An elastic bimaterial cylinder under anti-plane shear

James N. Nnadi
Department of Mathematics
Abia State University, Uturu
Abia State, Nigeria

Abstract

Abstract

This analysis of the stress distribution in an elastic bimaterial cylinder reveals that the stresses are nonsingular along the interface if the prescribed shear stresses remain finite. The stresses $\sigma_{i r z}(r, \theta), \theta=0, \pm \pi, j=1,2$ in the radial direction will varnish if the material becomes homogeneous and the loads self equilibrating. The stresses in the angular direction, $\sigma_{j \theta z}(r, \theta), \theta=0, \pm \pi, j=1,2$ which tend to tear the interface are also not singular if the loads remain finite but varnish if the loads are equal.

1.0 Introduction

The deformation fields in elastic cylindrical materials have been studied in [1, 2, 3] under self equilibrated shear loads. Here, the fields are investigated for an isotropic elastic bimaterial cylinder with a perfectly bonded interface and subjected to two shear tractions $T_{j}, \mathrm{j}=1,2$ (Figure 1.1). The boundary conditions in [3] lead to material constants of the type given in [4] while the continuity conditions here leads to material constants, $\gamma=\frac{\mu_{2}-\mu_{1}}{\mu_{2}+\mu_{1}}$ obtained in [5]. Fields in [3] can be shown to be special cases of the present results. The subscripts 1 and 2 refer to materials 1 and 2 respectively.

Figure 1.1: Geometry of the Problem

[^0]The governing boundary value problem is formulated in terms of polar coordinates for the nonvarnishing components of displacement $W_{j}(r, \theta), j=1,2$ as

$$
\begin{align*}
& \left(\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}}\right) W_{j}(r, \theta)=0,-\pi \leq \theta \leq \pi, 0 \leq r \leq a \tag{1.1}\\
& W_{j}(r, \theta)=W_{2}(r, \theta), \mu_{1} \frac{\partial W_{1}}{\partial \theta}(r, \theta)=\mu_{2} \frac{\partial W_{2}}{\partial \theta}(r, \theta) \quad \theta=0, \pm \pi \tag{1.2}\\
& \frac{\partial W_{1}}{\partial r}(a, \theta)=\frac{T_{1}}{\mu_{1}}, \frac{\partial W_{2}}{\partial r}(a, \theta)=\frac{T_{2}}{\mu_{2}},-\pi<\theta<0,0 \prec \theta \prec \pi, \tag{1.3}
\end{align*}
$$

2.0 Solution of the boundary value problem

It is known [2] that the transformation $g(z)=\frac{a+z}{a-z}, z=r e^{i \theta}=u(r, \theta)+i v(r, \theta)$ maps the cylindrical region onto the right half plane with polar coordinates (ρ, ϕ) corresponding to $u(r, \theta)$ $=\rho \cos \phi, v(r, \theta)=\rho \sin \phi$. Therefore

$$
u(r, \theta)=\frac{a^{2}-r^{2}}{a^{2}-2 a r \cos \theta+r^{2}}, \quad v(r, \theta)=\frac{2 \operatorname{ar} \sin \theta}{a^{2}-2 \operatorname{arcos} \theta+r^{2}}
$$

So that,

$$
\begin{gather*}
\rho(r, \theta)=\left(\frac{a^{2}+2 a r \cos \theta+r^{2}}{a^{2}+2 a r \cos \theta+r^{2}}\right)^{1 / 2} \tag{2.4a}\\
\tan \phi(r, \theta)=\frac{2 a r \sin \theta}{a^{2}-r^{2}} \tag{2.4b}
\end{gather*}
$$

These coordinate relationships and the transformation converts the search to that for $W_{j}(\rho, \phi), j=1,2$ such that

$$
\begin{align*}
& \left(\frac{\partial^{2}}{\partial \rho^{2}}+\frac{1}{\rho} \frac{\partial}{\partial \rho}+\frac{1}{\rho^{2}} \frac{\partial^{2}}{\partial \phi^{2}}\right) W_{j}(\rho, \phi)=0-\frac{\pi}{2} \leq \phi \leq \frac{\pi}{2}, \rho \geq 0 \tag{2.5}\\
& W_{1}(\rho, \phi)=W_{2}(\rho, 0), \mu_{1} \frac{\partial W_{1}}{\partial \phi}(\rho, 0)=\mu_{2} \frac{\partial W_{2}}{\partial \phi}(\rho, 0) \tag{2.6}\\
& \frac{\partial W_{j}}{\partial \phi}\left(\rho,(-1)^{j} \frac{\pi}{2}\right)=(-1)^{j} \frac{2 a T_{j}}{\mu_{j}} \tag{2.7}
\end{align*}
$$

