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Abstract

Instantaneous source functions for a layered reseirv with crossflow
interface cannot be selected from already existsmurce functions, if the effects of the
interface is to be accounted for. It is thereforecessary to modify the already existing
source function. Hence, in this paper, already etitig) instantaneous source or Green'’s
function is modified to account for the effect of aerossflow interface in a layered
reservoir. A multiplicative weighting factor, E,siobtained which shows constant
behaviour at late dimensionless flow times for arfieular set of well and reservoir
dimensionless parameters. Computation of dimensems pressures using the factor
shows conformity with expected behaviour for a lag@ reservoir with crossflow
interface.

Nomenclature

Pp = khAp (. - 0.001056 kt ;. _2i
14128 ° T e P L

i = positions along ory or z axesft;

hD =1/ LD )

A =drop;

p = pressurepsi;

k = permeabilitymd;

h = pay thicknesdt;

t = time, hours;

g = flow rate, STB/Day;

H = oil viscosity,cp;

B = oil formation volume factor, bbl/STB;

¢, = total fluid compressibilityl/psi

L = well length ft;

erf = error function;

= dimensionless dummy time varialy@ , dimensionless pressure derivative.

Subscripts

X, Y, Z =X, yprz, directionsD = dimensionlessy = wellbore;e = external

2\“‘7\-

1.0 Introduction

Instantaneous source functions are used for constructing maitemaessure distribution
models for reservoir fluid flow and reservoir simulation stedWith regions of more than one unique
permeability distribution, a layered reservoir has an interfseparating the different layers. Crossflow
would occur across the interface if it is permeable. Writhogvn instantaneous source functions, to
account for interfacial crossflow, requires modification
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of already derived relevant instantaneous source functions, dptwae for the axes of the interface.
For impermeable interfaces this modification is not necestagy;are already available in the literature
[1, 2] as follows, forz-axis orientation of the interface:

1 —(z-2,)% 140t
S(z,t) = ——e (724 [(1.1)
2,/ mt
assuming unit production or injection rate and is valid for itdhaicting flow period. When an external
boundary of any kind is felt after a long flow time, several ®ohequivalent expressions to Equation
1.1 are also available [2]. For example, if the boundary alongdies is sealed at both top and bottom
boundaries, then, at long flow time, Equation 1.1 becomes

1 i n’
s(zt) = E{1+ 2> expt
n=1

Tt V4

2 )cos(nh )cos(mhzw)} (1.2)
To adequately represent contribution from zkexis, a correction to the form in Equation 1.2 is required
to cater for crossflow through the interface. At the interfdloe layers flow velocities and pressures are
equal. The state of equilibrium is partly contributed in the dyosiin the top layer and partly from the
dynamics from the bottom layer, depending on the degree of crossflow of tifecate

In this paper, a weighting factor for the z-axis is derivieddcount for the pro rata contribution

from each layer through the interface. The factor would be \alidimensionless times after the
expiration of the radial (infinite-acting) flow period (Equation 1.1) anthe commencement of influence
of flow by the interface. Figure 1.1 below is a two-layeredervoir, with a crossflow interface
containing a lateral well in Layer 1. It is assumed kaatk,; that is, fluid (oil) in Layer 2 can be drained
by the well in Layer 1, if desired.

Bounded top

Layer 2 _ ko
— e am e Em Em == == Crossflow interface
—> ki > ko —
e
Layer 1 | |

Bounded Bottom
Figure 1.1: A Two-layered reservoir model with lateral wells

Fluid flow into the lateral well is contributed from threengipal axes of permeability; i.ex, y, andz-
axes. If the well length coincides with tkexis and its radius coincides with the width (alongytagis),
then, on the-axis lies the well along the thickness of the reservoiveky early flow times, the source
function fromany of the three axes for unit rate is given generally as [1,2 ]

. 1 v
(i, t) = ——— g (71w /4mt 1.3

wherei = X, y or z-direction. If the appropriate source functions have been sg)d¢btn the pressure drop
anywhere in the reservoir system is given as [2].

Ap(X,Y,z,7) = ijs(x, 1).s(y,7).s(z,r)dr (1.4)
AL,
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or, using dimensionless parameters

B0 (X0 Yo 20,7) = 271 | 0%, 1):8(Yo 1) S(20, D)7 (1.5)
0

The only instantaneous source function that has not been diredtlgddand tabulated, like the others, in
the literature is (2, tp); i.e., that for the-axis containing a crossflow interface.

