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Abstract 
 

The phenomenon of hopf bifurcation has been well-studied and applied to 
many physical situations to explain behaviour of solutions resulting from differential 
and partial differential equations. This phenomenon is applied to a fractional reaction 
diffusion model for tumor invasion and development. The result suggests that more 
complex hopf bifurcation phenomena are possible when the complexity of the reaction 
and interaction increases. Results are discussed not only for fractional reaction 
diffusion equations, but also for ordinary differential equations and standard reaction 
diffusion equations as well. As a matter of fact, we demonstrated that the reaction-
diffusion system portray interesting hopf bifurcation as the complexity of the equation 
changes. Just to say, a single equation will show hopf bifurcation of lesser complexity 
than those of a system of equations. The target model is the fractional reaction 
diffusion model for tumor invasion, conceived and analysed in situ. A uniform hopf 
bifurcation where the spatial and temporal sub critical and supercritical hopf 
bifurcations coincide is discussed for this model in a numerical simulation. 
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1.0 Introduction 

Reaction–diffusion equations can be seen as one of the leading system of equations in the field of 
mathematical modeling where meritorious works have been done. It is seen extensively in population 
dynamics, chemical kinetics, morphogenesis and Electromagnetic theory to name a few. 

Current researchers in applied mathematics are adding a diffusion term into most of their ordinary 
differential equations models as well as partial differential equations models to study the effects of spatial 
migration (see for example, Guidotti and Merino, [1];Chien and Chen, [2]). This addition is very 
reasonable, since most often; diffusion brings in a coupling effect to a model. This coupling is usually due 
to interaction and movements between the reacting components (Steen and Davis, [3]). A research on 
these equations is imperative because it is going to help in the explanation of physical occurrences in 
biological, chemical, health, economics and social sciences. 

 
 
1Corresponding author: 
 1Telephone: 07035085016 
 
 



Journal of the Nigerian Association of Mathematical Physics Volume 14 (May, 2009), 267 - 282 
Hopf bifurcations in a fractional reaction,  T. A. Atabong and M. O. Oyesanya  J of NAMP 

 
One of the phenomena which have been the subject of many recent publications in the field of 

applied mathematics is hopf bifurcation. It has been applied to business, Jianpian, [4], multiparty politics, 
Combustion, Growth and many other areas (see for example, (Boldrin, [5]; Kalecki, [6]; Khan, 2000[7]; 
Marsdem and Mckracken, [8]). In the formation and development of tumor, a knowledge of bifurcation in 
particular and hopf bifurcation in general is necessary for physicians to understand the immediate 
outcome expected once parameters such as drugs, nutritional habit, physical activities, blood flow and 
others are changed. For example, if it is known that the carbohydrate intake is a bifurcating parameter, a 
slight change in this parameter will lead to multiple responses which may be positive or negative in the 
state of the tumor patient. Reaction diffusion equations are being classified into two categories in current 
research; the standard reaction diffusion equation and the fractional reaction diffusion equations. Each of 
these systems has been successfully used for mathematical models and other phenomenon. While some 
researchers have demonstrated that the standard reaction diffusion equation portrays hopf bifurcation 
using particular reaction, the fractional reaction systems is still lacking. We will therefore show that the 
reaction-diffusion system demonstrate interesting hopf bifurcation as the complexity of the equation 
changes. The target model is the fractional reaction diffusion model for tumor invasion, conceived and 
analysed analytically and numerically in the present paper. 

 
2.0 The model 

Mandelbrot and Van Ness [9] used fractional integrals to formulate fractal processes such as 
fractional Brownian motion. Modifications of standard equations governing physical processes such as 
diffusion equations, wave equation and Fokker-Planck equations which incorporate fractional derivatives 
with respect to time have been suggested (Vicsek, [10];Giona and Roman [11], Wyss,[12]; Schneider and 
Wyss, [13]; Jumaire, [14]). A fractional diffusion equation has been proposed for the diffusion on fractals. 
Giona and Roman [11] has shown a connection between fractional calculus and fractal structures or 
fractal processes. These inform our formulation in fractional diffusion equations. The model which was 
proposed and developed in Oyesanya and Atabong [15] is thus: 
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where, DMN and DNM are defined by;  
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and 0<α <1 is the fraction of diffusion of the cells and the acid in the living organism around the tumor 
area. These are so defined because in the absence of the tumor cells the normal cells will diffuse to 
occupy the space which was occupied by the tumor in a logistic growth manner. The same is true for the 
diffusion of tumor in the absence of normal cells.  
2.1 Proposition (Non Dimensionalisation) 

