and an alternative more 
accurate solution of the ablation problem. Hansen et al [2] solved the heat conduction problem using the 

ume method and used test examples to illustrate the effectiveness of the method as an analytical 
tool for temperature analysis. Schneider and Zedan [7] presented a control-volume-
framework for the direct application of governing conservation principles in the determination of 
algebraic equations for heat conduction problems. They demonstrated convergence to the correct solution 

It can be seen from the literature that the potential of the finite element method for obta
solution to heat conduction problems has not been given attention. In this paper, we present the 
application of the continuous Galerkin finite element method to the analysis of temperature distribution in 
a heat conducting fiber and compare the solution obtained with that with analytical technique.

differential equation 
The governing differential equation for the temperature distribution (T) is given by:
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he associated boundary conditions are given by: 
T(0) = To, q (L) = q    

is the heat flux and is given by the expression . 

To determine the temperature distribution in the fiber, we first derive the weak form of the 
ation given below: 
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Engineering and Science. These include the finite element, finite difference and the finite volume 
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methods is as a result of less computational time required to obtain solutions. Paulo [4], reinforced 
on and noted that even though the finite element methods are probably the most 

accurate and versatile methods, they tend to be very time consuming and require high level of knowledge 

ved the non linear conjugate heat conduction problem using 
the finite difference method and showed that the scheme produces convergent results. Randall [5]  

difference solution of linear and 
difference analysis of ablation problems, 

including multidimensional problems with liquid melt layers, was facilitated by embedding them in 
difference solution was assessed by 

difference method and an alternative more 
solved the heat conduction problem using the 

ume method and used test examples to illustrate the effectiveness of the method as an analytical 
-based formulation 

ion principles in the determination of 
algebraic equations for heat conduction problems. They demonstrated convergence to the correct solution 

It can be seen from the literature that the potential of the finite element method for obtaining 
solution to heat conduction problems has not been given attention. In this paper, we present the 
application of the continuous Galerkin finite element method to the analysis of temperature distribution in 

ion obtained with that with analytical technique. 

) is given by: 
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To determine the temperature distribution in the fiber, we first derive the weak form of the 

(2.3) 



Journal of the Nigerian Association of Mathematical Physics Volume 14 (May, 2009), 311 - 324 
Heat conducting fiber with convection losses,   M. H. Oladeinde and J. A. Akpobi,          J of NAMP 

The residual for the differential equation is given as  

( ) m
d dT 2h 2h

R x,a K T T    
dx dT r r
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= − + −    (2.4) 

The Galerkin residual equations are given as: 
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Assuming an approximate solution for T in the form 
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Equation (2.11) can be written as:  
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aj = nodal degree of freedom.   
The shape functions for quadratic interpolation are: 
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The shape functions for both linear and quadratic interpolation can be written compactly as: 

( )xj jiφ δ= , where jiδ  is called a Kronecker delta and has the property 
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3.0 Numerical example 

Use the finite element method to find the temperature distribution in a heat conducting fiber with 
convection heat loss from the surface. The governing differential equation is given by:   
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T(0) = 2000F, q(10) = 10BTU/sec-in2, K = 2BTU/sec-in-0F, h = 10-5BTU/sec.in2.0F, r = 0.002in, Tm = 
500F. 
3.1 Solution 
3.1.1 6- Node C0 – Linear element solution 

In solving the problem, we shall use a linear interpolation element for the solution. First, we will 
discretize the domain into mesh of two equal linear elements to five linear elements and observe the 
behavior of the solution.  First we will need to calculate the element characteristics/stiffness matrix, 
noting that 
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where xa = coordinate of left end of element,  
Xb = coordinate of right end of element.  For a choice of linear interpolation shape functions, the 

element characteristic matrix will be in the form 
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where a1, a2 = nodal degree of freedom,  

f1, f2 = source vector terms,  
Q1, Q2 = heat flux 
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Substituting for K, h and r, we obtain 
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Substituting the values of K, h and r gives 
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Substituting for K, h and r,   
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In matrix form,  

Element 1 
The element characteristic matrix is given as: 
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Since the domain is discretized into a mesh of five equal linear elements, the element characteristic matrix 
will be the same for all the elements. The only difference will be the associated nodal degree of freedom 
(primary variables i.e. nodal temperatures) and the secondary variables (heat flux). Taking advantage of 
this, the element characteristic matrices for the remaining elements are given below. 
Element 2: 
Element characteristic matrix is given as: 
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where 2
1Q  implies the boundary flux of the first node of the second element. 

