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Abstract

The phenomenon of hopf bifurcation has been well-studied and applied to
many physical situations to explain behaviour of solutions resulting from differential
and partial differential equations. This phenomenon is applied to a fractional reaction
diffusion model for tumor invasion and development. The result suggests that more
complex hopf bifurcation phenomena are possible when the complexity of the reaction
and interaction increases. Results are discussed not only for fractional reaction
diffusion equations, but also for ordinary differential equations and standard reaction
diffusion equations as well. As a matter of fact, we demonstrated that the reaction-
diffusion system portray interesting hopf bifurcation as the complexity of the equation
changes. Just to say, a single equation will show hopf bifurcation of lesser complexity
than those of a system of equations. The target model is the fractional reaction
diffusion model for tumor invasion, conceived and analysed in situ. A uniform hopf
bifurcation where the spatial and temporal sub critical and supercritical hopf
bifurcations coincide is discussed for this model in a numerical simulation.
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1.0 Introduction

Reaction—diffusion equations can be seen as one of the leditegn of equations in the field of
mathematical modeling where meritorious works have been doreséten extensively in population
dynamics, chemical kinetics, morphogenesis and Electromagnetic theorgg@rfaw.

Current researchers in applied mathematics are adding a diffusiomtermost of their ordinary
differential equations models as well as partial differéeti@ations models to study the effects of spatial
migration (see for example, Guidotti and Merino, [1];Chien and Ch&), This addition is very
reasonable, since most often; diffusion brings in a coupling effect to a modetotipigng is usually due
to interaction and movements between the reacting components (8te®awas, [3]). A research on
these equations is imperative because it is going to help iexgilanation of physical occurrences in
biological, chemical, health, economics and social sciences.
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One of the phenomena which have been the subject of many recenatuidicn the field of
applied mathematics is hopf bifurcation. It has been applied to Basifianpian, [4], multiparty politics,
Combustion, Growth and many other areas (see for example, (B¢iriKalecki, [6]; Khan, 2000[7];
Marsdem and Mckracken, [8]). In the formation and development of turkagvaledge of bifurcation in
particular and hopf bifurcation in general is necessarypfoysicians to understand the immediate
outcome expected once parameters such as drugs, nutritional habitaphgsvities, blood flow and
others are changed. For example, if it is known that the carbobydtake is a bifurcating parameter, a
slight change in this parameter will lead to multiple resporgiEich may be positive or negative in the
state of the tumor patient. Reaction diffusion equationbeirgy classified into two categories in current
research; the standard reaction diffusion equation and the fraatatsion diffusion equations. Each of
these systems has been successfully used for mathematidelsnand other phenomenon. While some
researchers have demonstrated that the standard reactwsiodifequation portrays hopf bifurcation
using particular reaction, the fractional reaction systenstilidacking. We will therefore show that the
reaction-diffusion system demonstrate interesting hopf bifiorctaas the complexity of the equation
changes. The target model is the fractional reaction diffusiodel for tumor invasion, conceived and
analysed analytically and numerically in the present paper.

2.0  The model

Mandelbrot and Van Ness [9] used fractional integrals to foteulactal processes such as
fractional Brownian motion. Modifications of standard equations gowgrphysical processes such as
diffusion equations, wave equation and Fokker-Planck equations whialpanate fractional derivatives
with respect to time have been suggested (Vicsek, [10];@Gnda&Roman [11], Wyss,[12]; Schneider and
Wyss, [13]; Jumaire, [14]). A fractional diffusion equation has been profosdte diffusion on fractals.
Giona and Roman [11] has shown a connection between fractional calodlUsaetal structures or
fractal processes. These inform our formulation in fractionaliglfh equations. The model which was
proposed and developed in Oyesanya and Atabong [15] is thus:

N N M a N
a—C:rNNC 1-—=-a, —= —dchNc+a— DNMa—C (2.1)

ot Ky Ky ” ox
M m[1-Me 5 Ney, 0 (DMN‘)MCJ 2.2)

ot K Ky ) ox? ox

oL 0“ oL
c=r,M_-dL +r, LN +—| D — 2.3
at IM c c-c IN =c'Vc dx"( | axj ( )

where,Dyy andDyy are defined by;

Dy =D, 1—M°—& Dy =D,|1- N, —M° (2.4)

KM KN KN KM

andO< a <1 is the fraction of diffusion of the cells and the acid in th@d organism around the tumor
area. These are so defined because in the absence of threctlimdhe normal cells will diffuse to
occupy the space which was occupied by the tumor in a logistitfymanner. The same is true for the
diffusion of tumor in the absence of normal cells.