Let,    ,,,
0L

L
c

K

M
v

K

N
u c

M

c

N

c ===    (2.5) 

 
 

 










∂
∂

∂
∂+








−−=

∂
∂

x

M
D

xK

N
a

K

M
Mr

t

M c
MN

N

c
N

M

c
cM

c
α

α

1



Journal of the Nigerian Association of Mathematical Physics Volume 14 (May, 2009), 267 - 282 
Hopf bifurcations in a fractional reaction,  T. A. Atabong and M. O. Oyesanya  J of NAMP 

.,,1,,

,,,,

12

1

210

l

N

l

M

l

N

N

M

N

NlN

N

c

cN

MllM
N

l

MlM

D

D
d

D

D
dx

D

r

r

r

r

Kr

r

d

dr

Kdr
tr

d

Kr
L

==+=







==

=====

αβξρ

δδδτ

β
   (2.6) 

Then (also see Baeumer et al, [30]; Baeumer et al, [31]; Oldham and Spanier, [32]; and Metzler and 
Klafter, [33] ) equations (2.1), (2.2) and (2.3) become; 
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Proof 
(see Oyesanya and Atabong, [15] for details). 
 

3.0 Bifurcations and hopf bifurcations 
Definition 3.1 

Let ℜ∈= αα
ξ

),,(uf
d

du
 and F smooth. Suppose that for any sufficiently small α  the system 

has a family of steady states )(0 αx . Further suppose that the Jacobian matrix )),(()( 0 ααα xfA x= has 

one pair of complex eigenvalues that becomes purely imaginary (of the form ℜ∈ωω ,i ), then as α
passes through the real line, the equilibrium changes stability and unique limit cycles bifurcates from it 
and this is termed hopf bifurcation Yuri, [16]. 
Remark 3.1 

For the bifurcations on Reaction diffusion equations, see Ngwa and Maini, [17]; Chien and Chen, 
[2]; Guidotti and Merino, [1]. As will be seen, in its most simplified form, bifurcating solution could 
emerge in a reaction diffusion equation model. We shall consider the equations (2.6), (2.7) and (2.8) in 
different forms and examine the resulting equation for hopf bifurcation. We shall consider these equation 
first as ODE, then RDE and system of RDEs and system of RDEs with delay and finally as itself. 
3.2 As ordinary differential equation. 

Consider as a special scaling (2.1) in the absence of the tumor and the acid and as a function of 
time only, then, we get the ODE of the form, 

)( λ−= buu
dt

du
     (3.2) 

where, λ in this case is the constant death rate of normal cell and b the growth rate.  
The equation (3.2) has been applied to model many growth phenomena including the human 

growth where the births rate out weighs the death rate. A constant fraction of the population is removed 
all the time. Clearly, in the absence of non-linearity, 

u
dt

du λ−=      (3.3) 

0=λ is clearly a bifurcation point since, if 0>λ  solution of equation (3.3) is stable while if  
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0<λ  then the solution is unstable. If λ is complex and simple (i.e. if i±=λ ), then the trivial solution is 
oscillatory (periodic) with period π2 . The fact that this parameter can be complex and simple shows that, 
the system 1.3 can exhibit hopf bifurcation. 
3.3 As a reaction diffusion equation (RDE) 

The simplest form of RDE which could be obtained from (2.6) by slight modification of 
parameters is; 
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where d is called the diffusion coefficient, Ω  the domain (the invasive region) and Ω∂  the boundary. 
The equation can also be obtained as a special scaling of (2.1) for only the normal cells. In a well stirred 
situation, we may have, 
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2

2

t

u
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=0 or d=0. The equation becomes an ODE similar to the 

one we already treated.  
In the unevenly distribution case, we study the effects of d in addition to the parameter λ . 
(a) Suppose u=0 is an unstable trivial solution of the ODE, then suppose that the instability is a result 
of the fact that, 

