
Journal of the Nigerian Association of Mathematical Physics Volume 14 (May, 2009), 197 -204 
Structureless pseudopotential model  O. M. Osiele and O. G. Edema  J of NAMP 

Journal of the Nigerian Association of Mathematical Physics 
Volume 14 (May, 2009), pp 197 – 204 

© J. of NAMP 
 
 

Bulk modulus of metals according to structureless pseudopotential model  
 
 

1O. M. Osiele and O. G. Edema 
Department of Physics 

Federal University of Technology 
Akure, Nigeria. 

 
 

Abstract 
 

The method for calculating the bulk modulus of metals based on the 
structureless pseudopotential model was fully developed. The developed method was 
used to calculate the bulk modulus and kinetic energy contribution to the bulk modulus 
of 46 elemental metals. The results obtained were compared with experimental values 
and their variation with electron density parameter was studied. The results obtained 
revealed that the calculated and experimental bulk modulus of metals varies in the 
same manner with the electron density parameter. The calculated bulk modulus of 
metals was in very good agreement with experimental values for the simple metals in 
the low-density limit and the agreement between the calculated and experimental bulk 
modulus of metals decreases towards the high-density limit where we have the 
transition and the noble metals. The results further revealed that the kinetic energy 
contributes significantly to the bulk modulus of metals and varies in the same manner 
with the electron density parameter as the bulk modulus. The agreement between the 
calculated and experimental bulk modulus of metals shows that the structuresless 
pseudopotential model is promising for predicting metallic properties.  
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1.0  Introduction 

The pseudopotential formalism provides a conceptual justification of nearly free electron model 
of solids and simultaneously, pseudopotentials provide a computational tool that substantially increases 
the range of problems that can be brought within computational reach. The pseudopotential approach for 
the study of the properties of solids is a way of organizing experimental and computational information 
about conduction electrons in a compact and physical form. In the pseudopotential approach for the study 
of properties of solids, with just a few fitting parameters obtained from experiments or calculations, it is 
possible to get a good estimate of different properties of solids [1].  

The goal of pseudopotential theory is to obtain the key physical properties of atoms, molecules 
and solids by dealing only with the valence electrons.  To avoid a complicated all-electron problem, an 
effective weaker potential between valence electrons and the atomic core is introduced. Interactions 
among the valence electrons are often described by density functional theory.  
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In the pseudopotential formalism, tremendous simplification of computational effort is achieved 
by treating core electrons differently from valence electrons.  Deep core electrons are considered as 
“frozen” in space and independent of the atom’s valence environment. Also, the core electrons are treated 
differently from valence electrons; however, the valence states are constructed under boundary conditions 
reflecting the surroundings of the atoms in the crystal environment and the core states are rectified to the.  
  Pseudopotential models have been used to calculate different properties of solids. Ling and Gelatt 
[2] used a local pseudopotential constructed from the bulk stability condition alone to calculate the shear 
and bulk moduli of 19 simple metals. They also studied the chemical trends in the elastic modulus of the 
simple metals and calculated the ratio of shear modulus to bulk modulus, which gave a result that was in 
good agreement with experimental value. Fiolhais et al.,[3] developed a local pseudopotential whose 
input parameters are valence, electron density parameter and equilibrium number of valence electrons. 
They used the pseudopotential to calculate binding energy, bulk modulus and its pressure derivative for 
some simple metals. The results they got were in good agreement with experimental values for the simple 
metals. Vackar et al.,[4] developed the all-electron pseudopotential, a pseudopotential technique that takes 
into account all electrons (core and valence) interactions of an atom in a bond and generate ”all electron” 
pseudopotential with the relaxed core. The all electron pseudopotential is a functional of the charge 
density and does not correspond to any choice of occupation numbers of any atomic configuration. The 
potential revealed that the relaxation of the core could be quantitatively treated within the pseudopotential 
approach. The all electron pseudopotential was used to calculate the lattice constant and bulk modulus of 
silicon, diamond, non-magnetic cobalt, cubic TiC and hexagonal TiS2.  The results they got were in 
satisfactory agreement with experimental values. Lee et al., [5] described a semi empirical method for 
constructing pseudopotentials for correlated-electron calculations. They used a combination of calculated 
quantities and experimental ionization energies for a single electron in the field of an isolated ion. The 
pseudopotential obeys a norm-conservation condition, core-polarization effects were included in a 
consistent manner, and an accurate representation of the Hartree and exchange potentials outside the core 
was included. The pseudopotential worked very well for silicon but not satisfactorily well for titanium. 
 The structureless pseudopotential model evolved from the variational-consistent treatment of the 
ground state properties of metals. The structureless pseudopotential model modifies the jellium model, 
such that zero forces acts on the positive background in the uniform state [6]. In the structureless 
pseudopotential model, the input parameters are valence, electron density parameter and the Ashcroft core 
radius, which are not obtained from experimental values.  The structureless pseudopotential model 
requires mechanical stability, neglects the crystal structure of metals. Its advantages over other 
pseudopotential models is that it possesses physical transparency, can be used with the density functional 
theory and it requires less computational resources. 