2.1 Proposition (Non Dimensionalisation)

Let, u=—=, v=—=%, c=—"%, (2.5)
KN KM I‘O
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(2.6)
r r 75 D
p:l’ &= N X, =1+a, d2:_M1 d1: N
'y D

Then (also see Baeumet al [30]; Baeumeret al [31]; Oldham and Spanier, [32]; and Metzler and
Klafter, [33] ) equations (2.1), (2.2) and (2.3) become;

Dlu=u(@-u-a,v)-du+ dl(— D" uDu-D/vDu + (1-u-V) Dfu) (2.7)

Div=pv(l-v—-a,u)+ dz(— D?“vDv- D uDv + (1-u-V) va) (2.8)

Djc=J,v(v-c)-J,cu+Dfc (2.9)
aﬁ

MR

where we have used the notation D 2.10)

= _afﬁ ,
Proof
(see Oyesanya and Atabong, [15] for details).

3.0 Bifurcations and hopf bifurcations
Definition 3.1

Let 3—; = f(u,a),a 00 and F smooth. Suppose that for any sufficiently srimehlthe system

has a family of steady state€ (a) . Further suppose that the Jacobian ma&{g) = f (x°(a),a) has

one pair of complex eigenvalues that becomes purely imaginamhé¢oformai, c. 1), then asa

passes through the real line, the equilibrium changes stanilityunique limit cycles bifurcates from it
and this is termed hopf bifurcation Yuri, [16].
Remark 3.1

For the bifurcations on Reaction diffusion equations, see Ngwlaird, [17]; Chien and Chen,
[2]; Guidotti and Merino, [1]. As will be seen, in its most simplif form, bifurcating solution could
emerge in a reaction diffusion equation model. We shall congideeduations (2.6), (2.7) and (2.8) in
different forms and examine the resulting equation for hopf bifiortatve shall consider these equation
first as ODE, then RDE and system of RDEs and system of RDEs with delagalydas itself.
3.2 As ordinary differential equation.

Consider as a special scaling (2.1) in the absence of the tmehahe acid and as a function of
time only, then, we get the ODE of the form,

du _ B
pri u(bu-A) (3.2)

where, A in this case is the constant death rate of normal celb &mel growth rate.
The equation (3.2) has been applied to model many growth phenomena in¢halihgman

growth where the births rate out weighs the death rate. A ctrisdation of the population is removed
all the time. Clearly, in the absence of non-linearity,

du

—=-JAu 3.3

ot (3.3)
A =0is clearly a bifurcation point since, # >0 solution of equation (3.3) is stable while if
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A <0 then the solution is unstable. Afis complex and simple (i.e. # = £i), then the trivial solution is
oscillatory (periodic) with perio@7 . The fact that this parameter can be complex and simple shows that,
the system 1.3 can exhibit hopf bifurcation.
3.3 As a reaction diffusion equation (RDE)

The simplest form of RDE which could be obtained from (2.6) by sligbdification of
parameters is;

2
M g9 ) inQ
ot 0X
u(O,t) = u,(t), u(L,t) =u (t),t >00n0oQ (3.5)

u(x,0) =u,(x),att =0in Q
whered is called the diffusion coefficien) the domain (the invasive region) ad the boundary.

The equation can also be obtained as a special scaling of (2ahjlyahe normal cells. In a well stirred

situation, we may have,
2

u(,t) =0,u(L,t) =0,t >00n0Q and ng;=0 ord=0. The equation becomes an ODE similar to the

one we already treated.

In the unevenly distribution case, we study the effectsiofaddition to the parametet .