2.0 Derivation of a weighting factor
For the fact that the interface admits fluid at the bottdrthe top and releases at the top of the
bottom layer, or vice versa, let the corrected instantaneous sourderilret

S(2,tp) = E;S(zp,15) (2.1)
wherej = Layer 1 or Layer 2.
Equation 2.1 assumes a multiplicative correction for the existingty). As mentioned before, the

nature ofs(zp,t5) depends on the boundary-type being modeled. The factwill be derived for each

layer dimensionless pressure distribution for complete duplicatiothe interface effect. Therefore,
equation 1.5 is now best written as

Pos (X0, Yo Z0,7) = 2706 E; [ S(%5,7).8(Yp,, 7)-8(25, T)dT (2.2)
0

But the dimensionless wellbore pressure in each layer is unity asdidgimwes. That is
P, =~ P(X:¥5.%.15)

P; = P(Xup Yup, Zun 1)
since the reservoir pressure drop is equal to the layer’'s wepbeseure drop. The general expression for
Equation 2.2 for constant terminal pressure case is how therefore written as

waj = (23&)

ZmDEjjs(xND,r).s(yWD,r).s'(:ND,r)dr:1 (2.3b)
0

Assuming that the LHS of Equation 2.3b is expandable [Bkellother space variables, then equation
2.3b can now be represented as

275 S S o E, [$06, D) 800 S (20T =1 (24)
0

n=1m=1 =1
where theE's are the weighting factors. By virtue of the orthogondHtlyof the source functions, and
considering Layerg= 1 and 2,

. _M (2.5)
o2, + 1) '
Xep Yep Mp1| 1o
where L=t [ [ ]|] sl(xD,r).sl(yD,r).q(zD,r)dr:lddede@ (2.5a)
Xoo 0 0] 0

Xep Yep Mo | to

L=h, [ [ ] J%(XD,r).sz(yD,r)sZ(zD,r)dr}ddedexD (2.5b)

Xwo O hp,[ O

to 2
=g, | jja(xo,r).sl(yD,r).sl(zD,r)dr} dz,dy,dx,  (2.50)
Lo
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2
Xep Yep hp | to

=08, [ [ [] [9.06.0)8(Y5.7)8,(2,7)d7 | dz,dypdx,  (2.50)
Xuoo 0 hpo| O

E; are therefore the desired weighting factor for computingatteal source function contribution from
the z-axis for the crossflow system.
2.1 Description of Source Functions in Egs. 9 and 10

Note that in Equations 2.5a to 2.5d, all the external boundariesaamed to have been in effect.
However, if the well is centrally located along thaxis and the width is infinitesimally small compared
with the width of the reservoir (as is in actual pragti¢then the integration of all the Green’s functions
simply yield the equivalent source functions, with just positions aloagtes substituted [1, 2]. That is,

J-Sj (Xo,tp)dX, =5, (X5, tp)dX%y (2.6)
o

and .[Sj(yo’to)dyo =5,(Yp.tp)dy, (2.7)
0

The most commonly used forms of equations 2.6 and 2.7 are

JK/K, + X JKk/k, =X
s(xD,tD):1 erf YKk + % +erf Yk =% (2.8)
A" o 2t
for central well location on the x-axis, and
k e_(yD_wa)2/4tD

S(Ypitp) = k_T
y D

for an anisotropic reservoir during the early linear flowiqgee At long dimensionless flow times, when
all the external lateral boundaries and the interface aretetft for sealing lateral boundaries,

(2.9)

[ee] 2
S(X5,t5) = i{1+%Zlexp(— n ﬂzztD )sin LN NI )} (2.10)
Xep n=1 N D D Xep XeD
(o] 2
and S(Ypitp) = L{H 2> exp(- m ZztD ) cos¥u oM Yo )} (2.11)
yeD m=1 yeD yeD eD

The source functions for theaxis are however different. Under the condition of crossflow, therott
layer is modeled as a reservoir with a recharge througintedace (top boundary) while the bottom
boundary is impermeable to flow. The source function is thereforefiaité plane source in an infinite
slab reservoir with a partially recharging (constant-pressure, pbte@)aipper boundary written as

) 2
S(z,,tp) = hiZexp(— (en +12 772{) COS(2n 172, cos(2n L

(2.12)

