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Abstract 
 

A non-homogeneous elastic cylinder of radius a containing a rigid line in-
homogeneity under longitudinal share is analyzed for elastic compatibility. The fields 
were derived in a closed form with each shown to depend only on the traction 
prescribed on the material it represents unlike in the case of bimaterials of the same 
geometry under similar loading. The stress fields are not singular and satisfy 
conditions of continuity across the inhomogeneity thereby showing compatibility 
between the matrix and the inhomogeneity.  

 
 
1.0 Introduction 

A central rigid line inhomogeneity runs through the entire length of a long nonhomogeneous 
elastic cylinder and covers its diameter. The cylinder has radius, a and is subjected to two prescribed 
longitudinal tractions Tj, j = 1, 2 (Figure 1.1). The problem is to determine whether the inhomogeneity 
and the matrix are elastically compatible (see for example [1]). The solution procedure is similar to those 
applied in the determination of the distribution of stress in cylinders of the same geometry studied in [2, 
3]. The subscripts 1 and 2 are related to materials 1 and 2 respectively. 
 
 
 
 
 
 
 
 
 

Figure 1.1: The Non-homogeneous material, loads and In-homogeneity 
 
2.0 Solution procedure 

The line inhomogeneity lies along the rays πθ ±= ,0 . In correspondence with this mode of 

loading, we seek displacements ( ) 2,1,, =jrW j θ  in the z-direction that satisfy the following boundary 

value problem for the Laplace equation: 
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( ) ( ) πθθθ ±=== ,00,, 21 rWrW      (2.2) 

( ) ( ) ( )πθθπθσ <<=<<−== 0,2,0,1,, jjTa jzjr    (2.3) 

The problem is made suitable for analysis by method of integral transform on the upper half plane 
with the aid of the conformal mapping function: 
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Let ( )φρ,  be polar coordinates for the upper half plane (Figure 2.2) then 
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The stress displacement relations are: 
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Using these relations we seek ( )φρ,jW  in the problem 
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The behaviour of the stresses are ( ) ( ) ( )10,, == φρσφρσ ρφ zjzj  as 0→ρ  = ( )20 −ρ   as ∞→ρ  

 
 
 
 
 
 
 
 

Figure 2.2: Corresponding segments in the upper half plane 
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3.0 Displacements from the transformed problem 

When the Mellin integral transform of ( ) 2,1,, =jW j φρ  define by 
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is applied to (2.10) – (3.1) the result is  
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where, by 3.2412 [4]   
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Adopting a solution of (3.2) of the form 

( ) ( ) ( ) φφφ ssBssAsW jjj cossin, +=    (3.5) 

leads, through (3.3) to   
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Making use of (3.4a,b) and (3,6) leads to  

   ( ) ( )sH
s

aT
sA

j

j
j µ2

=  and ( ) ( )sH
s

s

s

aT
sB

j

j
j

2

2

cos

sin
π

π

µ
=  

which in turn yields  

( ) ( )
s

s

s

aT
sW

j

j
j

2
2

2

cos

sin

2
,

π

πφ
µ

π
φ −

=     (3.7) 

The Mellin inversion formula gives 
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Inserting (3.7) into (3.8) yields  
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Applying residue theory and Jordan’s lemma about contours in (3.9), the displacements can be written as, 
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4.0 Conclusion 

Guided by (3.10a,b) and (Figure 2.2), we observe that  

( ) ( ) ( )
( ) 1,

12

1
12

1
ln

2
0, 12

1
2

1
12

1

1

1

1
1 <









−
−+

−
−= −

∞

=

−
−

∞

=

−

∑∑ ρρρ
πµ

ρ n

n

n
n

n

n

nn

aT
W    (4.1a) 

 
( ) ( )

( ) 1,
12

1
12

1
ln

2 21

1
2

1
21

1

1

1

1 >








−
−+

−
−= −

∞

=

−
−

∞

=

−

∑∑ ρρρρ
πµ

n

n

n
n

n

n

nn

aT
               (4.1b) 

when ar =<<−= ,0,0 θπφ  we have ( ) ( )θρ ,0, 11 aWW = .  Now 
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implies that, when the point D (see Figure 1.1) is approached from the left, the displacement from (4.1a) 
is 
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Hence the left side of D is displaced in the negative z-direction while the right side is displaced in the 
positive z-direction, depicting antiplane displacement. Similarly 
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On the other hand 
    ( ) 0, 2 =πρjW     1<ρ  and 1>ρ  

consequently 
( ) ( )πρ π ±= ,, 2 rWW jj   1<ρ  

   = ( )0,rW j   1>ρ  

implies   ( ) ( )ππ ±==± ,0, 21 rWrW      (4.4a) 

and     ( ) ( )0,00, 21 rWrW ==                  (4.4b) 

When πφ =  (corresponding to ar =<< ,0 πθ ) we have ( ) ( )θπρ ,, 22 aWW =  and (4.2) also holds.  

Hence ( ) ( ) πθθθ ±≠−= ,0,,, 12 aWaW  showing that displacements along the boundaries are antiplane 
in the z-direction. 
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From (3.10a,b), we derive (see, for instance [5])  
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From (2.5b) 
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Along the inhomogeneity, the stresses in the angular direction are given by 
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Aided by (4.6) and (4,8a,b), we deduce that the only stresses acting along the in homogeneity are 
nonsingular and satisfy the relations; 
  ( )πσ θ ±,1 rz  = ( ),,2 πσ θ ±rz   ( )0,1 rzθσ   =  ( )0,2 rzθσ    (4.9) 

The conditions in (4.9) express continuity of the stresses across the inhomogeneity. Observing that 
(4.4a,b) asserts continuity of displacements across the in homogeneity, it follows that the matrix and the 
in homogeneity are elastically compatible. Therefore cracking can not set in when finite loads are applied. 
The fields, (3.10a,b) indicate that each material- displacement depends only on the traction applied on it 
and on its peculiar material constant, unlike the case of bimaterials of the same geometry with similar 
loading, where each material- displacement depends jointly on the tractions applied to both materials and 

on a material constant 
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