(@) Suppose u=0 is an unstable trivial solution of the ODE, then suhiadgbe instability is a result
of the fact that,

f(0)=0and f (0)<0 (3.6)

Set¢ :% in (1.5) so that we get,

ou _d o‘u .
a7 agr TAT@n Joq
u(0,t) =u,(t),u@t) =u,(t),t >00on{01} (3.7)

u(el,0) = u,(€), att =0in |og]
If the consider homogenous boundary condition),t) =0,u(l,t) =0,t >00n{01} indicating a
situation where no movement is permitted on the boundary, and thsiahffequals the square of the
length of the domain, then we get,
ut = u&s - /” (U) (38)
2
and d = L*. We expand (3.8) in a Taylor series and eliminate second

where u, Ez—l: andu,, =—

0&
and higher order terms to get, u, —Af Qu=0 (3.9)
Solutions of (3.9) satisfying the homogenous boundary conditions of (3.7) is in the form
u=ae"* 3.10)
Substituting (3.10) in (3.9) gives,  (n77)’e™® - Af (0)e™™ =0. (3.11)

2

——,n=1,2,3,4,...Forn=1,ifA < i then all the eigenvalues of the scalar system
t'(0) 10

are positive showing that the unstable trivial solution is stable due to diffusion. Similarly, we can
start with a stable solution and get a condition for which instability

HenceA =
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can occur. Since the presence of diffusion has destabilizedtdbke steady state, we conclude that
diffusion plays and important role in the phenomenon of hopf bifurcation in RBnsyst
3.4 As a system of reaction-diffusion equation (RDES)

The Brusselator, is the simplest system of equation which cowdtbaed from the generalised
fractional system (2.6, 2.7) with the modification of some of thi@bbes and scaling parameters of (2.1)
and (2.2). It is a simple consistent model of chemical kingtlish exhibits an oscillatory behaviour.
The equations are given by,

2
?Tl:: D, 2 Y sutv-(b+Du+a
X
) in Q,t>0. (3.12)
?9_\'[/: D, gxl: —u?v+bu
and uGn=ul.y=a | o) (3.13)
v(0,t) =v(l,t) =b/a ’ '

In the absence of diffusion, the steady states of this system is given by,
u=a,v=b/a which are the functional values on the boundary. Thus the nor-sliation of the

ODE is the trivial solution of the pde.
If we define the functions,

f(uv)=u’v-(b+Du+a
(3.14)
g(u,v) =-u’v+bu

then the Jacobian of the system 3.12 can be written as,
b-1 a’
. (3.15)
The eigenvalues of the system are given by,
_—(@-b+1) £ /a* +(b-1)2-2a%(b+1)
2

A

(3.16)
For stability,
ReA <0,

, , (3.17)
a‘—-b+1>0=a“+1>b

For hopf bifurcation,
Rel=0anda’+(B-1)*-2a’(b+1)<0 - a*+b*-2b+1-2a’h-2a*<0  (3.18)
= b*-2@1+a*)b+a*-2a*<0 (3.19)
bis real iff on JA1+a?) + 4(2a2 -a*) OO iff a? <2 (3.20)
We assume that (3.20) holds and 18ty 4(+a%)* +4z, z=2a’-a*>0. Simplification shows that

N=24a”+1. For (3.19)to holdpO (1+a*-A/21+a*+A/2) anda® < 2.

We have therefore showed that, the non-trivial solution of the ODEbie stb <1+ a°.

Equally, this stability can change to instability and in thiseca hopf bifurcation phenomenon can occur
provided thab satisfy the following conditionl+a* - A/2<b<1+a®+A/2.

Thus the change in stability is accompanied by a hopf bifurcdealised that the hopf bifurcation is
coming as a result of the non-linearity in the model and teesextent it can be linked to the coupling
effect of the model.
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We now show that ifh <1+ a?, the full reaction diffusion system (3.12) shows a different litiabind

hopf bifurcation conditions. We analysed stability based on the pedwstateM =u—a,N =v—9.
a

Substituting in (3.12) gives,
oM 0°M

A0, %+ (M +af (D) - b+ )M +a) +a
ot ox (3.21)
N0, 2N w42y D) som +2

The boundary conditions will b® (0,t) =M (lt) =N(O,t) = N(@t) =0. Without loss of generality,

we replace the variabled4 N} with { u, \} for the sake of convenience.
Hence we have,

a_u_ D, o l:+(b -Du+a’v+u’v+ bu + 2auv
ot ' ox a 3.92
ov_ 0 b (822
—=D,——+bu- a’v—(u’v+—u?+ 2auv)
ot 2 9x a
u? + 202 + 2auv
d(u)y (D, 0)39%(u) (b-1 a*® \u a
- — = — + ) + b (3.23)
at \Y O D2 0X \' _b —a \ _u2__u2_2auv
a
Solutions satisfying the boundary conditions of the perturbed system (3&2if)the form,
- KX
(UJ Clsm(l—)
= (3.24)
v czsin(kl—m)
Substituting (3.24) into (3.23) and taking the determinant gives,
2
(kl—”j D, - (b-1) —a?
o7\ =0 (3.25)
o (o

