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Abstract 

 
In this paper, we investigate the effect of a magnetic field on a 

rotating fluid flow in a rotating frame. A system of equations of motion was 
considered for some components of velocity and magnetic fields. Under 
some mathematical conditions and assumptions, the system of equations of 
motion give rise to a differential equation whose result in a graphical 
representation shows that the velocity of rotation for the rotating fluid flow 
increases as the product of the imposed magnetic field increases but as the 
z-component becomes very large or tends to a very large value, the velocity 
of rotation for the rotating fluid flow is the same or constant for all the 
products of the imposed magnetic field. 

 
 
1.0 Introduction 

In a paper by Owen [5], rotating cavities have been employed to model many practical 
rotating flows between co-rotating turbines or compressor discs. The operational rotation of 
rotating machinery experiences both the starting and stopping process. 

In another paper by Kawashima and Yang [2], unsteady transport phenomena in hollow 
drum subjected to a sudden acceleration and deceleration were experimentally studied by 
means of laser droppler velocimetry. The corresponding theoretical study was performed by 
[7]. 

Later [8] observed the flow pattern and temperature distribution in a rotating drum 
subject to a sudden acceleration and inner surface heating by using the laser light-sheet method 
and iron constantan thermocouples respectively. 

In order to evaluate quantitatively the temperature distribution in the rotating drum, [3] 
employed temperature sensitive liquid crystals as a non invasive method. A series of studies 
was focused on visualization of two dimensional thermal fields. 

In another paper by Torii and Yang [6], they studied the unsteady fluid flow transport 
phenomenon in axially rotating drum under a spin-down process. Emphasy was placed on the 
effect of aspect ratio, A, on the velocity and temperature profiles. The governing differential 
equations for three dimensional unsteady fluid flows were discretized by means of a finite 
difference technique. Theoretical predictions, particularly the velocity fields were compared 
with experimental results by Ohue et al [4]. 
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In another paper by Ghosh et al [1], they worked on hydromagnetic rotating flow of a 
dusty fluid near a pulsating plate. In this work, an initial value problem was solved for a motion 
of an incompressible viscous conducting fluid with small inert spherical particles bounded by 
infinite rigid non conducting plate and fluid are in a state of solid body rotating with constant 
angular velocity about an axis normal to the plate. The general solution for the fluid velocity 
and the wall shear stress are examined numerically and the simultaneous effects of rotation, the 
magnetic field and the particles on them are determined. The result for the fluid velocity was 
compared numerically with that of an impulsively moved plate in a particular case when time 
was large. 

 
2.0 Mathematical formulation 

The equations of balance of linear momentum for the Navier-stokes equations are: 
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  (2.1) 

where 1v , 2v  and 3v  are the components of the velocity of the fluid; 1F , 2F  and 3F  are the 

representations of the viscous force in the medium; f is the coriolis parameter; t, x, y, and z are 
the independent variables. 

Equations (2.1) are augmented by the equation of Conservation of mass when in the 
case of incompressible fluid states 
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Based on the scale arguments, in many oceanic flows, the following representations are 
used. 
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When the flow is steady and the acceleration terms are small compared with the 
Coriolis force, the pressure gradient and the viscous forces; we include the magnetic effects and 
then end up with the viscous Geostrophic equations: 
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where 321       , βββ and  are the components of the imposed magnetic field and g is the 

acceleration due to gravity. 
 

3.0 Method of Solution 
 We now solve (2.2) subject to the following conditions 
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With the conditions in (3.1), equations (2.2) become 
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Here u, v and w are components of the velocity and g is the gravitational force. 

Now, if we differentiate 
z

p

∂
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Now, eliminating v from the first equation of (3.3) and taking the first and second 
partial derivatives with respect to z we obtain 

    
3

3

1 z

u
A

z

u

z

v
f v ∂

∂+
∂
∂=

∂
∂− β     (3.4) 

And   
4

4

2

2

1

2

z

u
A

z

u

z

v
f v ∂

∂+
∂
∂=

∂
∂− β      (3.5) 

From equation (3.5) we obtain 
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Also, from the first equation of (3.3) we have 
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Then substitute equations (3.6) and (3.7) in the second equation of (3.3) to obtain 

  
















∂
∂+

∂
∂−+

















∂
∂+−=

4

4

2

2

12

2

12

11

z

u
A

z

u

f
A

z

u
Au

f
fu vvv βββ  



Journal of the Nigerian Association of Mathematical Physics Volume 14 (May, 2009), 261 - 266 
Effect of a magnetic field on a rotating fluid flow, O. J Fenuga and R. O Ayeni J of NAMP 

  
4

42

2

2
1

2

2
221

z

u

f

A

z

u

f

A

z

u

f

A

f
fu vvv

∂
∂−

∂
∂−

∂
∂−−= ββββ  

∴  
4

4

2

2

2

2

2
1

2

2

2
2

2
21

z

u

f

A

z

u

f

A

z

u

f

A

f

u
u vvv

∂
∂−

∂
∂−

∂
∂−−= ββββ

   (3.8) 

Let    , , 2
22

2
12

2

2
2

f

A
c

f

A
b

f

A
a vvv ββ === and 

2
212

f
d

ββ=  in (3.8); so (3.8) becomes 

    ( ) ( ) ( ) ( ) ( ) 012222 =++′′++′′′′ zudzucbzua   (3.9) 

As ( ) ( )zucezuz   sin   0    , →′′∞→  have asymptotic value 0; hence (3.9) becomes 

    ( ) ( ) ( ) 0122 =++′′′′ zudzua                 (3.10) 

Suppose we seek a solution of the form ( ) mzezu =  for (3.10), we obtain  

     ( ) 01242 =++ dma  

implies    
( )








 +−=+−= 2

2

2

2
4 11

a

d

a

d
m  

So that 
a

di

a

d
m

11
1

2

2

2
2 +±=+−±=  and 

( )
a

d
im

4
1

2 1+±= .  But ( )
2

1
2

1







 += ii , 

so   ( ) ( ) ( ) ( )id
a

morid
a

m +−+=++= 11
2

1
       11

2

1 4
1

24
1

2                   (3.11) 

Let a2=η  and ( ) 4
1

2 1+= dξ , so (3.11) becomes ( )im += 1
η
ξ

 or ( )im +−= 1
η
ξ

.  

Hence the general solution of (3.10) is  

 ( ) zeczeczeczecUzu
zzzz

η
ξ

η
ξ

η
ξ

η
ξ η

ξ
η
ξ

η
ξ

η
ξ

sincossincos 4321 ++++=
−−

      (3.12) 

Because we are only interested in a solution that is bounded as ,∞→z  we choose 

043 == cc  and so solution (3.12) becomes 
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Also from the boundary condition, ( ) 00 =′′u  gives c2 = 0. Hence (3.14) becomes 
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Then substituting for ηξ       and  in (3.15) we obtain 
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If 0     0 21 == ββ or  in (3.16) we obtain

    

Then using a unit value for

graphical representation of solution (3.16) for 
 

Figure 3.1

 
4.0 Analysis of result 

The graphical representat
for the rotating fluid flow increases as the product of the imposed magnetic field increases but 
as the z-component becomes very large or tends to a very large value, then the velocity of 
rotation for the rotating fluid flow is the same or constant for all the products of imposed 
magnetic field. 

 
5.0 Conclusion 
 This result shows that the velocity in the boundary layer increases as the magnitude
the magnetic components increases .This is not so outside the boundary layer when z
component is large.Thus,it is possible to increase the velocity by increasing the magnetic 
effects at the surface. 
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Figure 3.1: The graphical representation of solution (3.16) 
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