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Abstract 
 

Although convex functions have been characterized using the derivative, 
integral and monotonicity of the derivative, a characterization which involves a 
combination of these concepts has not been achieved. This is the centre of this work. In 
particular we show that for functions enjoying the geometric chord property, this 
characterization gives equivalence for the definitions of convexity.  
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1.0 Introduction 
A search through calculus text reveals that there are essentially three approaches used in defining 

convex functions: A function f defined over an open interval I is said to be convex if 
i. �� exists and the graph of  f lies on or above the tangent at ��, �����  for each � � �, [10]; 
ii. �′��	� 
 �′����     
 �	 � ��, [7]; 
iii. �′′��� � 0, [3]. 

However, the geometric chord property requires neither the existence of f´ nor f´ on I and as such 
will apply to a wider class of functions including non-smooth functions. We shall see how this is 
equivalent to those definitions more commonly used. 

Perhaps it is a surprise that this simple geometric chord property forces f to be continuous, and 
both the right- and left-hand derivatives to exist and be non-decreasing. Moreover, for functions enjoying 
this chord property, the characterization in Sction 7 (Theorem 7.1) which is not mentioned in calculus 
texts can be used to easily show the equivalence, under the appropriate existence hypotheses, of the 
definitions of convexity. 

 
2.0 Convexity 

In this work we consider the function �: � � �, where � is an open interval of the real line . � 

is said to be convex if for each pair of points �	, �� � �,   �	 � � � ��,  the graph of  f lies on or below 
the chord joining the points��	, ���	�� and ���, �������. 
We recall that for any two points �	, �� the gradient � is given by 

� � �����������
�����

  ,     (2.1) 
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so that for any � � ��	, ��� the equation of the chord joining �	 and �� is 
� � ��� � �	� � ���	� ,    (2.2) 

and by convexity 
���� 
 ��� � �	 � � ���	�       (2.3) 

  ������� � �	� 
 ������ � ���	���� � �	� � ���	���� � �	� .  (2.4) 
We observe that  � � !�	 � �1 � !���,  ! � �0,1�, so that (4.4) becomes 

 ��!�	 � �1 � !���� 
 !���	� � �1 � !������   (2.5) 
Thus we have shown that: 
Lemma 2.1 For any real-valued function f defined on a closed and bounded interval �  
i) � is convex if  and only if 

��!�	 � �1 � !���� 
 !���	� � �1 � !������     
 �	, �� � �, ! � �0,1�. 
ii ) � is strictly convex if, and only if, 

��!�	 � �1 � !���� 
 !���	� � �1 � !������     
 �	, �� � �,   �	 $ ��,   ! � �0,1�. 
An important generalization of this Lemma is Jensen’s Inequality. 
 
3.0 Jensen’s inequality 

Lemma 2.1 is easily extended to convex combinations of more than two points: If � is convex, 
�% � � and !% � 0, & � 1 … (, with ∑ !% � 1*%+	 , then  

� ,- !%�%
*

%+	
. 
 - !%���%�

*

%+	
 

This is known as Jensen’s Inequality. 
Theorem 3.1 

�: � � �  is convex if and only if � satisfies Jensen’s Inequality 
A proof of this result is found in [1]. A very important application of the above result is that the geometric 
mean of ( positive numbers does not exceed their arithmetic mean. 
 
4.0 The geometric chord property of convex functions 

From [2, 6, 8, 9, 11], we have the following results which will be very useful in the proof of the 
result in Section 7. 
Lemma 4.1 

�: � � �  is convex if and only if for any �	 � �� � �/, we have  
�����������

�����

 ���0�������

�0���

 ���0�������

�0���
.    (4.1) 

� is strictly convex if and only if the inequalities are strict. 
Proof 

Choose any �	 � �� � �/ and define  ! � �����
�0���

 , then 1 � ! � �0���
�0���

  and �� � !�/ � �1 �
!��	. Thus  

����� 
 !���/� � �1 � !����	� 
is equivalent to  

�1 � !�1����� � ���	�2 
 !1���/� � �����2 
Substituting for ! and multiplying by �/ � �	 yields the equivalent statement  
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�	 �� �/ �  
Figure 4.1 

 
��/ � ���1����� � ���	�2 
 ��� � �	�1���/� � �����2  (4.2) 

Adding ��� � �	�1����� � ���	�2 to each side of (4.2) and simplifying we obtain 

��/ � �	�1����� � ���	�2 
 ��� � �	�1���/� � ���	�2  (4.4) 
which is equivalent to  

�����������
�����


 ���0�������
�0���

    (4.5) 

Similarly adding ��/ � ���1���/� � �����2 to each side of (4.1) we have that 

��/ � ���1���/� � ���	�2 
 ��/ � �	�1���/� � ���	�2 
and therefore the equivalent statement 

  
���0�������

�0���

 ���0�������

�0���
 . 