Let T be the matrix represented by (3.25)
The determinant and trace of T are given respectively as,

De(T) = ((klnj —(b—1)J((k|”j D,+a J+a2b (3.26)

Trace('l)=(kl—nj -(b- 1)+( jD +a’

The presence of a negative sign in (3.26) affecting both the &mad the determinant shows that these

guantities can vanish at some value of the parameters.
2

First, the trace changes sign a=1+a” +

(D, +D,) showing that we can have stability or

instability depending on the determinant.
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If we supposed that the determinant is greater than zeroathegative trace indicates that, there
exist two positive values for the eigenvalues in which case we hstability. Thus the region of stability
and instability shall exist immediately the determinant is negative
Note thatDet(T)=0 iff,

2 2 2
b :1+(k—”j D, +&a2 +a_(l_j (3.27)
I D, D, \ kmr

We denote this value t&f asb.. If b > bs then as mentioned above, one of the eigenvalue is negative and
the other is positive. The existence of a positive and nvegaitjenvalues is an indication that the reaction
diffusion system (3.21) having the trivial soluti@unv)=(0,0) loses stability. In original variables this is
similar in saying thatu,v)=(a,b/a)loses stability at b>p From the choice of an eigen function, there
exist a different pfor eachk and call theseglas h (k= 1,2,3,...) and let us denote the minimum of these

bsk by b” then, b= mkin b, . It follows that, the minimum di is given by,

. D D
b=1+_—ta’+2a |—* (3.28)
D2 D2

This is obtained by differentiating (3.27) w.ktand finding the minimum of sudhfollowing our normal
techniques from calculus.
3.4.1 Claim

There exist a value @;D,, such thab'<1+a% See that,

1+&a2+2a &<1+a2 - &—1 a+2 &<O (3.29)
D2 D2 D2 D2

-1

D D

- a<2 }D—l(l——lj and D, <D, . If D, is very large, we have instability. Equation (3.29) gives
2 2

us the conditions under which this instability from the stabladstestate of the ODE can occur in the

presence of diffusion.

We assume thadd =1+ a” is the bifurcating point since at this point stability changes.
A hopf bifurcation will occur in the system in cat@ce(T)=0anddet(T)>0

This is true iff,
ki)’ LY (kY 2
Dl(|j and D, I:(kﬂj ( | j Dz} and D, >(|—j
D, > kmr

[(eTecer-sll] ()

These conditions must be satisfied before a hopf bifurcation can. diciupossible to get the smallest
possible value of k for which this hopf bifurcation can occur.
3.5 As aclass of delay reaction-diffusion system (RDEs with delay).

Generally we incorporate delay in a reaction —diffusion eguat order to obtain the behaviour
of the system at a future state as a consequence of theidighof past state. Delay reaction—diffusion
system have been considered in population models by variousctessa(Al-omari and Gourley, [18];
Tang and Li-Zhou, [19]; Gourley and Bartuccelli, [20]). Fedotov and Lor2ij fecently worked on
delay reaction diffusion model for tumor invasion. Considering hopir¢ation in a delay model is of
importance in the fight against tumor invasion. Knowing the history patient is always a significant
decision to be made by a doctor for any diagnosis and prescripticcwdigly, a bifurcation parameter
may be of paramount importance to the previous history of the patient.

a?>
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Consider reaction functions satisfying the equation (as in Tang and Li-A!9$u,

0u_ g 0%, [ dr—u(t- d
v ru _J' (t—=oD)u(r,x)dr ,u_J' (t-1)v(r,x)dr

E =
5 5 t t (3.30)
u_ u 5 _ 5 5
E_dzﬁﬂzu{l _J;f(t u(r,x)dr ,u_J;f(t r)v(r,x)dr}
where, 1, i,,1,,1, are real numbers such that, M <1<— (3.31)
H;

where, I:f (X,t) =0, (x,t)[J (—o0,+00) X [0, +c0).
II: Ot >0, f is an even function of

