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Abstract 

 
In this work the response of an elastic beam supported by viscoelastic 

foundation (Winkler Model) to an external excitation (force) is investigated with 
particular attention to the efect of the excitation by a multipple cyclic moving load. The 
effect of the multiplicity of the cyclic - moving load with respect to the amplitude of 
vibration of the structure is examined. It was. It was observed that the multipple load 
system has a multiplicative effect on the condition of the resonance of the beam – 
moving load on the condition of the resonance of the beam – moving load system. 
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1.0 Introduction 
 With the ever increasing velocities anticipated for future, sea, land and air vehichles one can expect 
corresponding increase in the number o situations in which the suitability of a structure depends on its 
ability to withstand the effect of a moving load. A large variety of structural configurations in which such 
dynamic load can be applied includes beams, plates, shells etc. These structures may either be elastic, 
viscoelastic or inelastic and the moving load may be of constant or variable magnitude. In addition to the 
edge constraints the structure may or may not be continuosly supported by the foundation. 
 Associated with this dynamic system are the phenomena of resonance with it ambivalent 
properties. This is a technical term that discribes the sudden amplifiction of a vibrating body when the 
frequency of the driving (external excitation) force approaches the natural frequency of the body. This is a 
fequent occurrence in the field of electronics, accoustics, highway and structural engineering etc. while 
this phenomenon is desirable in some fields such as comminication engineering it is a nuisance in the 
field of strutural and high way engineering. The Tacoma narrow bridge disaster in Washington is a clear 
example of the undesirability of resonance in structures which is actually the motivation for this research 
work. 
 In this reseach work therefore an elastic beam of length ρ is transverse by multiple cyclic moving 
point loads at position χi.  It is assumed that the ith load is moving with transverse and  
longitudinal frequencies of ɷi and βi respectively. The position of the ith load is defined parametrically 
according to Aiyesimi [1] as;  

i i i ix x Sin tχ β= +%  
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 The beam is futher assumed to be continuously supported by a viscoelastic foundation with a 
viscosity constantε . This model is adopted because of the practical importance of Viscoelastic 
foundations in those viscoelastic materials are very useful for their high energy dissipation capability. 
Very often attempts are made in practical situations exploiting their energy dissipation properties in 
damping undesirable vibrations. 
 Hence for the aforementioned reason we have considered the model integrating the desirable 
property of viscosity into the moving load – beam system. 
 
2.0 Mathematical formulation 
 The uniform bean of length ρ, with uniform mass per unit length m, resting on a Kelving 
foundation of viscosity ε0, is assumed to be simply-supported, at both ends.  At time t = 0, the load F(x,t) 
is dropped on the beam at the point x0.  Consequently, the external excitation by the moving load results 
in the transverse displacement z(x,t) of the bean from its equilibrium position.  According to Aiyesimi [1], 
the governing equation of motion of the beam is given as 
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 In particular, considering a multiple cyclic moving load, then F(x,t), according to Oni [2] takes the 

form:  ( ) ( )[ ]∑ +−= txxtPtxF jjjjj βχδω sincos,    (2.2) 

We therefore have as the governing differential equation for our beam-load dynamic system as 
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where EI = bending stiffness of beam 
 N = prestressed axial force on beam 
 K = elastic coefficient of beam 
 Pi = constant amplitude of the kth load 
 ɷi = transverse frequency of the kth load 
 βi = longitudinal frequency of the kth load 
 xi = χisinβit = position of the kth load at time t 
 δ  = direct delta function 
We recall that for a beam with simple ends the corresponding boundary conditions for (2.3) is given as  

   [ ] 0=β
n

i zz      (2.4) 

In the case of a drop load the corresponding initial conditions are 
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3.0 Solution technique 
 In this section we discuss the solution of the initial-boundary-value problem (2.3) through (2.5).  
Assuming a solution of the form 
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Multiplying through (3.2) by x
r

ρ
π

sin  and integrating through the length of the beam yields,
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Defining the following parameters: 
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and invoking the following Bessel function identities as found in Watson [4]. 
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we therefore have, 
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On applying the initial conditions (2.5) and substituting into (3.1) we thus have, 
 

( )

*
0 1 0 0

2 2
0

0 *
1 1 1 1 1 1

2 2
1

( , )

           

{ ( ) } { ( ) }

 
{ ( ) } { ( ) }

     

 

            

t t
j r j r r j j r

N
j

j j t t
r j j r j r r j j r

j

z x t

a Cos a t e Cos t Sin a t a e Sin t

a
J B

a Cos a t e Cos t Sin a t a e Sin t

a

γ λ

γ λ

γ
γ

χ
γ

γ

− −

∞

− −
= =

=

 Λ − − Λ + Λ − − Λ
 

+ 
 Λ − − Λ + Λ − − Λ +
 + 

∑∑

( )

*
2 3 2 2

2 2
2

*
3 3 3 3

2

     

{ ( ) } { ( ) }
             

                                         

{ ( ) } { ( )
                

t t
j r j r r j j r

j

t t
j r j r r j j

m j

a Cos a t e Cos t Sin a t a e Sin t

a

a Cos a t e Cos t Sin a t a e

J B

γ λ

γ λ

γ
γ

γ

− −

− −

Λ − − Λ + Λ − − Λ
+

Λ − − Λ + Λ − −
+

+
2 2

3

*
4 4 4 4

2 2
4

5 5

}

                                              