The equivalence of each statement also holds if each inequality is strict.  The lemma above (Lemma 4.1) 
is known as the geometric chord property.  
Lemma 4.2 

Suppose �: � � �  is convex. Then � � &(3 ��� implies ��4��� and �54 ��� exist and  ��4��� 

�54���. 
Proof 

Note that Lemma 4.1 implies that 
���0�������

�0���
 is nondecreasing in �	 and  �/ for �	 $ �/. 

Therefore for all �	 � �� � �/, we have  

                               �54���� 6 lim�0���
���0�������

�0���
� �����������

�����
                                     �10� 

and 

                            �54���� � lim�����
�����������

�����
6 ��4����.                                                       �11� 

5.0 Boundedness 
Theorem 5.1 
A convex function  �: � � �  is bounded over a closed subinterval of  �. 

Proof 
The convexity of �  over ��	, ��� implies  
 
 
 

f(x) 

x

y

4.6 

4.7 
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                                         ���� 
 max<���	�,   �����= � > 
 � �
��	, ���                               �12�  
Thus � is bounded above. 

Let �@ � 	
� ��	 � ��� so that � � �@ � !. By convexity 

���@� 
 1
2 ���@ � !� � 1

2 ���@ � !� 

since �@ �  ��@ � !, �@ � !] 
                                                        ���� � 2���@� � ���@ � !�                                                �13� 

But � 
 > 
 �, so that (4.6) becomes 
���� � ���@� � > � � 

Hence � is bounded. 
6.0 Continuity 

Theorem 6.1 
If �: � � � is convex over the open interval �,  then � is continuous on �. 

Proof 
 Let > and � be respectively upper and lower bounds for � over �B, C� D �. For E F 0 with 

�B � E, C � E� D � and arbitrary �	, �� � �B, C�, let �@ � �� � E �����
|�����| 

Note that for both �	 F �� and �� F �	, �@ � �B � E, C � E�. If we let � � �����
H5|�����|, we have that 

 � � �1 � ���	 � ���  
 ����� 
 �1 � �����	� � ����@� � ���	� � �����@� � ���	�� 

 
 
where I � �> � �� E⁄ . Also 

                                                      ���	� � ����� � I|�	 � ��|                                                    �15� 
From (6.1) and (6.2) 

|����� � ���	�| � I|�� � �	| 
Set  L � H

M .  If  |�� � �	| � L  then  |����� � ���	�| � E.   Thus � is continuous.  Thus we have 

shown that � is locally Lipschitz continuous on � and as such is absolutely continuous over �. This is a 
stronger condition. 
 
7.0 Derivative and integral characterization of convex function using the geometric 

chord property 
In [5] convex functions of several variables were characterized using monotone mapping and the 

Hessian matrix. Using similar approach a characterization of these functions through the derivative and 
the integral was achieved in [4]. This is very insightful in the next result.  [4] and [5] suggest that since 
convex functions of several variables can be thus characterized, a version of these results are also possible 
for real-valued convex functions of single variable as shown in Theorem 7.1 below. 
Theorem 7.1 

Let �: � � � be differentiable over the open interval � N � then the following statements are 
equivalent. 
(i) ����� 
 !���	� � �1 � !����/�,   ! � �0,1�,   �� � !�	 � �1 � !��/, �	, ���/ � � 
(ii ) �′��	� 
 �′����,   
 �	 � ��  � � 

(iii ) ���� � ���O� � P �′�3�Q3�
�R      �, �O � �  

(iv) ���� � �′��O��� � �O� � ���O�    �, �O � �   
 

5.1 

5.2 

 6.1 

6.2 
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Proof 
We show that (i) ⇒ (ii ) ⇒ (iii ) ⇒ (iv) ⇒ (i) and we are done 

(i) ⇒ (ii ) 
Let �	, ��, �/ � � with  �	 � �� � �/. By the geometric chord property 

�����������
�����


 ���0�������
�0���


 ���0�������
�0���

   (7.1) 

Considering the first inequality; as � � �	 from the right the slopes decrease. This implies that the 

Newton quotients   
����������

����
  used to compute  �5′ ��	�  are increasing. Also the second inequality 

reveals that the ratios representing the slopes increase as � V �/ from the left. 