I J'J'f(x,t)dtdx:l i,j=123..
-0 0
With the condition (3.31), we shall have at least one positiaslgtstate of (3.30). Since in development
of tumor we have competition between, the normal and the tunlsr wel can consider the memory

function of the form f (t) = ae™™ also called the weak generic kernel. The uniform steaate sif

(3.30) is(u*, v*) =( 1=/ : 1= 4, j Using the boundary conditions,
1= pp, 1= i,
U_N_4t00,x00Q (3.32)
on odn

(u,v) = (8, t, %), 8, (t, X)), (t, x) O (-0,0]XQ where,Q 00" is bounded.

We linearize (3.30) and simplify accordingly using the genéecnel fa(s)=ize_%’,
a

0
.[ f_ (—-s)e®ds= > » and get the determinant of the characteristic equation has the form,

1+ 1a)
(2 +v, )@?2% + 210 +1)+ M, |(A +v, @2 2% + 240 +1)+ M, |=0 (3.33)
n=0,1,2, ..
Forn = 0, the equation (3.33) has roots of the fOHlﬂ,,_l— and — 2'— and for any other n, all roots

aO aO aO
have negative real part. The fact that we have simpl@lesneigenvalues is an indication thait= a,,
is a bifurcation point and a hopf bifurcation actually occurghie neighbourhood of this point. In
particular, for values ofr = &, there exist some spatio-temporal patterns in this regione $iecdelay
was considered in time and not in space, a more exciting phenomenon offinaatibn will surface at

very simple conditions, if the migration to current location was influenced byopeemigration location.
This is a subject to consider for further research.

4.0 As a fractional reaction diffusion equations
4.1 Existence and stability of equilibrium solutions
Table 4.1 below, shows the equilibrium points obtained from (7-9) (Oyesanya and Atdising
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Table 4.1 Possible Equilibrium State

Code Normal  Tumor H" Conc(©) Description
cells ) cells ()

ES1 0 0 0 Trivial Steady State. No cells
population

ES2 0 1 1 Death Equilibrium

ES3 k* 1-a;k* bi-bok* Both populations are existing
in a low pH

ES4 1 0 0 Disease free Equilibrium

ESS 04/ 6 0 1 Attack Stage of the disease

ES6 1-96 1+d5(0-1) 1 Normal cells are been

crushed to the credit of the
tumor cells.ES3 is going to
ES6

Earlier result predicts that;
(1) If a,>1, 9, <9, and a, <1, there exist at least one non-zero steady state where thalnorm

and tumor cells are surfing in the acidic microenvironment prdvidga,, >1 (The tumor death
hypothesis).
2) It is possible to get a change in stability (Hopf bifurcatiod) & 1.
3) The steady states ES2 and ES4 (see Table 1) are all stable.
We will now proceed to obtain the critical parameter valuesvfoch ES2 and ES4 are approached from
ES3 in a perturbation analysis.
4.2 Fractional analysis

As a means of simplification, we considered a situation @vheth normal and tumor tissues are
well regulated and participate normally in an organ and gltefore not be diffusing in space as a result
of the tumor cells. Under these same assumptions, and in addition, the celfisirgct a constant rate
D, for normal cellsD, for tumor cells and; for H*. With these assumptions, all mixed order fractional
spatial derivatives are zero and equation (2.7) - (2.9) become,

Diu=u(l-u-a,V) - &u+d,(D’u)
Dlv=v(l-v-a,u)+d, (va) (4.1)
D;c=J,v(v-c)-J,cu+D’c

In equation (4.1) we set,

f V0 =ull-u-a ) -&y gUv.d=all-a,u-V); v =d(v-0+dct (4.2)
and study the linearization about the steady stat&s*(c*), by expansion in a Taylor series and
retaining only linear terms to get the operator equation,

LU =KU , (4.3)
where,
D; —d,D/ 0 0 f,U) fU) fU)
L=| © D;-d,Df 0 | K=|g,U) gU) gU)
0 0 D; - Df hU) hU) hU)

U=(uvc), U =u.v.c)
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Seek for solution of (4.3) in the forkd = e”e”¢ and substitute in equation (4.3) to get,

