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Abstract

A non-homogeneous dastic cylinder of radius a containing arigid linein-
homogeneity under longitudinal shareisanalyzed for eastic compatibility. The fields
were derived in a closed form with each shown to depend only on the traction
prescribed on the material it represents unlike in the case of bimaterials of the same
geometry under similar loading. The stressfields are not singular and satisfy
conditions of continuity across the inhomogeneity thereby showing compatibility
between the matrix and the inhomogeneity.

1.0 Introduction

A central rigid line inhomogeneity runs through the entire lengtla &dhg nonhomogeneous
elastic cylinder and covers its diameter. The cylinder hdsis, a and is subjected to two prescribed
longitudinal tractionsT;, j = 1, 2 (Figure 1.1). The problem is to determine whether the inhoniggene
and the matrix are elastically compatible (see for exanip)eThe solution procedure is similar to those
applied in the determination of the distribution of stress in dglis of the same geometry studied in [2,
3]. The subscripts 1 and 2 are related to materials 1 and 2 respectively.

I

| 2

I
—a | a

I

I

I

T,
Figure 1.1 The Non-homdgeneous material, loads and In-homeige

2.0 Solution procedure
The line inhomogeneity lies along the raf/s= 0, £ 72. In correspondence with this mode of

loading, we seek displacememg (r, 49), j = 1,2 in thezdirection that satisfy the following boundary
value problem for the Laplace equation:
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—+t——+= Wi(r,8)=0-m<8<m 0<r<a 2.1
(ar2 ror r? aezj r.0) @D
W(r,8) = W,(r,0) =0 6=0zxr7 (2.2)

0,6 =T,(i=1-7<6<0),(j=20<6<n) (2.3)

The problem is made suitable for analysis by method of integral transfothe upper half plane
with the aid of the conformal mapping function:

a(z)= i(%j, z=réd" (2.4)

Let (p, ¢) be polar coordinates for the upper half plane (Figure 2.2) then
a(z)=u(r,8)+iv(r,0)= e’
— 2ar sind B a’-r?
a’ - 2arcosg+r?’ (r.)

" a®-2arcosf+r’
2 2\z 2_ .2
p(r,H):(a +2ar cosf +r j tandr. 6)= &7 25)

Implies u(r, 8) =

a® - 2ar cosf +r? 2ar sind
2
Therefore, a—'O(a, 6)= 0 and 6_(0(a, 6)= 1 =1rp (2.6)
or or asingd ap
The stress displacement relations are:
oW, M, OW
erz(r’e):luja_rj(r’e)’ Jj&z(r’ H)ZT]%("’H) (27)
oW, oW,
Chain rule leads to a—r'(a, 6?) =a—¢’(p, qa)g—f)(a, 6?) 0+£,0,xm j=12 (2.8)
Using these relations we se¥k (,0, qo) in the problem
9 19 1 0° .
—t+t——+—— [Wlp, ¢ =0 0<s@p<mp=20,j=12 2.9
(apz > op pzwj (0. 9) @< p20 =1 (2.9)

W, (0, 2)=0 (2.10)

oW, T

awl( ,0)=%<(1+;)2) (2.11a)
1

W (5, )=z, P (2.11b)

g T, 1+ 07)

The behaviour of the stresses az‘g,z(p, qo)= ijz(,o, qo) = 0(1) asp - 0= O(,o_z) asp — «
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Figure 2.2 Corresponding segments in the upper half plane
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3.0 Displacements from the transformed problem
When the Mellin integral transform &, (0, 9), j =1,2 define by

W, (s.¢)= [W,(p.9)p*"dp, ~1<Res<1 (3.1)
0
is applied to (2.10) — (3.1) the result is
d? —
[dw +SZJWJ-(S,§0): 0, —1<Res<l1 (3.2)
W(sZ) =0 (33)
A ( aT
5,0) = =% H(s) (3.42)
0g Hi
6V721 ( aT2
s, T) = H (s) (3.4b)
0 H,
where, by 3.2412 [4]
_ e _ T
H(s) = J-o 1+ p db = 2cos?s’ t<Res<l
Adopting a solution of (3.2) of the form
W (s,¢) = Als)sinsp+ B, (s)cossp (3.5)
leads, through (3.3) to
_ _a sinfs
B, (s) A (s) cosTs (3.6)