Element 3: 
Element characteristic matrix is given as: 
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Element 4: 
Element characteristic matrix is given as: 
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Element 5: 
Element characteristic matrix is given as: 
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The next step is to assemble the element characteristic matrices for all the five elements. We obtain the 
system characteristic matrix below: 

































+

+

+

+

+































=

























































−
−−

−−
−−

−−
−

5
2

5
1

4
2

4
1

3
2

3
1

2
2

2
1

1
2

1
1

6

5

4

3

2

1

5

10

10

10

10

5

00666.1996666.00000

996666.0013332.2996666.0000

0996666.0013332.2996666.000

00996666.0013332.2996666.00

000996666.0013332.2996666.0

0000996666.000666.1

Q

QQ

QQ

QQ

QQ

Q

a

a

a

a

a

a

Imposing 

continuity of the flux at the interelement boundary, we have: 

0

0

0

0

5
1

4
3

4
1

3
2

3
1

2
2

2
1

1
2

=+

=+

=+

=+

QQ

QQ

QQ

QQ

 

Also, imposing the boundary conditions we obtain 
     T(0) = 2000F = a1 

     10)10( 5
2 == Qq  

On imposition of the boundary conditions and interelement continuity of the secondary boundary 
variables, we obtain the following: 































+































=

























































−
−−

−−
−−

−−
−

10

0

0

0

0

5.0

0.1

0.1

0.1

0.1

5.0200

00666.1996666.00000

996666.0013332.2996666.0000

0996666.0013332.2996666.000
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000996666.0013332.2996666.0

0000996666.000666.1 1
1

6

5

4

3

2

Q

a

a

a

a

a

The above 

system of equations become 
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


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

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
















 +

=














































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−
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−
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0996666.0013332.2996666.00

00996666.0013332.2996666.0

000996666.0013332.2

6

5

4

3

2

a

a

a

a
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a1 = 200.0000 
a2 = 196.4835 
a3 = 195.9067 
a4 = 198.2577 
a5 = 203.5839 
a6 = 211.9920 

3.1.2 5-Node C0 – Linear element solution 
For four linear elements, the assembled system matrix is shown below. 





























+

+

+

+































=

















































−
−−

−−
−−

−

4
2

4
1

3
2

3
1

2
2

2
1

1
2

1
1

5

4

3

2

1

625.0

25.1

25.1

25.1

25.1

625.0

808333.07958333.0000

7958333.0616666.17958333.000

07958333.0616666.17958333.00

007958333.0616666.17958333.0

0007958333.0808333.0

Q

QQ

QQ

QQ

Q

a

a

a

a

a

On 

applying the boundary conditions and enforcing the continuity of the secondary variables at interelement 
boundary, we obtain the reduced system of matrices.  That is  

T(0) = a1 = 200,  

q(10) = 104
2 =Q  



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



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
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

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=















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
























−
−−

−
−

625.10
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07958333.0616666.17958333.0

007958333.061666.1

5

4

3

2

a

a

a

a

 

The solution is 
a1 = 200.0000 
a2 = 196.0524 
a3 = 196.6928 
a4 = 201.9414 
a5 = 211.9630 

3.1.3 4-Node C0 – linear Element Solution 
The element characteristic matrix for the first element is given by: 

















+
















=
































−

−

1
2

1
1

2

1

8333.0

8333.0

61111.059444.0

59444.061111.0

Q

Q

a

a

 

Assembling the three element characteristic matrices, we obtain: 

























