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Abstract

Although convex functions have been characterized using the derivative,
integral and monotonicity of the derivative, a characterization which involves a
combination of these concepts has not been achieved. Thisisthe centre of thiswork. In
particular we show that for functions enjoying the geometric chord property, this
characterization gives equivalence for the definitions of convexity.
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1.0 Introduction

A search through calculus text reveals that there are essetitiakbyapproaches used in defining
convex functionsA function fdefined over an open interval | is said to be convex if
i. f' exists and the graph of f lies on or above the tanget,gt(x)) for eachx € I, [10];

i f'x) < f'(x2) Vg <xp, [7];
iii. f"(x) =0,[3].

However, the geometric chord property requires neither theeegistoff” norf” onl and as such
will apply to a wider class of functions including non-smooth functiohe shall see how this is
equivalent to those definitions more commonly used.

Perhaps it is a surprise that this simple geometric chorcegiyoforcesf to be continuous, and
both the right- and left-hand derivatives to exist and be non-dewedoreover, for functions enjoying
this chord property, the characterization in Sction 7 (Theorem hithws not mentioned in calculus
texts can be used to easily show the equivalence, under the riggpraxistence hypotheses, of the
definitions of convexity.

2.0  Convexity
In this work we consider the functighl — R, wherel is an open interval of the real lil2 f

is said to be convex if for each pair of poimisx, € I, x; < x < x,, the graph off lies on or below

the chord joining the poinfsy, f (x;)) and(x,, (f (x3)).
We recall that for any two points, x, the gradientn is given by
m = L&)~

X2—X1

(2.1)
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so that for any € [x4, x,] the equation of the chord joining andx, is

y=mlx—x)+ f(x1) (2.2)
and by convexity
fO) <mx —xq) + f(x1) (2.3)
= f0)(xz —x1) < [f(xz) = Fe)] (= x1) + f () (xz — x1) - (2.4)
We observe thatt = Ax; + (1 — A)x,, 1 € [0,1], so that (4.4) becomes
fQxy+ (1= Dxz) S Af (1) + (1 = Df (x2) (2.5)

Thus we have shown that:
Lemma 2.1  For any real-valued function f defined on a closed and bounded interval
i) f is convex if and only if
fAx; + (A =Dx) SAf(x) + (A= Df(xy) Vxi,x €1 A €1[0,1].
i) f is strictly convex if, and only if,
fAx; + (A =Dx) SAf(x) + (A =D f(x) Vx1,% €1, x1 # x5, A€[0,1].
An important generalization of this Lemma is Jensen’s Inequality.

3.0 Jensen’s inequality
Lemma 2.1 is easily extended to convex combinations of more than two fofnis:convex,
x; €land}; =20, i =1..n,with}[-; 4; = 1, then

PO am) <y arew

This is known as Jensen’s Inequality.
Theorem 3.1
f:1 = R is convex if and only jf satisfies Jensen’s Inequality
A proof of this result is found in [1]. A very important application of the alvesalt is that the geometric
mean ofn positive numbers does not exceed their arithmetic mean.

4.0 The geometric chord property of convex functions

From [2, 6, 8, 9, 11], we have the following results which will be very useful in tué pf the
result in Section 7.
Lemma 4.1

f:1 = R is convex if and only if for amy < x, < x5, we have

fe2)—f(x1) < f(x3)=f(x1) < f(xz)—f(xz)_ (4.1)
Xp—X1 X3—X1 X3—X2
f is strictly convex if and only if the inequalities are strict.
Proof
Choose any; < x5, < x3 and defined = 227 thenl — A = 222 andx, = Ax3 + (1 —
X3—X1 X3—X1
A)x;. Thus

flxz) S Af(x3) + (1= Df (xq)
1- A)(f(xz) - f(x1)) < A(f(x3) - f(xz))