The solution procedure requires solving the differential equation

$$
\begin{equation*}
\left(\frac{d^{2}}{d \phi^{2}}+s^{2}\right) \bar{W}(s, \phi)=0,-1<\operatorname{Re} s<1 \tag{2.8}
\end{equation*}
$$

subject to the conditions

$$
\begin{align*}
& \bar{W}_{1}(s, 0)=\bar{W}_{2}(s, 0), \quad \mu_{1} \frac{\partial \bar{W}_{1}}{\partial \phi}(s, 0)=\mu_{2} \frac{\partial W_{2}}{\partial \phi}(s, 0) \tag{2.9}\\
& \frac{\partial \bar{W}_{j}}{\partial \phi}\left(s,(-1)^{j} \frac{\pi}{2}\right)=(-1)^{j} \frac{2 a T_{j}}{\mu_{j}} q(s) \quad j=1,2 \tag{2.10}
\end{align*}
$$

where $\bar{W}(s, \phi)$ is the Mellin transform of $W(\rho, \phi)$ applied to (2.5) - (2.7) and defined by

$$
\bar{W}(s, \phi)=\int_{0}^{\infty} W(\rho, \phi) \rho^{s-1} d \rho,-1<\operatorname{Re} s<1
$$

While by 3.2412 [6], $q(s)=\int_{0}^{\infty} \rho^{s}\left(1+\rho^{2}\right)^{-1} d \rho=\frac{\pi}{2 \cos \frac{\pi}{2} s},-1<\operatorname{Re} s<1$. We have used the behaviour of the stresses given by

$$
\begin{aligned}
\sigma_{\rho z}(\rho, \phi) & =\sigma_{\phi z}(\rho, \phi)=0(1) \text { as } \rho \rightarrow 0 \\
& =0\left(\rho^{-2}\right) \text { as } \rho \rightarrow \infty
\end{aligned}
$$

Using (2.4), (2.9),(2.10) and the solution of (2,8) in the form

$$
\begin{equation*}
\bar{W}_{j}(s, \phi)=E_{j}(s) \sin \phi s+F_{j}(s) \cos \phi s \tag{2.11}
\end{equation*}
$$

leads to

$$
\begin{align*}
& F_{1}(s)=F_{2}(s), \mu_{1} E_{1}(s)=\mu_{2} E_{2}(s) \\
& E_{j}(s)=\frac{2 a \pi}{s \cos ^{2} \frac{\pi}{2} s} \frac{1}{\mu_{j}}\left(\frac{T_{2}}{\mu_{2}}-\frac{T_{1}}{\mu_{1}}\right) \tag{2.12}\\
& F_{j}(s)=\frac{a \pi}{s \cos \frac{\pi}{2} s}\left\{(\gamma+1) \frac{T_{2}}{\mu_{2}}-(\gamma-1) \frac{T_{1}}{\mu_{1}}\right\} \tag{2.13}
\end{align*}
$$

where γa is characteristic constant defined by $\gamma=\frac{\mu_{2}-\mu_{1}}{\mu_{1}+\mu_{2}}$. The displacements are obtained from the inverse Mellin transform defined by

$$
\begin{equation*}
W_{j}(\rho, \phi)=\frac{1}{2 \pi i} \int_{\alpha-i \infty}^{\alpha+i \infty} \bar{W}_{j}(s, \phi) \rho^{-s} d s,-1<\alpha<1, j=1,2 \tag{2.14}
\end{equation*}
$$

The integrand in (2.14) has $\bar{W}(s, \phi)$ deduced by substituting (2.12) and (2.13) into (2.11) therefore

$$
\begin{equation*}
W_{j}(\rho, \phi)=\pi a\left\{\frac{1}{\mu_{j}}\left(\frac{\mu_{1} \mu_{2}}{\mu_{1}+\mu_{2}}\right)\left(\frac{T_{2}}{\mu_{2}}-\frac{T_{1}}{\mu_{1}}\right) I_{(1)}(\rho, \phi)+\left[(\gamma+1) \frac{T_{2}}{\mu_{2}}-(\gamma-1) \frac{T_{1}}{\mu_{1}}\right] I_{(2)}(\rho, \phi)\right\} \tag{2.15}
\end{equation*}
$$

where

$$
\begin{align*}
& I_{(1)}(\rho, \phi)=\frac{1}{2 \pi i} \int_{\alpha-i \infty}^{\alpha+i \infty} \frac{\sin s \phi}{s \cos ^{2} \frac{\pi}{2} s} \rho^{-s} d s \tag{2.16}\\
& I_{(2)}(\rho, \phi)=\frac{1}{2 \pi i} \int_{\alpha-i \infty}^{\alpha+i \infty} \frac{\cos s \phi}{s \sin \pi s} \rho^{-s} d s \tag{2.17}
\end{align*}
$$

