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Abstract

We have presented the effect of total energy convergence for some bulk
crystal in the framework of density-function theory within Local Density approximation
(LDA) by using Williams-Solar and Joannopoulos minimization scheme. We have
implemented these with a powerful code (FHI98MD). This was achieved by using
different values for the parameter ecuti in Rydberg. It has been found that, the value of
the parameter ecuti influencesthe speed and accuracy of the convergence.

1.0 Introduction

Total- energy calculation and molecular dynamics simulations agtimgl density functional
theory represent a reliable tool in condensed matter physetgried science, chemical physics and
physical chemistry. A large variety of applications in aysés different as molecules, bulk materials and
surfaces have proven the power of these methods in analyzingllassvin predicting equilibrium and
non — equilibrium propertieé\b initio molecular dynamics simulations enable the analysis of theé@atom
motion and allow the accurate calculation of thermodynamic propetiieh as the free energy, diffusion
constant and melting temperatures of materials.

The packagdéhi98md is designed to investigate the material properties gelaystems. The
packagefhi98md is based on a previous versifii96md [1]. The new version, however, is based on
FORTRAN90 and allows dynamic memory allocation. The packagestews the prograrfhi98md and
a start utilityfhi98start. The progranthi98md can be used to perform static total energy calculation or
ab initio molecular dynamics simulations. The utilit§i98start assists in generating the input file
required to rurfhi98md, thereby ensuring the lowest possible memory demand for each iradivintu
Thus no recompilations are required; a full calculation candsonmed by calling the two binary
executable$hi98start andfhi98md in sequence.

In this work, the effect of the variabltuti on the convergence of total energy in bulk crystal is
investigated. The minimisation schemes in the total energy cideidare outlined in section two.

2.0  Total energy minimization scheme:
2.1 Introduction

In an electronic structure calculation using a plane-wavesbt® Hilbert space is typically
spanned by a huge number of basis functions (up *@lafe waves). Therefore it would be unwise to
attempt to diagonalize the Hamiltonian operator in this high-dimensional
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space directly. Instead, one uses algorithms which only implioveperations on the wave function
vector (in Hilbert space), rather than matrix operations.Wdnee functions are gradually improved in an
iterative process, until they eventually converge towards the eictens¢2].

The goal is to minimize the total energy with respedchéoowave functiod(//i.k> starting with a
trial wave functiorM/fk>. The energy minimization scheme is formulated in terms ofcamt®mn of

motion for the wave functiqwi‘m in the fictitious time variable t.

2.2 Steepest Descent:
The simplest scheme to iterate the wave functions is the steepmsttdgsproach [3]. It can be
derived from a first-order equation of motion,

1) = (11, -Aie) ).

(2.1)

imposing the ortho-normality constra{zﬂ(t) ‘l/l(t)> whereH . is the Kohn-Sham Hamiltonian and

1!
[, are the Lagrange parameters introduced to account for the ortho-normmditsamt. In the simplest
possible discretization of this differential equation, only information fiteeriast step is used,

(G+Kps?)=(a+ Ky®)+ B( G+ K- < k |—M¢;“>> (2.2)

where =&t andn = dt. However, it turns out that this discretization scheme is not vecjeett

2.3 Damped Joannopoulos
A more efficient scheme based on a second order equation of motion might aled be us

D) 2y L) = (0, A ). @3

where y is a damping parameter. The equation of motion is integrated ftep lengthdt by the
Joannopoulos approach [4], which iteratively improves the initialewianctions. In this algorithm the
new wave functlon:islﬂ(t 1)> is constructed from the wave functions of the last twatilen steps t and (

-1),
<G+ k‘l//(m)> <G+ l<1¢/(t)> <G+ Hw(t)> Vel G- Kl > /7G< G- ‘(h!s‘l/lm> where the

coefficients are
0, (hG(é't)—l)—<G+ K Fies| G+ k> e

O -<G+ k‘ Hys |G+ k> ’ (2.4)

G

Vo = e,

Ne = (e (oh-e"-1 (2.5)
—<G+ k| Fis | G+ k>
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with Di,k:<¢/it,k Hes \w},k> . The functionh(dt) is defined by

g
(G0 = 2e 2 cos @.0t) if wf=0
2e_g5t cosh(\/@dt) if wf<(

with of :<G+ k‘ Hys| G+ k>_gi,k_§'
24 Williams-Solar

Although the damped Jaonnopoulos algorithm is more efficient tharfirst order scheme,
additional storage for the wave functihﬂ‘i‘”) is needed. Therefore the William-Soler algorithm [5] is

recommended whenever storage requirements do not permit to erhglogamped Joannopoulos
algorithm. The coefficients of this scheme are

_ M| e(u,k—<e+k\ HKS\G+k>)at—J]

Fe Oy <G+ K | G+ R

eq k~G+KFg[G+R a1

’k:mkﬂe+@ﬂ@e+b'

With ), =0 Thus, damped Joannopoulos scheme contains the Williams-Solar scharfimiting case,

when )y — o . On the other hand, the Williams-Solar scheme itself appesathe steepest descent

scheme, ifdt is sufficiently small.
The choice of &t and y depends on the atomic species and the configuration. The

corresponding parameters in the.modinput file aredelt andgamma Typically delt lies between 1 and
40 andgammais within the rangdd < y< 1.