D2 n=1 D2 D2 hD2

The top layer is modeled as a reservoir with a constantypee@gcharge) bottom boundary, similar to a
bottom water. The source function is therefore an infinite pdanece in an infinite slab reservoir with a
partially recharging (constant-pressure, permeable) bottom boundary wsitten a

[

1 @n-)°rt,, . (2n-Yrz,,, . (2n-1)7mz
(z5,t,) =— ) expl D)sin DL sin Dl (2.13)
2 l) =52 ag, 2h,, 2h,,

With all the source functions specified, Equation 2.1 is now complete wifadtog E taken as a constant
parameter outside the integral. The theorem of superpositiaménis used to evaluate the integral
whereas the factoE is computed as a constant parameter for a constant dimessidirte. All
integrations can be performed numerically according to [5 and 6].
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The range of validity oE in pressure distribution computation, as given by equation 2.1, is gitlen
respect to dimensionless flow timetas<tp <tp,;, Wheretpeis the dimensionless time to end of infinite-
acting flow period andp}; is the dimensionless time to end of the interface eff¢€t.8 and 9] give
expressions for estimatirig, and can be modified to estimagg.tThe magnitude of E depends strictly on
both wellbore and interface properties. If the interface is reddpiong, permeable and homogeneous, it
would produce the effect of a fully recharging boundary. On ther dthed, an interface with low
permeability and short length would produce the effect of an incoshplpenetrated or incompletely
completed well, if pressure transients were monitored from one of the.lale understand the effects of

crossflow orE, let to, = B, (2.14)

wheref3 is a correction factor which accounts for difference in resptinges of the layers to the same
transient regime. For instance, if individual layer dimenssmfgessure distribution were to be measured
from the same transient history, and the layers have diffeeservoir, wellbore and fluid properties,
then, if dimensionless time Layer 2 would respond to the tranisigst Layer 1 would be responding to

the same transient at dimensionless fitag. The same response character would also be responsible for
the difference in amount of fluid that can be produced from egeh far the same dimensionless flow
time. If 3 = 1, it means that the two layers probably have exactlyadime properties and therefore the
same response character. The importance of this factor is appeeciable in fluid recovery project
design and predictions. If dimensional parameters are used, then from Equation 2.14

B= (ﬂctl/'IlLka) /((@Ctzyzl‘ikl) (2.15)
according to the definitions of the dimensionless parameterdactw is either estimated from Equation
2.14 or from type cure matching. The summations appearing in Equatiore 22btained fon =1 =m=

1, i.e., at the wellbore, where Equation 2.3 is valid.

3.0 Results and Discussion

A few sets of wellbore parameters are now assumed belmenpute the values of E for an
isotropic reservoir anfl = 1. The sources(Xp, tp), Si(zp, to), S2(zp, tb) ands(yp, tp) from Equations 2.8,
2.9, 2.10 and 2.11 respectively, were entered into Equation 2.5, i.e.;lyatefialite reservoir case.
Results are shown belowTrables 3.1 and 3.2 and Figure 3.1.

Table 3.1:Effects of dimensionless width dh

hD]_: hD2: 1.0;XD1: Xp2 = 0.732,201: 0.7,202: 0.05

to | Ywo1=5 x 10° 10* 10° 10° 10° 10°
Ywoz=5 x 10° | 5x 10° 10° 10! 10° 10* 10"
10? 22.62 22.62 22.62 211.76 22.28 22.6Q 211.73
107 6.52 6.52 6.52 9.19 6.51 6.52 9.19
10° 2.48 2.48 2.48 2.57 2.48 2.48 2.57
10" 1.20 1.20 1.20 1.21 1.20 1.20 1.21
10° 1.02 1.02 1.02 1.02 1.02 1.02 1.02
10° 0.996 0.996 0.996 0.996 0.996 0.996 0.996
10° 0.994 0.994 0.994 0.994 0.994 0.991 0.994
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Table 3.2:Effects of layers thickness dnh

Ywp1= Yp2 = 105: Zupr = Zup2 = ho/2, hpy/2, hpy = hp, = 1.0

& ho=0.2] 0.4 06 |08 |10
hpa = 0.4 06 |08 |10
0.2

107 [ 26242 | 2727 | 74.89] 2044 0.0D
107 | 6933 | 616.90| 20.05 838| 0.0D
10° [ 2904 | 11825| 7.33 | 3.48| 0.0
100 [ 1615 | 6591 | 3.60 | 1.55| 0.00
17 [ 1391 | 5727 | 303 | 131] 000
10° | 1368 | 5640 | 3.00 | 1.29| 0.00
—e—xD1=xD2=0.0
) 400 —=—xD1=xD2=0.25
g 300 -
< xD1=xD2=0.732
2 200 A
=
xD1=xD2=1.0
100
0 \"‘\\v‘* 52 £4