Application of residue theory and contour closure in accordance with Jordan's lemma for $|\phi| \leq \frac{\pi}{2}$, leads to

$$
\begin{aligned}
& \mathrm{I}_{(1)}(\rho, \phi)=\frac{-4}{\pi^{2}}\left(\ln \rho \sum_{n=1}^{\infty} \frac{\rho^{2 n-1}}{2 n-1} \sin (2 n-1) \phi+\sum_{n=1}^{\infty} \frac{\rho^{2 n-1}}{(2 n-1)^{2}} \sin (2 n-1) \phi\right. \\
& \left.-\quad \phi \sum_{n=1}^{\infty} \frac{\rho^{2 n-1}}{(2 n-1)} \cos (2 n-1) \phi\right), \rho<1 \\
& =\frac{4}{\pi^{2}}\left(\ln \rho \sum_{n=1}^{\infty} \frac{\rho^{1-2 n}}{2 n-1} \sin (2 n-1) \phi+\sum_{n=1}^{\infty} \frac{\rho^{1-2 n}}{(2 n-1)^{2}} \sin (2 n-1) \phi-\phi \sum_{n=1}^{\infty} \frac{\rho^{1-2 n}}{(2 n-1)} \cos (2 n-1) \phi\right), \rho>1
\end{aligned}
$$

$$
\begin{array}{rlr}
I_{(2)}(\rho, \phi) & =\frac{1}{\pi} \sum_{n-1}^{\infty} \frac{(-1)^{n}}{n} \rho^{n} \cos n \phi & \rho \\
& =\frac{-1}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \rho^{-n} \cos n \phi & \rho>1
\end{array}
$$

3.0 Analysis of the interface field

Along the interface $\phi=0, \theta=0$ and $\theta= \pm \pi$, hence $I_{(1)}(\rho, 0)=0 \rho \geq 0$

$$
\begin{aligned}
& I_{(2)}(\rho, 0)=\frac{1}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \rho^{n}=\frac{\pi}{2} \ln \left(1-2 \rho+\rho^{2}\right), \quad \rho<1 \\
& =-\frac{1}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \rho^{-n}=-\frac{\pi}{2} \ln \left(1-2 \rho^{-1}+\rho^{-2}\right), \quad \rho>1
\end{aligned}
$$

But using (2.4a), it follows that

$$
\begin{aligned}
1-2 \rho(r, \pm \pi)+\rho^{2}(r, \pm \pi) & =\{1-\rho(r, \pm \pi)\}^{2} \\
& =\left(\frac{2 r}{a+r}\right)^{2}, r<a \\
1-2 \rho^{-1}(r, 0)+\rho^{-2}(r, 0) & =\left(1-\rho^{-1}(r, 0)\right)^{2} \\
& =\left(\frac{2 r}{a+r}\right)^{2}, r<a
\end{aligned}
$$

Therefore, for $r<a, \theta=0, \pm \pi, j=1,2$

$$
\begin{equation*}
W_{j}(r, \theta)=2 a\left[(\gamma+1) \frac{T_{2}}{\mu_{2}}-(\gamma-1) \frac{T_{1}}{\mu_{1}}\right] \ln \left(\frac{2 r}{a+r}\right) \tag{3.1}
\end{equation*}
$$

The interface stresses satisfy

$$
\sigma_{j \rho z}(\rho, 0)=\mu_{j} \frac{\partial W_{j}}{\partial \rho}(\rho, 0), \sigma_{j \phi z}(\rho, 0)=\frac{\mu_{j}}{\rho} \frac{\partial W_{j}}{\partial \phi}(\rho, 0), j=1,2
$$

For the radial stresses we note that

$$
\begin{align*}
& \quad \frac{\partial \rho}{\partial r}(r, \theta)=\frac{2 a}{(a-r)^{2}}, \frac{\partial \rho}{\partial r}(r, \pm \pi)=\frac{-2 a}{(a+r)^{2}} \\
& \frac{\partial I_{(2)}}{\partial \rho}(\rho, \theta)=\frac{a+r}{2 \pi a}, r<a, \theta= \pm \pi \tag{3.2a}\\
& =\frac{1}{2 \pi a} \frac{(a-r)^{2}}{(a+r)}, r<a, \theta=0 \tag{3.2b}
\end{align*}
$$

Hence from (2.15) and (3.2a,b)

$$
\begin{aligned}
\sigma_{j r z}(r, \theta)=\mu_{j} & \frac{\partial W(\rho, 0)}{\partial \rho} \frac{\partial \rho}{\partial r}(r, 0), r<a \\
& =\mu_{j} \frac{\partial W_{j}}{\partial \rho}(\rho, 0) \frac{\partial \rho}{\partial r}(r, \pm \pi), r<a
\end{aligned}
$$