B_dl(ai)ﬁ 0 0 fu(U*) fV(U*) fc(U*)
0 6-d,(di)’ 0 |+/g,U) 9U) gU)|=0 (4.4)
0 0  6-()) |hU) hU) hU)

We have used the fact that the fractional derivatives of ttponential is generally given by,

Dfe™ = afe™, (Podlubny, [22] ; Erdelyet al, [23]; Meerschaerét al., [24];Miller and Ross, [25]).
Stability of operator equation (4.3) is determined by the matrix given by,

g_dl(ai)ﬁ_fu(U*) _fv(U*) _fc(U*)
A= -9,(U") 6-d,(d)” -g,(U") ~g.(U")
~h,(U) ~h,U") 6-(di)” -h,(U")

The dispersion relation of the operator equation using the matrix A is given by,
A% —TraceA+ DetA, whereTraceA=36 - (L+d, +d,)(di)” - (f, +g, +h.)
DetA= (6 -d,(di)” - £, |(6-d,(d)” -9, )@~ (c)” -h,)-g.h |+
f.[-9,00- (@) -n)-g.h ]- f[o,n, +h(6-d.(0)" -,
Setting 5 = 2 in Trace Aand simplifying for bifurcation, we obtain the relationship,
39(0):_02(1+d1+d2)+(fu +g, +h), (4.5)
which is the three components relationship corresponding to whabkbtained by Marc for the two

components ordinary reaction diffusion equation Marc, [26]. A siméiationship is obtained for the
determinant given by,

DetA=6° - 32)( - thc + 6U1d2)(2 - dldz)(3 - dldz)(zhc +&d g, - dl)(zgv +
- dl/\/gvhc - ezdl)(+ ajl)(z + ajl)(hc - 92d2X+ ajz)(z + ajZ/\/hc - ezgv + e)(gv + @vhc +
_02 fu +0Xru +&uhc + 6d2)(fu _dZXZ fu _dZXfuhc +augv _Xrugv - fugvhc _®ch\/ +d1)(gchv +
+ fugch\/ _a:vgv +/\4ng + ngVhC - ngChLl - ngUhV _achu +d2Xfchu + ngVhLl
where, xy = (di)?. If f=2 y =-0? and the relation of the determinant becomes (See Oyesadya a
Atabong, [15]),
DetA=d,d,0° +o*(&d, + &, + &, -d,f, -d,g,)
+ g2 o + dlgvhc + szz + szl + d2 fuhc + fugv - dldzhc - 6dlgv _ajlhc - 6d2hc - 6gv +
-&,-a,f, —dgh - f,g,-d,fh,
+6° +yh + G0 + 6,9, + f.g.0 +foh + g h -6, - f,gh —Agh - 6,0, +
- f,0.h, = fog,h, -G h, - 6°h, - &g,
Using the value of8 =2 as shown above, one easily sees fromTitaeeAand DetA relations above,

that the trivial steady state (0,0,0) is unstable while theratteady states depends on the choice of our
parameters.

On the other hand, fat< 8 < 2, the eigenvalues of the community matrix A are complex as
seen from the structure of the dispersion relation showinghbatolution of this linearized system are
oscillatory and can exhibit bifurcation phenomenon depending on the parameters.
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4.3 Discussion
A situation of Hopf bifurcation phenomenon is possible (Guidotti lsledino, [1]; Oyesanya,
[27]; Margolis, [28]; Chien and Chen, [2]; Murray, [29]) in caSece(A) = 0 and Det(A) > 0 or Det(A)
= 0 and Trace(A) < 0. Either of these conditions will guarastemle eigenvalues for the dispersion
relation given above. Starting with the first case,
TraceA= 36 - (L+d, +d,)(di)” - (f, +g, +h,) =0
(1+ dl + dz)(a)ﬁ + ( fu + gv + hc)

= H(a’) = 3

dé(o) _ paip. 4°6(0) _ B(B-D) p2ip
/= q+d, +d,) (o) ti?: = 1+d, +d,) (o) i
4o gdtditd;)(9) e g A*di+d;)(0)
__d®8(o0) . , . » .
Slncev <0, 6(0)has at least a maximum value while crossing from the posditiee negative

half plane. The maximum value occurscat0. A sketch of the contours éf(0), for different values of
the parameters can be seen below;

6 (o)

T3

0, CT1

| b1 0 Ob2 I

Figure 4.1 Contours of the spatial variation parameter valihe traceJ against the temporal variatiéh