+

+
+

























=











































−
−−

−−
−

3
2

3
1

2
2

2
1

1
2

1
1

4

3

2

1

83333.0

66666.1

66666.1

83333.0

61111.059444.000

59444.022222.159444.00

059444.022222.159444.0

0059444.061111.0

Q

QQ

QQ

Q

a

a

a

a

Imposing 

the boundary conditions and interelement continuity of the secondary variables, we obtain: 
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a1 = 200.0000 
a2 = 195.7286 
a3 = 199.6247 
a4 = 211.9066 

3.1.4 3-Node C0 –Linear element solution 
The element characteristic matrix for the first element is given as: 

















+
















=
































−

−

1
2

1
1

2

1

25.1

25.1

416666.0391667.0

391667.0416666.0

Q

Q

a

a

 

Assembling the element characteristic matrices for the two matrices, we obtain the system characteristic 
matrix below: 

















++
















=
































−
−−

−

2
2

2
1

1
2

1
1

3

2

1

25.1

50.2

25.1

416666.03916667.00

391667.08333332.0391667.0

03916667.0416666.0

Q

QQ

Q

a

a

a
 

Imposing the boundary conditions, 

















=
































−

−

25.11

83334.80

416666.03916667.0

3916667.08333332.0

3

2

a

a

 
Solving the system of equations above, we get: 

a1 = 200.0000 
a2 = 196.5067 
a3 = 211.7164 

3.2 Quadratic element interpolation solution 
In this section, we will seek the nodal temperatures by using quadratic interpolation functions. 

Using equation (2.11) together with shape function for quadratic interpolation, we compute the quadratic 
element characteristic matrix. To simplify the calculation of the element characteristic matrix for different 
meshes, we generate an expression for the entries of the element characteristic matrix in terms of the 
length of each element h/. Thus 
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Expressing the element characteristic matrix for any element of length h/ in terms of the data of the 
problem, we obtain the following: 
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3.2.1

 3-Node C0 – Quadratic element solution 
Using equation (3.1) with h/ = 10 and the data on the problem, we obtain the following system 

characteristic matrix: 
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
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Imposing the boundary conditions T(0) = a1 = 200 and Q3 = 10, we obtain: 
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a1 = 200.0000 
a2 = 196.7326 
a3 = 212.0397 

3.2.2 5-Node C0 – Quadratic element solution 
Using equation (3.1) with h = 5 and the data in the problem and assembly of the resulting two 

element characteristic matrix, we obtain the following system characteristic matrix. 
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Imposing 

the boundary conditions and solving the resulting matrix, we obtain 
a1 = 200.0000 
a2 = 196.0830 
a3 = 196.7467 
a4 = 202.0073 
a5 = 212.0343 

3.2.3 7-Node C0 – Quadratic element solution 
The system characteristic matrix is given as: 

 
 
 
 
 
 
 
 
 

(3.1) 
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a1 = 200.0000 
a2 = 196.8809 
a3 = 195.8047 
a4 = 196.7553 
a5 = 199.7470 
a6 = 204.8201 
a7 = 212.0466 

 
4.0 Rsesults and discussion 

The temperature at the nodes for different meshes using linear and quadratic interpolation 
functions are shown in Table 4.1. The temperatures at points between nodes are also shown in Table 4.1.  
The numerical value of the calculated nodal degree of freedom shows progressive improvement of the 
temperature with convergence characteristic. The absolute point wise error is not greater than 7 percent 
for all points considered along the domain showing an admirable rate of convergence to the exact 
solution. Successive decrease in the length of the elements produces solutions which approach the exact 
solution. Figure 4.1 shows the result obtained using the linear element and the exact. It can be seen that 
within the ranges 2.4 – 2.6, 5.2 – 6.0 and 6.8 – 7.8, there is a marked difference between the solutions 
obtained using the analytical and the linear finite element solution. The reason for this deviation is as a 
result of the fact that the gradient of the solution within these ranges is very high. . Local mesh refinement 
can be used to remedy this situation if linear elements are used to discretize the domain of the fiber. 
Figure 4.2 shows the result obtained using quadratic finite elements compared with the exact. It can be 
seen that the finite element solution is admirably close to the exact at all points along the domain.  
 

