Journal of the Nigerian Association of Mathematical Physics
Volume 14 (May, 2009), pp 181 — 188
© J. of NAMP

Well test analysis of horizontal wells in a two-layered reservoirystem: Mathematical derivation
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Abstract

In this paper, a well test analysis procedure is discussed for a two-layered oil
reservoir drained from each layer by a horizontal well. Reservoir mathematical model
are derived for each layer so that analysis can be done strictly for each layered
reservoir. Procedures for obtaining all the directional permeabilities, wellbore skin,
degree of crossflow and individual layers average pressures are discussed for a
pressure drawdown test procedure

Nomenclature

pp = —KBP_. 0001086 kt ;2 [k,
1412q,uB D HPC, |_2 b~ L ki

i = positions along ory or z axesft;

hD =1/ LD ;

A =drop;

p = pressurepsi;

k = permeabilitymd;

h = pay thicknesdt;

t = time, hours;

g = flow rate, STB/Day;

H = oil viscosity,cp;

B = oil formation volume factor, bbl/STB;

¢, = total fluid compressibilityl/psi

L = well length ft;

erf = error function;

7= dimensionless dummy time variald  dimensionless pressure derivative.
Subscripts

X, Y, Z =X, yprz, directionsD = dimensionlessy = wellbore;e = external

1.0 Introduction

Horizontal well test and analysis procedures have been adgqueperted in the literature
especially in the late 1990's [1, 2, 3,4]. At first, test anays®cedures were modeled in the form of the
conventional test analyses procedures such as the (Horneltk)pand pressure drawdown plots. Later,
dimensionless pressure derivative plots were introduced [5to8%olve test analyses shortcomings
associated with the conventional test analyses methods.
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The major aims of all transient test analyses are touatelwellbore condition, reservoir
heterogeneity and reservoir boundary types. This information helparinipyy well work over or repair,
well location strategy for optimum recovery, production or injection profilimd)determination of source
of available reservoir energy (boundary types).

Layered reservoirs present peculiar problems. Apart from gsisgemore than one permeability
distribution, the nature of their interfaces have to be ksitalol to determine a more technically suitable
completion pattern for both economic benefits and high productivity.iflerface may be permeable or
not permeable. Permeable interfaces allow crossflow whileressflow occurs if the interfaces are not
permeable. Well completion strategies in layered reserwdilrscrossflow and no crossflow interfaces
have been discussed for vertical wells [9, 10]. Not sahnsirnilar efforts have been made for horizontal
wells, but many authors have discussed analytical methodsinéatelg flow boundaries [1, 2, 3, 8, 11,
12, 13]. These methods can be used to determine both lateral anal esttats of the reservoir from a
horizontal well test. The remaining aspect yet to be discussad much detail remains the degree of
crossflow determination. The degree of cossflow determineshett crossflow the individual layers or
commingle all the layers.

In this paper, a two-layered oil reservoir drained collectiaslg individually, with a horizontal
well will be modeled mathematically and a detailed testyaigaprocedure based on the model will be
discussed. Major information that will be derived from thelwes$t analysis are (1) directional
permeabilitiesk, , k, andk,, (2) wellbore damage skin facta, (3) average reservoir pressupg, (4)
minimum wellbore pressur@,m, for oil production from only one layer, and (5) degree of crossfiow,
Both layer dimensionless pressure distribution and their derivatiidsenderived and utilized.

2.0  Reservoir and Mathematical model descriptions

An anisotropic two-layered reservoir system is assumed. Asrshelow in Figure 2.1, each layer is
penetrated with a horizontal well.

y

Layer2 Well 2 X
@ ]

z
Layer1 Welll

i -

Figure 2.1: Layered Reservoir Model

For a permeable interface let the propensity of interfiute ¢rossflow be given by the indg
whereg < 3 < o, practically, and, is a small positive value, greater than zero. As willlbardater, for
an isotropic reservoir layers[if = 1, then the interface will experience no crossflow etiendh it may
be permeable except created artificially under large presbope Lower values off mean that the
interface will experience limited crossflow, while largelues mean that the interface will experience
sufficient crossflow. [14] describes the mathematical devedmprof the pressure distribution for the
reservoir system shown in Figure 2.1 above. The layers dimerssgmessure distribution expressions
according to the references are as follows for laterally infiaiterk:
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(1) Upper Layer (Layer 2)

I ,/V *tXp f %x TXp | o (oo I 4pr
+er

b2 2./pr 2Br  |\T 2.1)
i _(@n-1)*r’r . (2n-Ymz, . (2n-1mz,,
x ;lexp( an? sin 2h, sin 2 dr
where B = (@Cu4L1k,) (G5 L5k,) (2.2)