_(,*g,+h) and_l\;/-(fﬁgﬁhc);

where, e

max

1 :0-.
(1+d1+d2)

The maximum value of the turning points on each of the contouissvas the steady states and the
diffusion coefficientsd; andd, as shown above. The shaded region indicates the region of cionpetit
for survival since all solutions in this neighbourhood are unstabkamiall perturbation and therefore
liable to change. This is seen from the fact that in this region, #telspnd temporal variation parameter
fluctuates in an uncertain way. Between 0 agdthe spatial variation is on the rise while the temporal
variation is on the decline. This will make the solution to growdig@nd as such will lead to instability.
Similarly situation occurs in the negative half plane.
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Outside this region, in particular, in the negative half plaoth parameters increases negatively
thereby resulting to an exponential decrease in solution asilaaesvhich the solution becomes stable.
In the negative half plane on the other hand, the negative ieceagpace is more intense than the
positive increase in time and as a result, the overaliteffil be a decrease in the growth of the solution
curve. Thus there will be spatial and temporal stability arydof the interacting species will surrender to

the other as a matter of time. In this region for exampler # 0, then the solution has the form,
e ”e”*which tends to zero with time and space while on the other halepta > o,, then the

solution is of the forme #e'” and since spatial variation cannot go above a certain large, thie
overall effect of this solution will turn to zero. There, thierent steady states will give rise to different
conditions of the parameters of the system. To start with, rétedrivatives of these functions are given

by;
f,=1-2u-a,v-oa,f, =-a,u, f, =-d
0, = o, 9, = p—a, A _2,0\/, 9. = 0
h, =d,c,h, =4,h, ==, +5,u
The Steady state ES1 will give the following derivative values computadasteady state.
f,=1f,=0f=0g,=09,=p,9.=0h,=0h, =J,h =-J,.

_(1-4,+p)

These values will gived, and sinced, <1, 6, >0 and our parameters will lie in

the instability region which was what we had in the linearyamabf the previous work (Oyesanya and

-(@-9,+p).
Atabong, [15]). This is supported by the fact that the spaﬁeﬂdept—ﬁwl =0 have two
(1+ dl + d2)

values. Sincel-9, + p) >0, the value of- (1- 9, + p) will be negative hence has values, in both the

positive and the negative half plane therefore the shaded regimeraioned above will correspond to
values of stability. The steady state ES2 will have values,

fu :1_a12_5’ fv :O' fc :O’ gu :_a21lolgv :_p!gc :Ohu =52'hv :51'hc :_51+52

6. = 1-9,-a,-p=-96,+9,) — (-2, -a,-p+9,)
3 3

we have that this maximum value is less than zero showinghthg@iarameters lies outside the region of
instability hence this steady state must be stable. Unadasiconsideration, we see that the steady state
ES4 is stable. Therefore, under what condition can the steadyES®&tego to ES2 or ES4? By
substituting ES3 into the above null trace relationship, we get,
g = 172K 8, (- a,K") ~ 9B, ~b,KY) _ 1-2K* -a, +a’ K* -db, + d,K*)

g 3 3
Substituting the values for the parametbrand b, and simplifying, we see that, for both population to

exista,,a,, >1. This condition was also proved in the linear analysis ofptieeious work. This was

obtained by setting maximum temporal parameter to zero whichitml®ince we have that the shaded
region in the contours of figure 1 corresponds to instability. Therefongsfto have stability for this state
we must reckon that this value be zero or negative. Alson fthis condition we see that if

a,, >>> a,, > 0 then the Steady state

and sincé-a,, <0,0<9,
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ES4 will be approached from ES3 whiledf, >>>a,, >0 and b, >b, >0 are of approximately the
same magnitude, such tﬂagz —a21| < & no matter how smalE >0 may be, then ES2 is approached

-(f,+g,+h.). . e :
I =0 in both cases will lie in the lower negative half
(1+ dl + dz)

from ES3. The value of—/\f/

plane.
Since we established the existence of non-zero steady sta®e,&,, <1 if a, >1, 9, <0,

and a,; <1, we now couple this with the above result to conclude that,tbelyrivial steady state exist
and is unstable for ang,, and a,, satisfying the tumor death hypothesis wétha,, <1. if the quotient
of a,and a,, is approximately one then the stability of the state ES2 ggenhile if the product is by

far greater than one then the disease free equilibrium [weVdie value of@=1 is a multiple
1

bifurcation point whereby i& <lwe have a sub critical hopf bifurcation of the trivial saotand all