Substituting ford and multiplying byx; — x; yields the equivalent statement

is equivalent to
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v
f(x)
le 3=c2 x!3 x > X
Figure 4.1
(x5 — xz)(f(xz) - f(x1)) < (x— x1)(f(x3) - f(xz)) 4.2)
Adding (x; — x1) (f(x2) — f(x1)) to each side of (4.2) and simplifying we obtain
(x5 — x1)(f(x2) - f(x1)) < (x — xl)(f(x3) - f(x1)) (4.4)

which is equivalent to
f(x2)—f(x1) < f(x3)—f(xq)
X2—X1 - X3—X1

Similarly adding(x; — x,)(f (x3) — f(x,)) to each side of (4.1) we have that
(x5 — xz)(f(x3) - f(x1)) < (x3 — xl)(f(x3) - f(x1))

and therefore the equivalent statement
fOa)=f @) o fra)—f(x2)
X3—X1 X3—X2
The equivalence of each statement also holds if each inggsadirict. The lemma above (Lemma 4.1)
is known as the geometric chord property.
Lemma 4.2

Supposef: 1 = R is convex. Thew € int (I) implies f!(x) and f/(x) exist and f/(x) <
f(x).

Proof

(4.5)

Note that Lemma 4.1 implies th xj)_i(xl) is nondecreasing in; and x3 for x; # x3.
3741

Therefore for alk; < x, < x3, we have

' — 1 (x3)—f(x (x2)—f(x
f+(x2) = hmx3—>x2 ! ;3_£§ 2) = ! ;2_£§ ) ( 4.6
and
file) 2 Jim P20 = f1(xy) 47

5.0 Boundedness

Theorem 5.1

A convex functiorf: I — R is bounded over a closed subintervallof
Proof

The convexity off over[x;, x,] implies
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fO) <max{f(xy), fxx)}=MVxe 5.1
[xlfo] (12)
Thusf is bounded above.

Letx = %(xl + x,) so thatc = X + 1. By convexity

1 1
f® <5 fE=D+5fE+A)
sincex € [x — A, X + 4]
= flx) 22fG) - f(x-2) 52 (13)
Butf < MV x, so that (4.6) becomes
f)=zfx)—M=m

Hencef is bounded.
6.0  Continuity

Theorem 6.1

If f:1 - Ris convex over the open intenJalthenf is continuous or.
Proof

Let M andm be respectively upper and lower bounds ffoover [a, f] € I. For e > 0 with
[@ — &, B + €] € I and arbitrary;, x, € [a, ], letx = x, + ¢ e

|22 —24]

Note that for bothx; > x, andx; > x4, X E [ — ¢, + €]. If we lety =

x=(1-y)x; +yx,
= f(x) < (1 =)f (x) +yf (%) = fx) +y[f (X) — f(x1)]

= f(x,) = f(x) = y(M—m) < clx, —x4] 6.1

Xr—X
—2 "1 _ we have that
E+|xy—xq|

wherec = (M —m)/e. Also
fx1) = f(x2) < clxg — x5 6.2 (15)

|f (x2) — flx)| < clxy — x4]

Setd = E If |x, —xq| <& then|f(xy) — f(x1)] < &. Thusf is continuous. Thus we have

shown thaff is locally Lipschitz continuous ahand as such is absolutely continuous dvéris is a
stronger condition.

From (6.1) and (6.2)

7.0 Derivative and integral characterization of convex function using the geaatric

chord property

In [5] convex functions of several variables were chara@ernising monotone mapping and the
Hessian matrix. Using similar approach a characterizatiaghesie functions through the derivative and
the integral was achieved in [4]. This is very insightfutia next result. [4] and [5] suggest that since
convex functions of several variables can be thus characterized, a ver$ieseofdsults are also possible
for real-valued convex functions of single variable as shown in Theorem @wt. bel
Theorem 7.1

Let f:1 — R be differentiable over the open interndaE R then the following statements are
equivalent.
() flx2) S Af(x) + (1= Df(x3), 1€ [0,1], x; = Axg + (1 — D)x3, xq,xx3 €1
(i)  f'G) <f'(x2), Vg <x; €1
(i)  fO)=flxo) = [, f(®)de x,x0 €1