In this work, the structureless pseudopotential model is used to calculate the bulk modulus of 
metals in order to test the strength of model in predicting metallic properties. Also, the kinetic energy 
contribution to the bulk modulus of solids is studied in order to know how the kinetic energy of the solids 
affects their bulk modulus and hence provide a better understanding of the bulk modulus of metals. 
 
2.0 Theory and calculation 

The energy functional of a system of interacting electrons in an external potential arising from the 
interaction with ions represented by a local pseudopotential, Φ can be expressed as a functional of the 
electronic density n(r) as: 
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where the first three terms represents respectively the kinetic, exchange-correlation and electrostatic 
energy of the interacting system.  The last two terms describes the interaction of electrons with the ions at 
site Ri via a pseudopotential, Φ and the Coulomb interaction between the ions. 
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To improve the convergence of the individual Coulomb term appearing in equation (2.1) above, 
the neutralizing positive background of the jellium is added and subtracted, hence 
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According to the density functional theory, the correct electronic density n(r) can be obtained by 
minimizing the energy functional in equation (2.2) since only the first terms depends on n(r), then  
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The self-consistent electron density may be obtained from the Schrodinger equation 
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lattice. The total energy required to assemble the valence electrons and ions to form the solid, which is the 
binding energy is   mRacs EWEnTE +++= )(   (2.6) 
where Ts is the kinetic energy, Exc is the sum of the exchange and  correlation energies, WR is the average 
value of the non-Coulombic part of the pseudopotential and Em is the average Madelung or electrostatic 
energy of point ions embedded in a uniform negative background of density n. 

In the density functional theory, in the low-density limit, the kinetic and exchange energies are 

given [7] as  2
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 where Ex is the average exchange energy and rs is the electron density parameter connected with the 
electron density by the formula where ρ is the electron density and a0 is Bohr’s radius. 
The correlation energy used in this work is that Carperley and Alder as parameterized by Perdew and 
Zunger [8] and is given as 
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From equation (2.6), the binding energy is 
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  The ionic potential Φ has a long-range attractive Coulomb part and a short-range repulsive part 
WR due to the core orthogonalization and it is 
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The potential may be represented by a simple form of the Ashcroft empty core pseudopotential   such that 
the potential compensates –z/r with a radius rc 
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r

z
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where Φ(rc - r) is a step function which is equal to unity in the cell and zero outside. The average value of 
the repulsive part of the pseudopotential is  
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where nav is the average density of the electrons. In the structureless pseudopotential model, it is assumed 
that the ionic charges are assumed to be smeared to a uniform sphere background density with a spherical 
hole in it such that its potential is of the form [9]  
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The self-energy of the electrostatic interaction averaged over the whole Winger-Seitz sphere is  
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The factor of half is to avoid double counting. The positive contributions are compensated by the negative 
energy of the electrons interacting with the uniform positive background.  
The Madelung energy for a jellium system is given [8]  
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where r0= z1/3rs.  Substituting equations (2.13) and (2.16) into (2.10) we obtain the binding energy 
according to the structureless pseudopotential model as 