A1

other solutions. The casea,‘ﬁ =1 we have a supercritical hopf bifurcation of the ES2 solution and
2

subcritical hopf bifurcation of the other solutions. E¥ >1 the disease free equilibrium solution is

&
more and more stable giving a supercritical hopf bifurcatiothis solution and a corresponding sub
critical hopf bifurcation to the trivial solution and tE&2 solution. Hence as the parameters vary, the
stability constantly changes by shifting from one steady state to another
4.3.1 Numerical simulations and further discussions

To concretise the prognostics discussed above, we simulate ribealgeonditions for hopf

bifurcation for which the hopf bifurcation theorem is satisfieable 4.2 below, gives the values of our
parameters for which bifurcating solution can occur.

Table 4.2: Table of Parameters regimes for bifurcation

Steady Parameters Steady Parameters
State State
delta2 = ss1.2deltal = 0.8 delta?2 = 1.9¢eltal = 1.8
ES1 dl = 005,d2 =1.95,3;, = 1.00965, ES1 dl = 005,d2 =1.95 a,=1.00965,
1= 0.0034ru = 1,delta= 0.67, a1 = 0.0034ru = 1,delta= 0.67,

ES2 l ES2 !

ES3 l ES3 !

ES4 I ES4 Il

ES5 I ES5 Il

ES6 I ES6 I

A program was written in SlyverFrost FNT95 —pluto platfdorobtain values which were plotted using
ESPlot version 12 to obtain the curves presented below.

From Figure 4.1, we see that the cohabiting steady stateirthe absence of the acid secretion
but is however unstable at all proportions of tumor—normal cellslgtigru But in the case where the
tumor is emerging, with a proportion of 0.0125 over the normal cedig, ttie steady state will bifurcate

within the parameters regime shown in Table 4.2for 1.
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If &, >1then no bifurcation can exist as shown in Figure 4.7. If the acidentnation increases from

zero but stay within the neighbourhood of the zero, the tumor and tmalneells will both exist but this
will be unstable as shown in figs where the determinant is megaétween sample points 5.0E-01 and
1.7E-02. Above sample point 1.7E-02, the determinant is positive shokanhdopf bifurcation will
emerge. Figure 4.3, Figure 4.4, Figure 4.5 show slight increake itohcentration of acid in the cells

which leads to hopf bifurcations of various magnitudes. Shde original variables, is proportional to
the rate of acid re-absorptiortl () and inversely proportional to the rate of normal cell ghogv, ),

o, >1is seen

|—— Normal Cells
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|—— Determinant
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Figure 4.% Variation ofDeterminant (curve)
with tumor, Normal cells at 0.6 acid
production
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as more acid production rate to normal cell growth leadirgpatio-temporal pattern in the development
of tumor. In another way, increasiry > lis seen as increase in the acid secretion by normal tels s

0, <0, . Fig3 shows equivalence in spatio-temporal pattern and hopf biturcahend, =1. At these
values, we have a situation of spatio-temporal hopf bifurcatibere the rate of acid production is

maintained proportional to the rate of normal cell divisionsTwill increased thereby increasing the
rate of secretion of acid by tumor and subsequently increasing the natecofdevelopment.

5.0 Conclusion

We have analysed differential equations for hopf bifurcationse Elasses of equations were
considered: The general ordinary differential equation, theioeadiffusion equation, the system of
reaction diffusion equation, a system of delay reaction diffusgpmation and a model for a fractional
reaction diffusion model for tumor invasion. In the process, we Isainat the complexity of the equation
increases, more hopf bifurcation phenomena are posible. The spas@&lof a fractional reaction
diffusion equation for tumor invasion was visited and the compéasxif multiple hopf bifurcations as
the bifurcation parameter changes were seen. From the hidargaisults of the fractional reaction

diffusion model by simulation, we see that the way forward adieating tumor, is to kee@, <1by

reducing the acid secretion by both normal cells and by tuniisr loe increasing the rate of acid re-
absorption using immunotherapeutic drugs which can increase thigrrabncentrate in the elimination
of this acid secretion.
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