Table 4.1: Showing nodal temperatures along the fiber for linear, quadratic interpolation and exact solution 
 

Distance/
No of 
Element 

Nodal temperatures for Co – Linear 
Elements for different Meshes 

Nodal temperatures for Co-
Quadratic Element for 
different Meshes 

Exact Nodal 
temperature 

5 4 3 2 1 2 3  
0 200 200 200 200 200 200 200 200 
1.7 197.01 197.31 197.82 198.81 196.81 196.83 196.88 196.83 
2 196.48 196.84 197.43 198.60 196.41 196.49 196.83 196.50 
2.5 196.36 196.05 196.79 198.25 196.05 196.08 196.08 196.08 
3.3 196.18 196.20 195.72 197.69 196.77 195.79 195.80 195.80 
3.4 196.32 196.28 195.84 197.67 195.77 195.79 195.80 195.80 
4 195.90 196.34 196.54 197.20 195.91 195.93 195.91 195.94 
5 196.84 196.69 197.71 196.50 196.75 196.74 196.67 196.75 
5.1 196.42 196.90 197.83 198.81 196.87 196.86 196.75 196.87 
6 198.25 198.79 198.88 199.54 198.32 198.27 198.17 198.30 
6.6 199.53 200.05 199.62 201.37 199.62 199.56 199.43 199.58 
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Distance/
No of 
Element 

Nodal temperatures for Co – Linear 
Elements for different Meshes 

Nodal temperatures for Co-
Quadratic Element for 
different Meshes 

Exact Nodal 
temperature 

5 4 3 2 1 2 3  
6.8 199.10 200.47 199.93 201.98 200.12 200.00 199.74 200.07 
7.5 201.45 201.94 202.94 204.11 202.07 202.00 201.61 202.01 
8 203.58 203.94 204.78 205.63 203.70 203.63 203.18 203.63 
8.5 205.68 205.95 206.62 207.15 205.50 205.44 204.82 205.44 
10 211.992 211.96 211.71 211.71 212.03 212.03 212.04 212.04 
 

 
Figure 4.1: Graph showing temperature linear element and exact 

 
Figure 4.2: Graph showing temperature linear element and exact 
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5.0 Conclusion 

Finite element analysis of the temperature distribution in a heat conducting fiber has been 
presented. It has been shown that the present method can be used to predict the temperature distribution 
accurately with successive mesh refinement. Three node quadratic finite elements have been shown to 
produce a more accurate solution to the equations governing the temperature distribution in a heat 
conducting fiber than linear finite elements. The potential of the finite element method has been 
successfully demonstrated. 
 

References 
[1] Burnet D.S (1988), Finite Element Analysis- From Concepts to Applications, Addison Wesley Publishing Company, 

24p 
[2] Hansen, G.A., Bendsoe, M.P., and Sigmund, O., 2006, Topology Optimization of heat Conduction problems using the 

finite volume method, structural and Multidisciplinary optimization, vol. 31, issue 4, pp 251 – 259. 
[3] Milovskaya, L.S., and Cherpakov, P.V., 2004, Finite difference solution of conjugate Heat conduction problems, 

Journal of Engineering Physics and thermophysics  vol. 35, issue 5, pp 1379 – 1383.  
[4] Paulo, F, Florenta, J.C, and Ambrosia, J, 2006, Journal Bearings Subjected to Dynamic  

Loads: The analytical Mobility Method, Mecãnica Experimental, vol 12, pp 116-127. 
[5] Randall, J.D., 1976, Finite difference solution of the inverse heat conduction problem and ablation, Heat Transfer and 

Fluid Mechanics Institute Proceedings, pp. 257-269. 
[6] Ravinder, B.S, 2003, Analysis of Hydrodynamic effects of the microasperity shapes on thrust bearing surfaces, 

unpublished master’s degree thesis, University of Kentucky, pp 43 
[7] Schneider, G.E, and Zedan, M., 1982, American Institute of Aeronautics and Astronautics and American Society of 

Mechanical Engineers Joint Thermophysic,Fluids, Plasma and Heat Transfer Conference, 3rd, St. Louis, 11 p. 
[8] William B.S (1990), A First Course in Finite Element Method, First Edition, McGraw Hill Higher Education, 780p 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