0.001 0.01 0.1 1 10 100

Dimensionless Time, tD

Figure 3.1: Effects of flow point orE

It is observed from Tables 3.1 and 3t&t at very early dimensionless timés,varies widely but
inversely with dimensionless time. This behaviour is followed dmgdual decreases until final
stabilization at constant values for all sets of dimensioneisvidths considered. Sindgis not valid at
early dimensionless times, it therefore means that aetpéation of infinite-acting flowE remains
fairly constant for all dimensionless flow times. Lay#rgkness produces sinusoidal effectstowhile
well widths do not affecE considerably. Furthermore, the results shown in Figure 3.1 that, tier ma
where the well is perforatedy = 0.0, 0.25, 0.732 or 1.0), the same effects are observédarrihe same
well stand-off and width at late dimensionless times.

Dimensionless pressures computed using Equation 2.2 are tabulatdodler3Tafor a laterally
infinite two-layered reservoir. In the computatidn; = hp, = hy to ensure that the entire reservoir is
exposed to flow. Well 1 is the monitoring well. But in computing theieslof the modification factor,
the dimensionless pay thickness of each layer was used.d$hans extended reservoir, the parameters in
the integrals in Equation 2.2 are total pay thickness, totahgabilities andp; = Btp,, wheref3 = 1.0.
Computed dimensionless pressures show that a sloggpe®ht, = 1.151 comparable to the results of a
single layer reservoir case in [8], especially justxairation of early transients. At late dimensionless
times, however, there is a reduction in the valugs obecause the effects of layering is now being felt.
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The dimensionless pressure is now less than those of an leqtisimgle layer reservoir as revealed in
[9] for crossflow layered reservoirs with horizontal wells and [10] fotic@rwells with crossflow layers.
Thus, there can be more rapid economic depletion for the equivalesfl@mroseservoir than for an

equivalent single layer system without crossflow.

Table 3.1 Computed dimensionless pressures using moddicdtictor,E

Dimensionless Dimensionless Pressuresp
Times, tp
Case 1l Case 2 Case 3 Case 4
hD:0.8 hD:1-2 hD:]..O hD =3.0
hD]_: 0.4 hD1: 0.6 hD1: 0.5 hD1: 1.5
ZyD1— 0.2 ZyD1— 0.3 ZyD1— 0.25 ZyD1— 0.75
20220.2 ZD2:O-3 ZD2:025 ZD2:075
ZD]_:O.Z ZDl:O-3 ZD1:025 Zp1= 0.75
ZyDo— 0.2 ZWD2=0-3 Z‘WD2=0'25 Z‘WD2=0'75
0.000001 1.3601 2.0402 1.70015 5.1004
0.00001 1.8206 2.7310 2.2758 6.8274
0.0001 2.2812 3.4217 2.8515 8.5543
0.001 2.7417 4.1125 3.4271 10.2813
0.01 3.2022 4.8033 4.0028 12.0082
0.1 3.6627 5.4941 4.5784 13.7351
1 4.1232 6.1848 5.1541 15.4621
10 4.5837 6.8756 5.7297 17.1890
100 5.0443 7.5664 6.3053 18.9160
1000 5.5048 8.2572 6.8610 20.6249
10000 5.9653 8.9479 7.4566 22.3698
4.0 Conclusion

When selecting instantaneous source or Green’s functions fassflow-layered reservoir with
horizontal well, a modified form of the functions for the actstaining the crossflow interface has been
derived. The influence of both wellbore and layers’ propestias investigated. Instantaneous source and
Green’s functions for both early and late dimensionless flmgdiwere used to test the behaviour of the
derived modification factoi, for every set of wellbore and layers’ properties. Results obtained show tha
D the modification factor is invalid for early dimensionlessetin{infinite-acting) flow period as
revealed in computed dimensionless pressures for equivalent setlafrevelhd layers’ properties.

(2) The modification factor attains a constant value from inception of laterdiionless flow time.

3) As a multiplicative modification factor, only relevant sourod #r Green’s functions are simply
substituted into Eq.10 to duplicate the reservoir external boundaries oftinteres

(4) The modification factor is unaffected by perforation location and welhwidt
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