If the improvement in the total energy per iteratioresslthareps_chg_delthe parameterdelt2
andgammaZare used instead, in order to ensure the stability of convergence.

The Table 2.1 contains some values to the electronic tiegedstt, the damping parameter
gammaand the minimization scheme used for bulk calculations. @beld J, WS and SD mean that
either the damped Joannopoulos or Williams-Solar or Steepeseridestnimization scheme was
adopted. The table provides a few numbers which should be usedy@igeato have an optimal

parameters for successful convergence.
Table 2.1 Electronic time stegelt, damping parameter
gamma and minimization scheme [6].

Bulk
Material | Number | Scheme | delt gamma
of atoms
Si 2 J 30 0.4
Ga 4 J 20 0.3
As 2 J 20 0.3
Al 1 WS 06 0.4
Al 1 SD 12 0.4
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3.0  Procedure

The input fileinp.mod has thirty four variables while the other input faéarting has thirty nine
variables. These seventy three variables can be broadkified into five categories based on what the
specify. Thus, we have variables that specify the: (ifideastructure, e.@rav, celldm (i) the atoms in
the crystals, e.g number of atoms, number of valence electron, name of crysskaghus, mass (iii) the
type of run e.g continuation run, total energy run, energy bancetanand (iv) computational scheme
employed. The fifth class is composed semi-empirical varidbsshave to be optimised on running the
code. Theecutiis one of such variables.

A bulk crystal e.g Silicon is selected and the varialBlescifying it and its lattice structure,
computational scheme and type of run (Total energy in this ceseyaluated and entered into the input
files appropriately. An initial value of 2.0 Rydberg for #rmutiis chosen and the programme is executed.
This is repeated for other valuesaaiuti

The above procedure is repeated for Aluminium, Gallium andnikrs€he data generated from
the output files are analysed and the graphs showing the efffdet walue ofecuti on convergence of
total energy are plotted.

4.0 Results and discussion

Figure 4.1 shows the variation of the total energy as aifumof the number of electronic
iterations for different values oécuti for bulk Al (in the fcc structure) within Local Density
approximation by using the Williams-Solar minimization scheméetate the wave functions. Figure 4.2
shows the variation of the total energy as a function of the nuaibaectronic iterations for different
values ofecuti for bulk Si (in the diamond structure) within Local Density approximation by ugieg
Joannopoulos minimization scheme to iterate the wave functiamsieF4.3 shows the variation of the
total energy as a function of the number of electronic itaratfor different values adcuti for bulk Ga
(in the base centered orthorhombic structure) within Local Dersgiyroximation by using the
Joannopoulos minimization scheme to iterate the wave functiampsieF4.4 shows the variation of the
total energy as a function of the number of electronic itaratfor different values adcuti for bulk As
(in the rhombohedral structure) within Local Density approximation using the Joannopoulos
minimization scheme to iterate the wave functions.
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Figure 4.1 Effect of total energy convergence farbulk in the fcc structure for
different values of the electronic iteratiogrsuti
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Figure 4.2: Effect of total energy convergence for Si bulkhe diamond structure
for different values of the electronic iteraticerauti
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Figure 4.3 Effect of total energy convergence for Ga bulkhia base centered
orthorhombic structure for different values of tHectronic iterationgcuti

As can be seen from the plots, convergence of total energy dlasbleieved for Al, Si, and As.
However, in the case of Gallium the convergence is not as goodthe other crystals. In general,
increasing the value of ecuti decreases the number of iteration requicesh¥ergence.

The slight non-convergence in Gallium is attributed for theofis@ inaccurate variable not very
obvious to the authors
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Figure 4.4 Effect of total energy convergence for as bulkhia rhombohedral
structure for different values of the electronaritionsecuti .

5.0 Conclusion

Electronic structural convergence depend on a set of paraméiieh have to be optimized
for each system. In this paper, we have optimized the inpuimpsgaecuti within the Local density
approximation (LDA) by using Williams-Solar and Joannopoulos miatron scheme. It is obvious
from the graphs that a higher value esfuti results in a better start value for the main cycle. Se le
iterations are needed to get the converged eigenvalues.
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