Making use of (3.4a,b) and (3,6) leads to

arT. aT. sinZ
A(S) = ——LH(s) andB,(s) =102 py(g)
24, H;SCos;s
which in turn yields
_ nat,; sinlg-=2
W, (s, = , sinfg—4)s (3.7)
2u;s CcoS 7S
The Mellin inversion formula gives
1 potio — s .
Wie.g) = [ W(sgords -1<c<1j=12 (3.8)
Inserting (3.7) into (3.8) yields
maTl, [ 1 cevio SIN@—Z)S _,
W(o.p) = — {—j sinlg~2)s ds (3.9)
2u, 27> scos s

Applying residue theory and Jordan’s lemma about contours in (3.9), the dispidsaan be written as,

Wlog = W{ zp“ '( )(Zn -1)- (_g)épz-lcméw 2ln-3)

[ 2n-1
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+i(p ) ssinfg-Z)(2n-1}, p<1 (3.10a)

n=1

(o)

-g(zﬁl—;;)z sir(go—’—zT) (2n-1), } p>1 (3.10b)

4.0 Conclusion
Guided by (3.10a,b) and (Figure 2.2), we observe that

2aT; c ( 1)n ! 2n 1, % (_1)n_1 2n-1
Wi(o.0)= 4 {In -1t " ~ (2n-1f PPl (412)

_2al, N ( )_ o0 N\ (_ )n_l 2n
- | L p>1 4.1b
1{np;2n1 +;(2n 1) p= (4.4

wheng =0-n<8<0,r =a we haveW,(p,0) = W,(a, 8). Now
_(1+cosd %

ola, 0)-(1_(;050) 020, +7T (4.2)

implies that, when the poillt (see Figure 1.1) is approached from the left, the displacement from (4.1a)
is
\_ 2aT, i
W (a,-z)= -0 5 )
T = (2!‘1 1)

Hence the left side dd is displaced in the negativadirection while the right side is displaced in the
positive z-direction, depicting antiplane displacement. Similarly

= @ - N (_1) 1, N (_1)n_1 2n-1
W, (o, ) = 7712{ Inpnz:; 1 P +n2:;—( )zp ,p<1l (4.33)

2n-1
_ZaTz c (_1) 1-2n c (_1)n_1 1-2n
7 {—lnp; 1P —Z; n1] 0 },p>1 (4.3b)
On the other hand
V\/](p ) 0 p<landp>1
consequently
W, (0. 2)=W,(r,£71) p<1
= W.(r,0) p>1
implies V\/l(r, t 77) =0 :WZ(r, t 77) (4.4a)
and W,(r,0)=0=W,(r,0) (4.4b)

When ¢ = 71 (correspondingt® <d<n, r =a) we haveWz(,o, 7T) =V\/2(a, 6?) and (4.2) also holds.

HenceV\/Z(a, 6?) =-W, (a, 9), 8 # 0, + 71 showing that displacements along the boundaries are antiplane
in the z-direction.
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From (3.10a,b), we derive (see, for instance [5])
ow. 2aT, © —2aT,
—L(p.2) = ?’{—ln 12 pz“‘l} = ' ( £ 2] np, p<1l(6=2nm) (452
j n=1

o¢ TH, 1-p
2aT. o —2aT.
=—‘{—Inpz ,01‘2”} = ’( 2'0 ]Inp, p>1(0=0) (4.5b)
T, n=1 WY, p -1
oW,
a—p’(p,g) =0 p<landp>1 (4.6)
From (2.5b)
d¢ - 2ar
—\r,x = . r<a
06" = pp
d0¢ 2ar
_r = — <
260 = o e
Along the inhomogeneity, the stresses in the angular direction are given by
BoW D |
0, 6) = T’ a—é;(p,z)a—z(r,ﬁ), 0=0 +mr<a j=12 (47)
Hence
-T
O,rtn) = 7‘[?) In[:t:j, r<a (4.8a)
-T.
0,,(r, 0) = T‘[%) In(ZJ_r [j r<a (4.8D)

Aided by (4.6) and (4,8a,b), we deduce that the only stresses acting along tmegeheity are
nonsingular and satisfy the relations;
01, £71) = 0,,(r, £7), 0,(r,0) = 0,,(r,0) (4.9)
The conditions in (4.9) express continuity of the stresses sathaes inhomogeneity. Observing that
(4.4a,b) asserts continuity of displacements across the in lemiog it follows that the matrix and the
in homogeneity are elastically compatible. Therefore cracking can natwben finite loads are applied.
The fields, (3.10a,b) indicate that each material- displacedeg@nds only on the traction applied on it
and on its peculiar material constant, unlike the case of himlatef the same geometry with similar
loading, where each material- displacement depends jointly oratdi®hs applied to both materials and
on a material constant = ol (see, for example [2,6] ).
H + [
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