(2) Lower Layer (Layer 1)

/ k/ _
X kK %o ~(Yo=ywp)* 147
_ EI verf b 2

Por = 2t |NT (2.3)

Xiexp(— (2n +1)22n2r cos@nt )z,  n+Dm o
4hg ho ho
In both Equations 2.1 and 2.3, the effects of the individual layers boesddong the x-and -y
axes have not been felt and are considered infinite. Only tiiéaneesffects (along the top or bottam—
axis of the layers) are assumed now felt. When all the boundariedt atteeféollowing equations are then
used in place of Equations 2.1 and 2.3, for central well location alomxepttie, according to [15]:

Poy = 47E2ﬁ.[{1+ 2XeDZ expt-" n"-rﬁ) in7 cog /R coJmXD)}

YeoXen 5 5 Xp
(x|:]_+ 22 expt mzﬂzl'ﬁ) CO"mWWD C0°m7-5/D )i| (2.4)
yeD yeD eD
x> expt @-) ZHZT’B)sin(2 D725 i @ D72
= 4y 2h, 2h,
fo ® 2.2
Po1 = L [1+—2X9D Zlexp(— n ];[ T)sin N cos V%o o5 170 )}
yeD XeD 0 eD eD XeD XeD
2 2
[1+ 22 exp(- T)cos MBwo_cos myﬂyf’ )} (2.5)
eD eD eD

XZexp(— 2l +1)2 T T)cos @ +ymz,, oS 2l +1)ndeT

- 4hg 2h, 2h,
In other words, Equations 2.4 and 2.5 prevail long after the prevatéreg and 2.3 if (1) the interface
experiences no crossflow or limited crossflow, (2) large Bygk, ratios and (3) low layers wells
withdrawal or injection rates. Otherwise, production of fluid fromnjection into one of the two layers
would produce the effects of one enlarged reservoir in whichath#ee parameters would now be the
average or equivalent sum of the parameters of all the ldyarhermore, the flow across the interface
would now be dependent upon the degree of communicatiometween the layers. By equating
dimensionless pressures and flow velocities at the interfaeeexpression for E can be derived as
follows if Equations 2.1 and 2.3 are used [14, 15]:
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where
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[ee] 2 _
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2.1 Well test analysis Mathematical model
For application in well test analysis, assuming Well 1, the solutioquation 2.3 is written as

_hy (K g Elm f o 5% | g vovarr
Pop == —Ei(—>)+—— —I erf +erf —
4 kykz 4, 2 k\“De 2\/; 2\/;

Jr (2.9)

N+ cos(2n MRS cos(2n ML dr.

x ) expt
) ™ "

Equation 2.9 is obtained by superposing the irdHaitting (radial) flow period and the early

linear flow period. During the infinite-acting flg#e = 0 since no external physical boundary has

been encountered. According to [5, 6, 7] the pmesdarivative for Equation 2.9 is

2 K -
t F"D:—E &e_%HE@ LS erf\/ZH(D +erf\/% " g0 Hoo) /47
" aykk, 2 \k 2/t 2t

(2.10

5 @n+)*T__ (2n+)rm,  (2n+)re,,
gexpé o oS . COS hD

Note that Equations 2.1, 2.3, 2.4, 2.5, 2.9 and 2.10 do not depend on thquagjo as a result of

multiplication byE.
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2.2 Well test analysis procedure
For various ofhp, rp, Jk/k, , Yo and Yio (= fwo), type curves can be produced fgy versustp

andtppp versustp, respectively, on log-log axes. A plot Bpp againste‘ré/‘“D and a plot ofpp against
Ei(-r’o/4tp) on linear axes yield the same slope of (-Bp3fk/k/k, ). However, in a well test only
pressuresp, and flow timest, are read directly; other parameters to be obtained fnenwell test are
calculated. If the values dfy and \/Ware obtained from type-curve matching, then with the slope

obtained from the plots above there are now three equations aaditkmeowns to be solved for. These
unknowns aré,, k,, andk, and the three equations are

-2 [ e

(-0.250p [kk/k k, = A) (2.12)

and k/k, =B (2.13)
Solving the three equations simultaneously, we have

k= 8A72 ___8n? ndk, = 8A (2.14)

- hngaz YT hg/ZBJ/ZLLZ '
2.3 Behaviour ofE

At early dimensionless timepp is not affected by, since no boundary is felt yet. For all well
parameters, values &remain constant beyond the early flow period [14, 16]. Negligidieeg=ofE are
obtained for large values ¢, showing that the factor E becomes negligible as the lahansness
becomes larger. In other words, the laygysalues still behave as if the pay thickness are infinitéeN
that for reservoirs without crossflo, = 1 for all expressions to be valid. During the period beyond
radial flow, i.e., when E is constant, it therefore means that E = constant