2

1051

sr
E

⋅=
sr

4580 ⋅−
010

9
2

33390052911

14230
2
1

r

z
nr

rr
c

ss

−+
⋅+⋅+

⋅− π             (2.17) 

but r0 = z1/3rs
  and n = 4πrs/3, hence 
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where rs is the electron density parameter which is between 2 and 6 for metals [10] and rc is the Ashcroft 
core radius obtained from the bulk stability condition and it is given [9] as 
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and Ec is the correlation energy. 
The bulk modulus, which measures resistance to structure-preserving volume-changing 

deformations [2] is 










∂
∂−

∂
∂=









∂
∂−=

ssssN r

E

rr

E

rV

P
VB 22

2

2

21
12

1
π

              (2.20) 



Journal of the Nigerian Association of Mathematical Physics Volume 14 (May, 2009), 197 -204 
Structureless pseudopotential model  O. M. Osiele and O. G. Edema  J of NAMP 

where pressure, P is   
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The kinetic energy contribution to the bulk modulus is [11] 
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In this paper, the bulk modulus, of different metals were calculated based on the structureless 
pseudopotential model using equation (2.20) above. Also, the kinetic energy contribution to the bulk 
modulus of the metals was calculated using equation (2.22).   The variation of the calculated bulk 
modulus of different metals and kinetic energy contribution to the bulk modulus of metals with electron 
density parameter was investigated. The calculated bulk modulus of metals was compared with 
experimental values in order to see how the bulk modulus of metals calculated using the structureless 
pseudopotential model agrees with experimental values. . 
 
3.0 Results and Discussion 

Figure 3.1 and Table 3.1 show the variation of the calculated and experimental bulk modulus of 
different metals with electron gas parameter. As shown in figure 3.1, both the calculated and experimental 
bulk modulus of different metals varies inversely with the electron density parameter. Also, in the low-
density limit, (rs >2.5), the calculated bulk modulus of the metals were in very satisfactory agreement 
with experimental values, but in the high-density limit (rs < 2.5), the calculated bulk modulus of the 
metals were not in satisfactory agreement with experimental values as the structureless pseudopotential 
model gave bulk modulus of metals in the high-density limit that are higher than experimental values.  
This shows that the higher the values of the electron density parameter of a metal, the closer its bulk 
modulus calculated using the structureless pseudopotential model is to experimental value. Simple metals 
such as Na, K, Rb, Li, Cs, are found in the low-density region and the calculated bulk modulus of these 
metals are in good agreement with experimental values. This is quite satisfying as the alkalis are often 
used as examples of “free-electron” metals [12]. But the transition and noble metals such as Mn, Fe, Tl,, 
Hg, Pd, Pb etc  are found in the high-density limit and the structureless  pseudopotential model could not 
give bulk modulus of these metals that are in good agreement with experimental values. For the transition 
and noble metals, apart from Fe, Cr, Co, Ni and Pd, the structureless pseudopotential model overestimates 
the bulk modulus of transition and noble metals. Since rs is a measure of effective interaction between 
electrons in the metal, the results in figure 3.1 shows that the bulk modulus of a metal varies inversely 
with the effective interaction between the electrons in the metal. The inability of the structureless 
pseudopotential model to give bulk modulus of transition and noble metals that are in good agreement 
with experimental values may be due to contribution of the core electrons which the structureless 
pseudopotential model does not take into consideration. This  
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Figure 3.1: Variation of calculated and experimental bulk modulus of metals  

with electron density parameter. 
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Figure 3.2: Variation of kinetic energy contribution to bulk modulus of metals  

with electron density parameter for different metals 
 

may also be due to the band-structure contribution to the bulk modulus, which is crucial [3] in the 
calculation of  bulk modulus of metals. Also, the neglect of the crystal structure, which plays a vital role 
in the properties of the transition metals [13] may be responsible for this. This may also be due to the 
volume-energy contribution to the bulk modulus, which dominates for the transition metals [6].  
 



Journal of the Nigerian Association of Mathematical Physics Volume 14 (May, 2009), 197 -204 
Structureless pseudopotential model  O. M. Osiele and O. G. Edema  J of NAMP 

 Table 3.1: Metals, electron density parameter rs , calculated and  
experimental bulk modulus of metals. The experimental 

values were taken from [13]. 
 

