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Abstract 
 

In this paper, a well test analysis procedure is discussed for a two-layered oil 
reservoir drained from each layer by a horizontal well. Reservoir mathematical model 
are derived for each layer so that analysis can be done strictly for each layered 
reservoir. Procedures for obtaining all the directional permeabilities, wellbore skin, 
degree of crossflow and individual layers average pressures are discussed for a 
pressure drawdown test procedure  

 
 

Nomenclature 

Bq

pkh
pD µ2.141

∆
= ; 

2

001056.0

Lc

kt
t

t
D

µφ
= ; 

i
D

k

k

L

i
i

2
= ,  

i = positions along x or y or z axes, ft;  

DD Lh /1= ;  

∆  = drop; 
p = pressure, psi; 
k = permeability, md; 
h = pay thickness, ft;  
t = time, hours;  
q = flow rate, STB/Day;  
µ = oil viscosity, cp;  
B = oil formation volume factor, bbl/STB;  
ct = total fluid compressibility, 1/psi;  
L = well length, ft;  
erf = error function;  
τ = dimensionless dummy time variable tDp’

D dimensionless pressure derivative. 
Subscripts 
x, y, z = x, y, or z, directions; D = dimensionless; w = wellbore; e = external 

 
1.0 Introduction 

Horizontal well test and analysis procedures have been adequately reported in the literature 
especially in the late 1990’s [1, 2, 3,4]. At first, test analyses procedures were modeled in the form of the 
conventional test analyses procedures such as the (Horner’s) buildup and pressure drawdown plots. Later, 
dimensionless pressure derivative plots were introduced [5, 8], to solve test analyses shortcomings 
associated with the conventional test analyses methods.   
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The major aims of all transient test analyses are to evaluate wellbore condition, reservoir 
heterogeneity and reservoir boundary types. This information helps in planning well work over or repair, 
well location strategy for optimum recovery, production or injection profiling and determination of source 
of available reservoir energy (boundary types). 

Layered reservoirs present peculiar problems. Apart from possessing more than one permeability 
distribution, the nature of their interfaces have to be established to determine a more technically suitable 
completion pattern for both economic benefits and high productivity. The interface may be permeable or 
not permeable. Permeable interfaces allow crossflow while no crossflow occurs if the interfaces are not 
permeable. Well completion strategies in layered reservoirs with crossflow and no crossflow interfaces 
have been discussed for vertical wells [9, 10].  Not so much similar efforts have been made for horizontal 
wells, but many authors have discussed analytical methods of delineating flow boundaries [1, 2, 3, 8, 11, 
12, 13].  These methods can be used to determine both lateral and vertical extents of the reservoir from a 
horizontal well test. The remaining aspect yet to be discussed in as much detail remains the degree of 
crossflow determination. The degree of cossflow determines whether to crossflow the individual layers or 
commingle all the layers. 

In this paper, a two-layered oil reservoir drained collectively and individually, with a horizontal 
well will be modeled mathematically and a detailed test analysis procedure based on the model will be 
discussed.  Major information that will be derived from the well test analysis are (1) directional 
permeabilities, kx , ky, and kz, (2) wellbore damage skin factor, s. (3) average reservoir pressure, pe, (4) 
minimum wellbore pressure, pwm, for oil production from only one layer, and (5) degree of crossflow, β. 
Both layer dimensionless pressure distribution and their derivatives will be derived and utilized. 

 
2.0 Reservoir and Mathematical model descriptions 
An anisotropic two-layered reservoir system is assumed. As shown below in Figure 2.1, each layer is 
penetrated with a horizontal well. 
 
 
 
 
 
 
 

Figure 2.1: Layered Reservoir Model 

 
For a permeable interface let the propensity of interface fluid crossflow be given by the index β, 

where ξ ≤ β ≤ ∞, practically, and ξ is a small positive value, greater than zero. As will be clear later, for 
an isotropic reservoir layers if β = 1, then the interface will experience no crossflow even though it may 
be permeable except created artificially under large pressure drop. Lower values of β mean that the 
interface will experience limited crossflow, while larger values mean that the interface will experience 
sufficient crossflow. [14] describes the mathematical development of the pressure distribution for the 
reservoir system shown in Figure 2.1 above. The layers dimensionless pressure distribution expressions 
according to the references are as follows for laterally infinite layers: 
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(2) Lower Layer (Layer 1)  
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In both Equations 2.1 and 2.3, the effects of the individual layers boundaries along the –x and –y 
axes have not been felt and are considered infinite. Only the interface effects (along the top or bottom–z 
axis of the layers) are assumed now felt. When all the boundaries are felt, the following equations are then 
used in place of Equations 2.1 and 2.3, for central well location along the x-axis, according to [15]:  
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In other words, Equations 2.4 and 2.5 prevail long after the prevalence of 2.1 and 2.3 if (1) the interface 
experiences no crossflow or limited crossflow, (2) large layers kh/kv ratios and (3) low layers wells 
withdrawal or injection rates. Otherwise, production of fluid from or injection into one of the two layers 
would produce the effects of one enlarged reservoir in which case all the parameters would now be the 
average or equivalent sum of the parameters of all the layers. Furthermore, the flow across the interface 
would now be dependent upon the degree of communication, β, between the layers. By equating 
dimensionless pressures and flow velocities at the interface, the expression for E can be derived as 
follows if Equations 2.1 and 2.3 are used [14, 15]: 
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and 
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2.1 Well test analysis Mathematical model 
For application in well test analysis, assuming Well 1, the solution to Equation 2.3 is written as 
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 (2.9) 