That is

$$
\sigma_{j r z}(r, 0)=\mu_{j}\left[(\gamma+1) \frac{T_{2}}{\mu_{2}}-(\gamma-1) \frac{T_{1}}{\mu_{1}}\right] \frac{a}{a+r}=-\sigma_{j r z}(r, \pm \pi)
$$

The exact form of the angular (opening) stresses can be found after noting that

$$
\begin{aligned}
\frac{\partial I_{01}}{\partial \phi}(\rho, 0) & =\frac{-1}{a r \pi^{2}}(a+r)^{2} \ln \left(\frac{a-r}{a+r}\right), r<a \quad \theta= \pm \pi \\
& =\frac{-1}{a r \pi^{2}}(a-r)^{2} \ln \left(\frac{a+r}{a-r}\right), r<a \quad \theta=0
\end{aligned}
$$

and that $\frac{\partial I_{(2)}}{\partial \phi}(\rho, 0)=0, \rho \geq 0$.
Similarly,

$$
\begin{gathered}
\frac{\partial \phi}{\partial \theta}(r, 0)=\frac{2 a r}{a^{2}-r^{2}}, r<a, \\
\frac{\partial \phi}{\partial \theta}(r, \pm \pi)=\frac{-2 a r}{a^{2}-r^{2}}, r<a \\
\sigma_{j \theta_{z}}(r, 0)=\frac{\mu_{j}}{r} \frac{\partial W_{j}}{\partial \phi}(\rho, 0) \frac{\partial \phi}{\partial \theta}(r, 0), r<a \\
=-\frac{2}{\pi} \frac{\mu_{1} \mu_{2}}{\left(\mu_{1}+\mu_{2}\right)}\left(\frac{T_{2}}{\mu_{2}}-\frac{T_{1}}{\mu_{1}}\right)\left(\frac{a}{r}\right)\left(1-\frac{r}{a}\right)^{2}\left(1-\frac{r^{2}}{a^{2}}\right)^{-1} \ln \left(\frac{a+r}{a-r}\right) \\
\sigma_{j \theta z}(r, \pm \pi)=\frac{\mu_{j}}{r} \frac{\partial W_{j}}{\partial \phi}(\rho, 0) \frac{\partial \phi}{\partial \theta}(r, \pm \pi), r<a \\
=\frac{2}{\pi} \frac{\mu_{1} \mu_{2}}{\left(\mu_{1}+\mu_{2}\right)}\left(\frac{T_{2}}{\mu_{2}}-\frac{T_{1}}{\mu_{1}}\right)\left(\frac{a}{r}\right)\left(1+\frac{r}{a}\right)^{2}\left(1-\left(\frac{r}{a}\right)^{2}\right)^{-1} \ln \left(\frac{a-r}{a+r}\right)
\end{gathered}
$$

Then,

3.0 Conclusion

The displacements have been found in closed form in terms of the bimaterial constant γ and the applied stresses. The fields along the interfaces are also obtained in a closed form and are not singular. They have a component which vanishes when the loads are self equilibrating and the material is homogenous.

Along the interface the displacements are given by (3.1). The radial stresses $\sigma_{j r z}(r, \theta)$, $\theta=0, \pm \pi, j=1,2$ are not singular but will varnish if the material becomes homogenous $\left(\mu_{1}=\mu_{2}\right)$ and the loads self equilibrating $\left(T_{1}=-T_{2}\right)$. The angular stresses $\sigma_{j \theta_{z}}(r, \theta), \theta=0, \pm \pi, j=1,2$ are non-singular and varnish only when the material is homogenous and the loads are equal $\left(T_{1}=T_{2}\right)$, therefore the interface does not crack if the loads remain finite.

Reference

[1] Ibem C. I (1994): A mixed Boundary Value Problems for A Cylinder Under Anti-Plane Strain, M.Sc Thesis in Mathematics, University Nigeria Nsukka (Unpublished) 41p.
[2] Nnadi J. N. (2001): A Neumann problem for an Elastic Cylinder Under Out-Of-Plane Loading. Global Journal of Pure and Applied Mathematics, Vol 7, No3 pp541-544.
[3] Nnadi J. N. (2001) Bonded Elastic Cylindrical Solid Under Anti-Plane Share, Journal of Nigerian Association of Mathematical Physics, Vol 5,pp 241 - 250.
[4] Honein T, Honein E and Herrmann G; (1994): Circularly Cylindrical and Plane Layered Media in Anti-Plane Elastostatics. Journal of Applied Mechanics, Vol 61, pp243-249.
[5] Hwang E. H., Chor S. R. and Earmme (1992) Inclined Edge Crack in Two Bonded Elastic Quarter Planes Under Out-OfPlane Loading. International Journal of Fracture Vol 56, R 39 - R 49.
[6] Gradshyteyn I. S. and Ryshik I, M. (1965): Tables of Integrals, Series and Products Academic Press, New York.

[^0]: e-mail: drjnnnadi@yahoo.co.uk