Metals rs(a.u) Calculated  
bulk modulus 
(×1011N/m2) 

Experimental  
bulk modulus 
(×1011N/m2)  

Li 
Na 
K 
Rb 
Cs 
Cu 
At 
Ag 
Au 
Be 
Mg 
Ca 
Ba 
Po 
V 
Cr 
Mn 
Fe 
Co 
Ni 
Zn 
Zr 
Sr 
Pd 
Cd 
Hg 
Al 
Ga 
In 
Tl 
Bi 
Sc 
Ti 
Y 
Ru 
Rh 
Lu 
Sn 
Pb 
Te 
Nb 
Sb  
Bi 
Mo 
W 

3.28 
3.99 
4.96 
5.23 
5.63 
2.67 
2.53 
3.02 
3.01 
1.87 
2.65 
3.27 
3.71 
3.11 
1.64 
1.86 
2.14 
2.12 
2.07 
2.07 
2.31 
2.11 
3.57 
2.28 
2.59 
2.65 
2.07 
2.19 
2.41 
2.48 
2.25 
2.32 
1.92 
2.61 
1.93 
1.95 
2.13 
2.22 
2.30 
1.79 
2.13 
2.14 
2.25 
1.61 
1.62 

0.146 
0.069 
0.031 
0.025 
0.019 
0.304 
0.361 
0.961 
0.196 
1.717 
0.481  
0.217 
0.135 
0.300 
2.644 
1.730 
1.038 
1.092 
1.169 
1.169 
0.787 
1.098 
0.158 
0.828 
0.526 
0.465 
1.539 
1.244 
0.881 
0.785 
1.143 
1.009 
2.073 
0.376 
2.053 
1.934 
1.356 
1.438 
1.281 
2.950 
1.952 
1.927 
1.573 
6.475 
6.092 

0.116 
0.068 
0.032 
0.031 
0.020 
1.370 
-------- 
1.007 
1.732 
1.003 
0.354 
0.152 
0.103 
0.260 
1.162 
1.901 
0.596 
1.683 
1.914 
1.860 
0.598 
0.833 
0.116 
1.808 
0.467 
0.382 
0.922 
0.569 
0.411 
0.359 
0.315 
0.435 
1.051 
0.366 
3.207 
2.704 
0.411 
1.110 
0.450 
0.230 
1.702 
0.383 
0.315 
2.725 
3.232 

Figure 3.2 shows the variation of the kinetic energy contribution to the bulk modulus of metals. As shown 
in figure 3.2, the kinetic energy varies in the same manner with the electron gas parameter as the bulk 
modulus of metals. Figure 3.2 further revealed that metals with having high bulk modulus have high 
kinetic energy contribution to the bulk modulus. Metals in the low-density limit having small values of 
bulk modulus have small kinetic energy contribution.  
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These shows that kinetic energy contributes significantly to the bulk modulus of metals and the kinetic 
energy contribution is of the right magnitude for materials ranging from sp-bonded metals to strongly 
bonded metals [11]. 

The results obtained in this study compares very well with experimental values and followed the 
same trend just like the results obtained for the bulk modulus of sixteen metals calculated by Pollack et 
al., [14].  Also, the results obtained in this work for simple metals (Li, Na, K, Cs, Mg, Ca, Be, Ba, Sn, Pb, 
In, Tl and Al) compares favourably well with the ones obtained by Fiolhais et al., [3] that calculated some 
binding energy, chemical potential and bulk modulus of   simple metals using a local pseudopotential. 
 
4.0 Conclusion 

In this work, the bulk modulus of different metals has been calculated using the structureless 
pseudopotential model.  The structureless pseudopotential model gave bulk modulus of simple metals that 
are in good agreement with experimental values while it overestimates the bulk modulus of most 
transition and noble metals. The disagreement between calculated and experimental bulk modulus of 
metals increases with a decrease in the electron density parameter of the metals. The kinetic energy of 
metals contributes significantly to the bulk modulus of metals. The agreement between the calculated 
bulk modulus of metals and experimental values shows that the strucureless pseudopotential model is 
quite promising in predicting the properties of metals. 
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