0)0( =f and 0)0(' <f     (3.6) 
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x=ε  in (1.5) so that we get, 
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If the consider homogenous boundary conditions, }1,0{0,0),1(,0),0( onttutu >==  indicating a 
situation where no movement is permitted on the boundary, and the diffusion equals the square of the 
length of the domain, then we get, 

)(ufuut λεε −=     (3.8) 
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u
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u  and 2Ld = . We expand (3.8) in a Taylor series and eliminate second 

and higher order terms to get,  0)0(' =− ufu λεε    (3.9) 

Solutions of (3.9) satisfying the homogenous boundary conditions of (3.7) is in the form, 
πεneau −= 0                  3.10) 

Substituting (3.10) in (3.9) gives, ( ) 0)0('2 =− −− πεπε λπ nn efen .               (3.11) 

Hence,
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n πλ = , n=1, 2, 3, 4, … . For n=1, if 
)0('

2

f

πλ < , then all the eigenvalues of the scalar system 

are positive showing that the unstable trivial solution is now stable due to diffusion. Similarly, we can 
start with a stable solution and get a condition for which instability  
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can occur. Since the presence of diffusion has destabilized the stable steady state, we conclude that 
diffusion plays and important role in the phenomenon of hopf bifurcation in RD systems. 
3.4 As a system of reaction-diffusion equation (RDEs) 

The Brusselator, is the simplest system of equation which could be obtained from the generalised 
fractional system (2.6, 2.7) with the modification of some of the variables and scaling parameters of (2.1) 
and (2.2). It is a simple consistent model of chemical kinetics which exhibits an oscillatory behaviour. 
The equations are given by, 
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In the absence of diffusion, the steady states of this system is given by, 
abvau /, ==  which are the functional values on the boundary. Thus the non-trivial solution of the 

ODE is the trivial solution of the pde. 
If we define the functions, 
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then the Jacobian of the system 3.12 can be written as, 
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The eigenvalues of the system are given by, 
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For hopf bifurcation,  
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    02)1(2 2422 <−++−⇔ aabab                (3.19) 

b is real iff on   ℜ∈−++ )2(4)1(4 422 aaa  iff 22 <a                (3.20) 

We assume that (3.20) holds and let, za 4)1(4 22 ++=Λ , 02 42 >−= aaz .  Simplification shows that 

142 2 +=Λ a .  For (3.19) to hold, )2/1,2/1( 22 Λ++Λ−+∈ aab  and 22 <a . 

We have therefore showed that, the non-trivial solution of the ODE is stable iff .1 2ab +<  
Equally, this stability can change to instability and in this case a hopf bifurcation phenomenon can occur 

provided that b satisfy the following condition, 2/12/1 22 Λ++<<Λ−+ aba . 
Thus the change in stability is accompanied by a hopf bifurcation. Realised that the hopf bifurcation is 
coming as a result of the non-linearity in the model and to some extent it can be linked to the coupling 
effect of the model. 
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We now show that if 21 ab +< , the full reaction diffusion system (3.12) shows a different stability and 

hopf bifurcation conditions.  We analysed stability based on the perturbed states
a

b
vNauM −=−= , .  

Substituting in (3.12) gives, 
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The boundary conditions will be, 0),1(),0(),1(),0( ==== tNtNtMtM . Without loss of generality, 
we replace the variables {M, N} with { u, v} for the sake of convenience. 
Hence we have, 
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Solutions satisfying the boundary conditions of the perturbed system (3.21) are of the form, 
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Substituting (3.24) into (3.23) and taking the determinant gives, 
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Let T be the matrix represented by (3.25) 
The determinant and trace of T are given respectively as, 
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The presence of a negative sign in (3.26) affecting both the trace and the determinant shows that these 
quantities can vanish at some value of the parameters. 