{ ( ) } { ( ) }
                

{ ( ) } {
                      

r

j

t t
j r j r r j j r

j

t
j r j r

Sin t

a

a Cos a t e Cos t Sin a t a e Sin t

a

a Cos a t e Cos t Sin

γ λ

γ

γ

γ
γ

γ

− −

−

Λ
+

Λ − − Λ + Λ − − Λ
+

+

Λ − − Λ +
+

*
5 5

2 2
5

6 6 6 6

2 2
6

7 7

2 1
0

 

( ) }

{ ( ) } { ( ) }

{ ( ) } { (
     

  ( )

j

t
r j j r

j

t t
r j r j r j j r

j

t
r j r j r

m j
m

SinA

a t a e Sin t

a

Cos a t e Cos t a Sin a t a e Sin t

a

Cos a t e Cos t a Sin

J B

λ

γ λ

γ

γ

γ
γ

γ

−

− −

−

∞

+
=

 
 
 
 
 
 
 
 
 
 
 
 
 
 Λ − − Λ 
 + 

′Λ − + Λ − Λ − + Λ
+

Λ − + Λ − Λ −
−

+

∑

∑

7 7

2 2
7

9 9 9 9

2 2
9

8 8 8 8

2 2
8

) }

{ ( ) } { ( ) }
   

{ ( ) } { ( ) }
  

t
j j r

j

t t
r j r j r j j r

j

t t
r j r j r j j r

j

a t a e Sin t

a
Cos

Cos a t e Cos t a Sin a t a e Sin t

a

Cos a t e Cos t a Sin a t a e Sin t

a

λ

γ λ

γ λ

γ

γ
γ

γ
γ

−

− −

− −

 
 
 
 ′ + Λ
 + 
 ′Λ − + Λ − Λ − + Λ − +
 

′ Λ − + Λ − Λ − + Λ
 −
 + 

2
*

]

         

,

                   and  ,  
2

j

kj j
kj r kj kj r kj j

r r kj

A

r x
Sin

where

a P
a a a a

a

π
ρ

γ χ
ρ

 ×  
 

 ′= −Λ + =Λ − − = Λ Λ Λ 

 



Journal of the Nigerian Association of Mathematical Physics Volume 
On the multiplicity effect of an m

4.0 Numerical simulation 
 In what follows, the deflect
various values of the parameters of the beam

1 2 1 2,  the amplitude ,x x p p and the symmetry of the positioning of the

the beam are considered. The physical constants 
 

5.0 Discussion of results and conclusion 
  Figure 4.1 above shows the deflection profiles of 
positioned symetrically at the point 0.01 
vibration prove to be additive pect to the magnitudes 
 In Figure 4.2 the magnitude of the load are varied. The results show that the 
increases with increasing magnitude of the load.
midpoint of the beam in Figure 4.3. 
system. 

Figure 4.1: Displacement along the length with varying load magnitude with the
load positioned symmetrically about the midpoint of the beam.

Figure 4.2: Displacement along the length with varying load 
load positioned symmetrically about the midpoint of the beam.
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In what follows, the deflection profiles along the lengthρ of the beam at a time is 
various values of the parameters of the beam-load system such as the 

and the symmetry of the positioning of the load relative to 

the beam are considered. The physical constants are adapted from Timoshenko [3]. 

 

 
Discussion of results and conclusion  

1 above shows the deflection profiles of the beam-multiload system with t
cally at the point 0.01 and 0.99 about the midpoint of the beam. 

vibration prove to be additive pect to the magnitudes of the load. 
2 the magnitude of the load are varied. The results show that the amplitude of vibration 

ases with increasing magnitude of the load.  The positioning of the load is skewed abo
3.  This results in a sharp increase in the amplitud of vibration of the 

 

: Displacement along the length with varying load magnitude with the 
load positioned symmetrically about the midpoint of the beam. 

: Displacement along the length with varying load amplitude with the 
load positioned symmetrically about the midpoint of the beam. 
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of the beam at a time is studied for 
load system such as the position 

oad relative to the midpoint of 

multiload system with the load 
 The amplitude of 

mplitude of vibration 
The positioning of the load is skewed about the 

This results in a sharp increase in the amplitud of vibration of the 
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  Finally, Figure 4.4 demostrates varaibility in the symmetrical positioning about the 
midpoint of the beam. The amplitude of vibrateion increases as the positions of 
midpoint of the beam. 
 From the observations above we therefore draw the following conclusion:
(i) The m-fold load system has a multiplying effect on the amplitude of vibration;
(ii) lack of symmetry of the positioning of the load has a distabilizing effect on the system;
(iii) The closer the positioning of the symmetrically placed load to the midpoint of 
 the higher the amplitude of vibration.
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Figure 4.3: Displacement along the length with varying load 
exhibiting skew positioning

Figure 4.4: Displacement along the length with varying load 
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4 demostrates varaibility in the symmetrical positioning about the 

he amplitude of vibrateion increases as the positions of the load approaches the 

From the observations above we therefore draw the following conclusion: 
fold load system has a multiplying effect on the amplitude of vibration; 

ack of symmetry of the positioning of the load has a distabilizing effect on the system;
The closer the positioning of the symmetrically placed load to the midpoint of the beam
the higher the amplitude of vibration. 
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