Equation 2.9 is obtained by superposing the infinite-acting (radial) flow period and the early 
linear flow period. During the infinite-acting flow, E = 0 since no external physical boundary has 
been encountered. According to [5, 6, 7] the pressure derivative for Equation 2.9 is  
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Note that Equations 2.1, 2.3, 2.4, 2.5, 2.9 and 2.10 do not depend on the ratio ykk /  as a result of 

multiplication by E.  
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2.2 Well test analysis procedure 

For various of hD, rD, xkk / , yD and ywD (= rwD), type curves can be produced for pD1 versus tD 

and tDp’
D versus tD, respectively, on log-log axes. A plot of tDpD against DD tre 42− and a plot of pD against 

Ei(-r2
D/4tD) on linear axes yield the same slope of (-0.25hD zykkkk / ). However, in a well test only 

pressures, p, and flow times, t, are read directly; other parameters to be obtained from the well test are 
calculated. If the values of hD and xkk / are obtained from type-curve matching, then with the slope 

obtained from the plots above there are now three equations and three unknowns to be solved for.  These 
unknowns are kx, ky, and kz and the three equations are  
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2.3 Behaviour of E  
At early dimensionless times, pD is not affected by E, since no boundary is felt yet. For all well 

parameters, values of E remain constant beyond the early flow period [14, 16]. Negligible values of E are 
obtained for large values of hD, showing that the factor E becomes negligible as the layers thickness 
becomes larger. In other words, the layers pD values still behave as if the pay thickness are infinite. Note 
that for reservoirs without crossflow, E = 1 for all expressions to be valid. During the period beyond 
radial flow, i.e., when E is constant, it therefore means that    E = constant  
               (2.15) 
Hence     E - constant = 0                 (2.16) 
where constant is the constant value obtained beyond the early radial flow period.  Equation 2.15 is valid 
only at tD ≥ tDe and tDe is the least value of tD that satisfies Equation 2.15. It may also be the dimensionless 
time when the interface is felt. Thus, for any set of wellbore and reservoir layers parameters a particular 
value of β that satisfies Equation 2.16 can be estimated numerically using the Newton-Raphson scheme as 

follows:  Assume that β = 0, the worst scenario. Obtain    
β∂

∂= E
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If ≈−+ )( 1 ii ββ  epsilon, then βi  is the degree of crossflow across the interface. 

 
3.0 Individual reservoir layers average pressure  

The general relationship for the flowing well pressure and reservoir layers pressure is given as 
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where s is the wellbore skin and pD is given by Equation 3.1, assuming Well 1 is the monitoring well. 
From Equation 3.1, it is expected that the growth of pD, occasioned by the exponential integral is 
interrupted the moment the interface is felt and beyond. If the dimensionless time at which the constant 
value is attained is tDss, then  
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At tD > tDss flow is now propagated beyond the interface in the x-y plane for highly compressible oil. The 
rapidity at which this is attained depends on the degree of crossflow of the interface. Note that in 
Equation 3.2, pD1 does not depend on dimensionless time. 

Using Equation 3.2 in Equation 3.1 and for a constant drawdown or injection rate, a plot 
of p(x,y,z,t) recorded at the surface against pD yields a straight line with intercept pe on the 
vertical axis. The intercept should be obtained by extrapolating the portion of the curve that is 
parallel to the pD axis; that is, the minimum wellbore pressure, pwm, required for fluid production 
or injection from the bottom layer only and at the prevailing rate. The slope of the curve, m = 
141.2qµB/kL, can be used to calculate k, kL, k/µ, etc.  
3.1 Estimation of Skin Factor, s 

To permit estimation of the skin factor, s, Equation 3.2 is written to include the skin factor and oil 
field units as follows: 
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After flowing the well for 1hr, Equation 3.3 is now given as: 
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Solving, 
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where m = 162.6qµB/kL. Note that in Equation 3.5, s does not depend on dimensionless time since it is 
evaluated within constant dimensionless time interval tDe and tD1hr. The p1hr must be obtained from the 
straight line on a plot of pwf against log t. 

All infinite summations are performed at the wellbore, i.e., at n = 1. The integrals can be 
evaluated numerically. 

 
4.0 Conclusion 

Horizontal well analysis has been discussed for a layered reservoir with crossflow interface. For a 
pressure draw down test analysis procedure, the following conclusions can be deduced: 
1. Type curve matching is required to obtain hD and xkk . Even though the degree of crossflow, β, 

can be obtained from type curve matching, it can also be obtained from Newton-Raphson scheme. 
2. A plot of subsurface pressures versus computed dimensionless pressures is made to read the 
layers average pressures. This is against conventional approaches for obtaining average reservoir 
pressures in the literature. 
3. The plot above can also be used to estimate the minimum bottomhole pressure to guarantee oil 
production from only one layer under a specific rate regime. 
4. All directional permeabilities are inversely proportional to dimensionless thickness in varying 
degrees. 

5. The slopes of dimensionless pressure against Ei(-rD
2/4tD) and dimensionless pressure derivative   against 

exp(-rD
2/4tD) are the same. 
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