First, the trace changes sign at )(1 212
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 showing that we can have stability or 

instability depending on the determinant. 
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 If we supposed that the determinant is greater than zero, then a negative trace indicates that, there 
exist two positive values for the eigenvalues in which case we have instability. Thus the region of stability 
and instability shall exist immediately the determinant is negative. 
Note that, Det(T)=0 iff,  
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We denote this value of b as bs. If b > bs then as mentioned above, one of the eigenvalue is negative and 
the other is positive. The existence of a positive and negative eigenvalues is an indication that the reaction 
diffusion system (3.21) having the trivial solution (u,v)=(0,0) loses stability. In original variables this is 
similar in saying that (u,v)=(a,b/a) loses stability at b>bs. From the choice of an eigen function, there 
exist a different bs for each k  and call these bs as bsk (k = 1,2,3,…) and let us denote the minimum of these 
bsk by b` then, sk

k
bb min=̀ .  It follows that, the minimum of bsk is given by, 
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This is obtained by differentiating (3.27) w.r.t. k and finding the minimum of such k following our normal 
techniques from calculus. 
3.4.1 Claim 
 There exist a value of D1D2, such that b`<1+a2.  See that,  

   021121
2

1

2

12

2

12

2

1 <+







−⇔+<++

D

D
a

D

D
a

D

D
aa

D

D
               (3.29) 

1

2

1

2

1 12
−









−<⇔

D

D

D

D
a  and 21 DD < . If D2 is very large, we have instability. Equation (3.29) gives 

us the conditions under which this instability from the stable steady state of the ODE can occur in the 
presence of diffusion. 

We assume that 21 ab +=  is the bifurcating point since at this point stability changes. 
A hopf bifurcation will occur in the system in case, trace(T)=0 and det(T)>0. 
This is true iff, 
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These conditions must be satisfied before a hopf bifurcation can occur. It is possible to get the smallest 
possible value of k for which this hopf bifurcation can occur. 
3.5 As a class of delay reaction-diffusion system (RDEs with delay). 

Generally we incorporate delay in a reaction –diffusion equation in order to obtain the behaviour 
of the system at a future state as a consequence of the behaviour of past state.  Delay reaction–diffusion 
system have been considered in population models by various researchers (Al-omari and Gourley, [18]; 
Tang and Li-Zhou, [19]; Gourley and Bartuccelli, [20]). Fedotov and Lomin [21] recently worked on 
delay reaction diffusion model for tumor invasion. Considering hopf bifurcation in a delay model is of 
importance in the fight against tumor invasion. Knowing the history of a patient is always a significant 
decision to be made by a doctor for any diagnosis and prescriptions. Accordingly, a bifurcation parameter 
may be of paramount importance to the previous history of the patient.  
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Consider reaction functions satisfying the equation (as in Tang and Li-Zhou, [19]), 
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where, 2121 ,,, rrµµ are real numbers such that,    
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With the condition (3.31), we shall have at least one positive steady state of (3.30). Since in development 
of tumor we have competition between, the normal and the tumor cells, we can consider the memory 

function of the form tetf αα −=)(  also called the weak generic kernel.  The uniform steady state of 
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n = 0, 1, 2, … 

For n = 0, the equation (3.33) has roots of the form, 
00

,
αα
ii −  and 

0

2
α
i− and for any other n, all roots 

have negative real part.  The fact that we have simple complex eigenvalues is an indication that 0αα =  

is a bifurcation point and a hopf bifurcation actually occurs in the neighbourhood of this point. In 
particular, for values of 0αα ≥ , there exist some spatio-temporal patterns in this region. Since the delay 

was considered in time and not in space, a more exciting phenomenon of hopf bifurcation will surface at 
very simple conditions, if the migration to current location was influenced by previous migration location. 
This is a subject to consider for further research. 
 
4.0 As a fractional reaction diffusion equations 
4.1 Existence and stability of equilibrium solutions  

Table 4.1 below, shows the equilibrium points obtained from (7-9) (Oyesanya and Atabong, [15])  
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Table 4.1: Possible Equilibrium State 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
Earlier result predicts that; 
(1) If 112 >a , 21 δδ <  and 121 <a , there exist at least one non-zero steady state where the normal 

and tumor cells are surfing in the acidic microenvironment provided 12112 >aa  (The tumor death 
hypothesis). 
(2) It is possible to get a change in stability (Hopf bifurcation) if 11 <δ . 
(3) The steady states ES2 and ES4 (see Table 1) are all stable. 
We will now proceed to obtain the critical parameter values for which ES2 and ES4 are approached from 
ES3 in a perturbation analysis. 
4.2 Fractional analysis 