Now at ��, these inequalities show that for any  �	 � ��  the ratios  
�����������

�����
  are bounded 

above by  
���0�������

�0���
  which does not depend on  ��.  Thus the Newton quotients used to compute the 

left-hand derivative at �� are increasing and bounded above implying that  ��′ ����  exists. By similar 
argument �5′ ����  also exists.  Furthermore, it follows that  

�5′ ��	� 
 �����������
�����


 ���0�������
�0���


 ��′ ����,   (7.2) 

so that    ��′ ��	� 
 �5′ ��	� 
 ��′ ��/� 
 �5′ ��/�   (7.3) 
Thus ��′   and  �5′   are non-decreasing 
(ii )⇒(iii ) 

Since a function which is non-decreasing on an interval is integrable on that interval, it follows 
that  ��′  and �5′   are  Riemann integrable.  Suppose  �O � � � �  (the argument for  � � �O  is similar 
and omitted). For any partition 
�O � �	 � Y � �* � �,  by (7.2) and (7.3) 

��′ ��Z�	� 
 �5′ ��Z�	� 
 ���[�����[\��
�[��[\�


 ��′ ��Z� 
 �5′ ��Z�   (7.4) 

Since 

∑ ����Z� � ���Z�	��*Z+	 � ∑ ���[�����[\��
�[��[\�

*Z+	 ��Z � �Z�	� � ���� � ���O� (7.5) 

                               P ��′ �3�Q3�
�R � P �5′ �3�Q3�

�R � ���� � ���O�                       (7.6) 

(iii )⇒(iv): From (7.4), (7.5) and (7.6), we observe that 

�′��O� 
 ��������R�
���R

,  if  �O � �  and  �′��O� � ��������R�
���R

,  if  �O F � 

In either case 
���� � ���O� � � ′��O��� � �O�. 
(iv)⇒ (i) 

The existence of �4��� implies that of ��4��� and �54 ���. Now let �� � !�	 � �1 � !��/,  
! � �0,1�. By (iv)  

���/� � ����� � �54������/ � ��� 
 
 

and 
����� � ���	� 
 ��4������� � �	� 

But  �/ � �� � !��/ � �	�  and  �� � �	 � �1 � !���/ � �	�. Therefore  
!�54 ������/ � ��� 
 ���/� � ����� 

�1 � !���4������/ � �	� � ����� � ���	� 
Now multiplying the first relation by �1 � !� and the second by ! and subtracting we have  

0 
 �1 � !�!��54���� � ��4�������/ � �	� 
 �1 � !����/� � !���	� � ����� 
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which, from the definition of  ��, implies  
��!�	 � �1 � !��/� 
 !���	� � �1 � !����/�. 

Remark 7.1 
This characterization shows that while a convex function need not be necessarily differentiable, it 

has both right- and left-hand derivatives at every point in the interval � and is thus almost everywhere 
differentiable. These derivatives are non-decreasing functions, showing that convex functions are anti-
derivatives of non-decreasing functions. Furthermore, it is also clear that the graph of a convex function  
�: � V �  lies on or above the tangent line drawn at each point � � �,  which under the assumption of 
differentiability means that   

���� � � ′��O��� � �O� � ���O�. 
 
8.0 Conclusion 

We observe that without a pre-information on the convexity of a function, a presentation with any 
of the four statements in the result above implies a presentation with all the other statements.  It also 
shows that if a given definition cannot be used in a given scheme we can resort to another with a little 
refinement.  

Despite the fact that these properties already exist in optimization materials, this characterization, 
in particular through the geometric chord property, has not been achieved. This gives a wider definition of 
convexity. Thus under appropriate hypothesis, this characterization gives equivalence of the definitions of 
convexity. 
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