(iv)  f(x) = f'xo)(x —x0) + f(x0) x,x9 €I
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Proof

We show thatif = (ii) = (iii) = (iv) = (i) and we are done
(i) = (i)

Letx;, x5, x3 € I with x; < x, < x3. By the geometric chord property

fe2)=f(x1) < f(x3)=f(x1) < f(x3)=f(x2) (7.1)
X2—X1 X3—X1 X3—X2
Considering the first inequality; as— x; from the right the slopes decrease. This implies that the
fOO)-f(x1)
X—X1

reveals that the ratios representing the slopes increase-ax; from the left.

Newton quotients used to computef#(xl) are increasing. Also the second inequality
f(x2)—f(x1)
Xo2—X1

which does not depend omn,. Thus the Newton quotients used to compute the

Now atx,, these inequalities show that for amy < x, the ratios are bounded

fx3)—f(x1)

X3—X1
left-hand derivative at, are increasing and bounded above implying tifa€x,) exists. By similar
argumentf, (x,) also exists. Furthermore, it follows that

above by

so that f2(e1) < fr(xr) < fL(x3) < fi(x3) (7.3)

Thusf. and f, are non-decreasing
(i)=(iii)
Since a function which is non-decreasing on an interval is integrabhabimterval, it follows

that f_ and f, are Riemann integrable. Suppogge< x € I (the argument fox < x, is similar
and omitted). For any partition

Xo <x1 < <x,=x, by (7.2) and (7.3)

£ Gtem) < FiGrn) < TEEHE < £ ) < () (7.4)
Since
baalf (o) = foe-n)] = e O TED o — 3 ) = f() — fx0)  (7.5)
= [, f/(®dt = [} fi(©)de = f) ~ f(x0) (7.6)

(il )=(iv): From (7.4), (7.5) and (7.6), we observe that
f'(x) < Lﬁjxo) if xo <x and f'(xy) = w if xo>x
—A0 —A0

X
In either case

f(x) = f(x0) = f'(x0) (x = xo).
(iv)= (i)
The existence of '(x) implies that off (x) andf; (x). Now letx, = Ax; + (1 — A1)x3,
A €[0,1]. By (iv)
flx3) = fxz) = fi(xp) (x5 — x2)

and
fG2) = f(xy) < f2(x2) (2 — x1)
But x3 —x, = A(x3 —x;) andx, —x; = (1 — A)(x3 — x1). Therefore
Af{ () (x5 — x2) < fxz) — fx2)
(L =D f2(x2) (x5 — x1) = f(xz) — fxq)
Now multiplying the first relation byl — 1) and the second byand subtracting we have

0<(1—=DAfi(x2) = fLx)](x3 —x1) < (1= D) f(x3) + Af (x1) — f(x3)
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which, from the definition ofx,, implies
fQxy + (1= Dx3) S Af (x1) + (1 = Df (x3).
Remark 7.1

This characterization shows that while a convex function needena¢cessarily differentiable, it
has both right- and left-hand derivatives at every point in tleviait! and is thus almost everywhere
differentiable. These derivatives are non-decreasing functihsying that convex functions are anti-
derivatives of non-decreasing functions. Furthermore, it is aéso that the graph of a convex function
f:I — R lies on or above the tangent line drawn at each po@ét/, which under the assumption of
differentiability means that

f(x) = f(x0) (x = xo) + £ (x0)-

8.0  Conclusion

We observe that without a pre-information on the convexityfohetion, a presentation with any
of the four statements in the result above implies a presentatth all the other statements. It also
shows that if a given definition cannot be used in a given scinamzan resort to another with a little
refinement.

Despite the fact that these properties already exist in @atiimn materials, this characterization,
in particular through the geometric chord property, has not been achieved. This gides definition of
convexity. Thus under appropriate hypothesis, this characterizationegjuaslence of the definitions of
convexity.
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