As a means of simplification, we considered a situation where both normal and tumor tissues are 
well regulated and participate normally in an organ and will therefore not be diffusing in space as a result 
of the tumor cells. Under these same assumptions, and in addition, the cells are diffusing at a constant rate 
D1 for normal cells, D2 for tumor cells and D3 for H+. With these assumptions, all mixed order fractional 
spatial derivatives are zero and equation (2.7) - (2.9) become, 
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In equation (4.1) we set, 
cucvcvuhvuavcvugcuvauucvuf 212112 )(),,();1(),,(;)1(),,( δδρδ +−≡−−≡−−−≡   (4.2) 

and study the linearization about the steady states (u*,v*,c* ),  by expansion in a Taylor series and 
retaining only linear terms to get the operator equation, 
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Code Normal 
cells (u) 

Tumor 
cells (v) 

H+ Conc(c) Description 

ES1 0 0 0 Trivial Steady State. No cells 
population 

ES2 0 1 1 Death Equilibrium 
ES3 k* 1-a12k* b1-b2k* Both populations are existing 

in a low pH 
ES4 1 0 0 Disease free Equilibrium 
ES5 δ1/ δ2 0 1 Attack Stage of the disease 
ES6 1- δ 1+δ2(δ-1) 1 Normal cells are been 

crushed to the credit of the 
tumor cells.ES3 is going to 
ES6 

 



Journal of the Nigerian Association of Mathematical Physics Volume 14 (May, 2009), 267 - 282 
Hopf bifurcations in a fractional reaction,  T. A. Atabong and M. O. Oyesanya  J of NAMP 

Seek for solution of (4.3) in the form ςσθτ ieeU =  and substitute in equation (4.3) to get, 
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We have used the fact that the fractional derivatives of the exponential is generally given by,
axax eaeD ββ = , (Podlubny, [22] ; Erdelyi et al., [23]; Meerschaert et al., [24];Miller and Ross, [25]).  

Stability of operator equation (4.3) is determined by the matrix given by, 
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The dispersion relation of the operator equation using the matrix A is given by, 
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Setting 2=β  in Trace A and simplifying for bifurcation, we obtain the relationship, 
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which is the three components relationship corresponding to what was obtained by Marc for the two 
components ordinary reaction diffusion equation Marc, [26]. A similar relationship is obtained for the 
determinant given by, 
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where, βσχ )( i= .  If 2=β 2σχ −=  and the relation of the determinant becomes (See Oyesanya and 
Atabong, [15]), 

vcucvucucv

vvvccvuucvvvcuuvcvucucv

ucvvvcuu

vccvcvucucv

vu

ghhfhgfhgf

gfhghgffhgfhgfhgfgfhfhg

hfdgfhgdfdf

ghdhdgdhddgfhfdddhgd

gdfdddddddDetA

22

23

212

2112121
2

2
2

1
2

2

122121
46

21 )(

θθθ
θθθθθθθ

θθ
θθθθθθθ

σ

θθθσσ

−−−−−

+−−−−+++++++












−−−−−
+−−−−−+++++

+

−−+++=

 

Using the value of 2=β  as shown above, one easily sees from the TraceA and DetA relations above, 
that the trivial steady state (0,0,0) is unstable while the other steady states depends on the choice of our 
parameters. 

On the other hand, for 21 << β , the eigenvalues of the community matrix A are complex as 
seen from the structure of the dispersion relation showing that the solution of this linearized system are 
oscillatory and can exhibit bifurcation phenomenon depending on the parameters. 
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4.3 Discussion 
A situation of Hopf bifurcation phenomenon is possible (Guidotti and Merino, [1]; Oyesanya, 

[27]; Margolis, [28]; Chien and Chen, [2]; Murray, [29]) in case, Trace(A) = 0 and Det(A) > 0 or Det(A) 
= 0 and Trace(A) < 0. Either of these conditions will guarantee simple eigenvalues for the dispersion 
relation given above. Starting with the first case, 
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, )(σθ has at least a maximum value while crossing from the positive to the negative 

half plane. The maximum value occurs at σ =0. A sketch of the contours of )(σθ , for different values of 
the parameters can be seen below; 
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The maximum value of the turning points on each of the contours varies as the steady states and the 
diffusion coefficients, d1 and d2 as shown above. The shaded region indicates the region of competition 
for survival since all solutions in this neighbourhood are unstable to small perturbation and therefore 
liable to change. This is seen from the fact that in this region, the spatial and temporal variation parameter 
fluctuates in an uncertain way. Between 0 and σb2 the spatial variation is on the rise while the temporal 
variation is on the decline. This will make the solution to grow rapidly and as such will lead to instability. 
Similarly situation occurs in the negative half plane.  
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Figure 4.1: Contours of the spatial variation parameter value of the trace σ against the temporal variationθ  
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Outside this region, in particular, in the negative half plane, both parameters increases negatively 
thereby resulting to an exponential decrease in solution as a result of which the solution becomes stable. 
In the negative half plane on the other hand, the negative increase in space is more intense than the 
positive increase in time and as a result, the overall effect will be a decrease in the growth of the solution 
curve. Thus there will be spatial and temporal stability and any of the interacting species will surrender to 
the other as a matter of time. In this region for example, if 1bσσ <  then the solution has the form, 

σξθτ iee −− which tends to zero with time and space while on the other half plane, 2bσσ >  then the 

solution is of the form, σξθτ iee−  and since spatial variation cannot go above a certain large value, the 
overall effect of this solution will turn to zero. There, the different steady states will give rise to different 
conditions of the parameters of the system. To start with, the first derivatives of these functions are given 
by; 
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The Steady state ES1 will give the following derivative values computed at this steady state. 

11,,00,,0,0,0,1 δδρ −========= cvucvucvu hhhgggfff . 

These values will give 
3

)1( 1
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ρδθ +−=  and since 11 <δ , 0max >θ   and our parameters will lie in 

the instability region which was what we had in the linear analysis of the previous work (Oyesanya and 

Atabong, [15]). This is supported by the fact that the spatial intercept σρδ
β =
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+−−

− i
dd )1(

)1(

21

1  have two 

values. Since 0)1( 1 >+− ρδ , the value of )1( 1 ρδ +−−  will be negative hence has values, in both the 
positive and the negative half plane therefore the shaded region as mentioned above will correspond to 
values of stability.  The steady state ES2 will have values,  
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 and since 01 12 <− a , 2δδ <   

we have that this maximum value is less than zero showing that the parameters lies outside the region of 
instability hence this steady state must be stable. Under similar consideration, we see that the steady state 
ES4 is stable. Therefore, under what condition can the steady state ES3 go to ES2 or ES4?   By 
substituting ES3 into the above null trace relationship, we get, 
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Substituting the values for the parameters 1b and 2b  and simplifying, we see that, for both population to 

exist 12112 >aa . This condition was also proved in the linear analysis of the previous work. This was 
obtained by setting maximum temporal parameter to zero which is logical since we have that the shaded 
region in the contours of figure 1 corresponds to instability. Therefore for us to have stability for this state 
we must reckon that this value be zero or negative. Also from this condition we see that if 

02112 >>>> aa  then the Steady state  
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ES4 will be approached from ES3 while if 01221 >>>> aa  and 021 >> bb  are of approximately the 

same magnitude, such that ε<− 2112 aa  no matter how small 0>ε  may be, then ES2 is approached 

from ES3.  The value of σβ =
++

++−
− i

dd

hgf cvu

)1(

)(

21

 in both cases will lie in the lower negative half 

plane. 
Since we established the existence of non-zero steady state for 12112 <aa  if 112 >a , 21 δδ <  

and 121 <a , we now couple this with the above result to conclude that, only the trivial steady state exist 

and is unstable for any 12a and 21a  satisfying the tumor death hypothesis with 12112 <aa . if the quotient 

of 12a and 21a  is approximately one then the stability of the state ES2 prevails while if the product is by 

far greater than one then the disease free  equilibrium prevails. The value of 1
21

12 =
a

a
 is a multiple 

bifurcation point whereby if 1
21

12 <
a

a
we have a sub critical hopf bifurcation of the trivial solution and all 

other solutions. The case, 1
21

12 =
a

a
 we have a supercritical hopf bifurcation of the ES2 solution and 

subcritical hopf bifurcation of the other solutions. As 1
21

12 >
a

a
 the disease free equilibrium solution is 

more and more stable giving a supercritical hopf bifurcation of this solution and a corresponding sub 
critical hopf bifurcation to the trivial solution and the ES2 solution. Hence as the parameters vary, the 
stability constantly changes by shifting from one steady state to another.  
4.3.1 Numerical simulations and further discussions 

To concretise the prognostics discussed above, we simulate the general conditions for hopf 
bifurcation for which the hopf bifurcation theorem is satisfied. Table 4.2 below, gives the values of our 
parameters for which bifurcating solution can occur.  

 
Table 4.2: Table of Parameters regimes for bifurcation 

 

Steady 
State 

Parameters Steady 
State 

Parameters 

delta2 = ss1.2, delta1 = 0.8  delta2 = 1.9,delta1 = 1.8 
ES1 d1 = 0.05, d2 =1.95, a12 = 1.00965, 

a21 = 0.0034, ru = 1, delta = 0.67, 
ES1 d1 = 0.05, d2 = 1.95, a12 = 1.00965, 

a21 = 0.0034, ru = 1, delta = 0.67, 
ES2 !! ES2 !! 
ES3 !! ES3 !! 
ES4 !! ES4 !! 
ES5 !! ES5 !! 
ES6 !! ES6 !! 

A program was written in SlyverFrost FNT95 –pluto platform to obtain values which were plotted using 
ESPlot version 12 to obtain the curves presented below.   
 From Figure 4.1, we see that the cohabiting steady state exist in the absence of the acid secretion 
but is however unstable at all proportions of tumor–normal cells population. But in the case where the 
tumor is emerging, with a proportion of 0.0125 over the normal cells, then the steady state will bifurcate 
within the parameters regime shown in Table 4.2 for11 <δ . 
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If 11 >δ then no bifurcation can exist as shown in Figure 4.7. If the acid concentration increases from 
zero but stay within the neighbourhood of the zero, the tumor and the normal cells will both exist but this 
will be unstable as shown in fig5 where the determinant is negative between sample points 5.0E-01 and 
1.7E-02. Above sample point 1.7E-02, the determinant is positive showing that hopf bifurcation will 
emerge.  Figure 4.3, Figure 4.4, Figure 4.5 show slight increase in the concentration of acid in the cells 
which leads to hopf bifurcations of various magnitudes. Since 1δ in original variables, is proportional to 

the rate of acid re-absorption (cd ) and inversely proportional to the rate of normal cell growth ( Nr ),

11 >δ is seen  
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Figure 4.3: Variation of Determinant (curve) 
with tumor, Normal cells at 0.6 acid 

production 

Figure 4.4: Variation of Determinant(curve) with 
tumor, Normal cells at 0.5 acid production 

Figure 4.5: Variation of Determinant(curve) 
with tumor, Normal cells at 0.9 acid production 

Figure 4.6: Variation of Determinant (curve) with 
tumor, Normal cells at 00.1 acid production. 

Figure 4.7: Variation of Determinant (curve) with 
tumor, Normal cells at 0.6 acid production for δ1>1. 
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Figure 4.2: Variation of determinant 

(curve) with tumor, normal cells at 0 acid 
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as more acid production rate to normal cell growth leading to spatio-temporal pattern in the development 
of tumor. In another way, increasing 11 >δ is seen as increase in the acid secretion by normal cells since

21 δδ <  . Fig3 shows equivalence in spatio-temporal pattern and hopf bifurcation when 11 ≈δ . At these 
values, we have a situation of spatio-temporal hopf bifurcation where the rate of acid production is 
maintained proportional to the rate of normal cell division. This will increase δ thereby increasing the 
rate of secretion of acid by tumor and subsequently increasing the rate of tumor development. 
 
5.0 Conclusion 

We have analysed differential equations for hopf bifurcations. Five classes of equations were 
considered: The general ordinary differential equation, the reaction diffusion equation, the system of 
reaction diffusion equation, a system of delay reaction diffusion equation and a model for a fractional 
reaction diffusion model for tumor invasion. In the process, we saw that as the complexity of the equation 
increases, more hopf bifurcation phenomena are posible. The special case of a fractional reaction 
diffusion equation for tumor invasion was visited and the complexities of multiple hopf bifurcations as 
the bifurcation parameter changes were seen. From the bifurcation results of the fractional reaction 
diffusion model by simulation, we see that the way forward of eradicating tumor, is to keep 11 <δ by 
reducing the acid secretion by both normal cells and by tumor cells by increasing the rate of acid re-
absorption using immunotherapeutic drugs which can increase this rate or concentrate in the elimination 
of this acid secretion. 
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