(2.15)

Hence E - constant= 0 (2.16)
whereconstantis the constant value obtained beyond the early radial floiwdbeEquation 2.15 is valid
only attp = tpeandtpe is the least value af that satisfies Equation 2.15. It may also be the dimensionless
time when the interface is felt. Thus, for any set of wedlbennd reservoir layers parameters a particular
value off3 that satisfies Equation 2.16 can be estimated numerically using therNBaphson scheme as

T 1Y2p-52,2"
hY2B~92L

follows: Assume thgs = 0, the worst scenario. Obtain E = g—;
(2.17)
Then g.=p-LL=0 (2.18)
E(8=0)

If |(B.1-B) = epsilon, thef; is the degree of crossflow across the interface.
3.0 Individual reservoir layers average pressure
The general relationship for the flowing well pressure and reseryeirslpressure is given as

141.2q.B
p(x Y. 21) = p, === = (py +9) X
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wheres is the wellbore skin andpps given by Equation 3.1, assuming Well 1 is the monitoring well.
From Equation 3.1, it is expected that the growthpgf occasioned by the exponential integral is
interrupted the moment the interface is felt and beyond. If timerdionless time at which the constant
value is attained iy then

t Kk’ — (Yo ~Yup)? 141
o = hD r; Ef Dss \/7 + X5 verf \/Z X5 i (Yo =Yup) "/
l ky N 2t r (3.2)
X iexp(— (2n +j)22nzr cos(2n e, cos(2n D720 dr
n=1 4h3 hD hD

At tp > tpss flow is now propagated beyond the interface inxttyeplane for highly compressible oil. The
rapidity at which this is attained depends on the degreerasfsflow of the interface. Note that in
Equation 3.2pp; does not depend on dimensionless time.

Using Equation 3.2 in Equation 3.1 and for a camstiiawdown or injection rate, a plot
of p(x,y,z,}) recorded at the surface agaipst yields a straight line with intercemt on the
vertical axis. The intercept should be obtainedekirapolating the portion of the curve that is
parallel to thepp axis; that is, the minimum wellbore pressyxgy, required for fluid production
or injection from the bottom layer only and at trevailing rate. The slope of the curve, m =
141.2B/KL, can be used to calculdtekL, ki, etc.

3.1 Estimation of Skin Factor,s

To permit estimation of the skin factar,Equation 3.2 is written to include the skin factor and oil

field units as f0||0WS'

ﬁ o fics, i
hD (Iog+log— 262%65/77\[ erf 2 +erf 2
16 r r
p=p 1022 ¢ 5 (3
_(YD_MND)ZMT 00 2
£ exp(MCOQL])HDCO Gl o gr+ B
T = 41, h, |
After flowing the WeII for tir, Equation 3.3 is now given as:
n f (l % B J? e,
og— 2625+—— —I erf +erf
o = p - 16%UB 2 \ky,| 2T 2t |l 34
r e kL "
e VXM, Qn+lrfr (D), (2n+)7m,,
— coS CoS dr+08%
N ™ m
Solving,
ol i
h’ kz(log— 262% E\/}\F Y +erf %\f
s=1154(P ;n”hr) ] 4k ton r r (3.5)
(o ~Yud) 14 o 2
< exp{(znﬂ) nerOéZnﬂ)zzD coéznﬂ)ﬂ‘”DdH (03FS
FP- |
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wherem = 162.@)uB/kL. Note that in Equation 3.5,does not depend on dimensionless time since it is
evaluated within constant dimensionless time interygand bi,. The pn Mmust be obtained from the
straight line on a plot g, against log.

All infinite summations are performed at the wellbore, i.e.nat 1. The integrals can be
evaluated numerically.

4.0 Conclusion
Horizontal well analysis has been discussed for a layered ogseith crossflow interface. For a
pressure draw down test analysis procedure, the following conclusions can beldeduce

1. Type curve matching is required to obtainamd \/k/k, . Even though the degree of crossfl@y,

can be obtained from type curve matching, it can also be obtained from NewtloseRacheme.

2. A plot of subsurface pressures versus computed dimensionless @seissunade to read the
layers average pressures. This is against conventional apesodar obtaining average reservoir
pressures in the literature.

3. The plot above can also be used to estimate the minimum hof®mpressure to guarantee oil
production from only one layer under a specific rate regime.

4. All directional permeabilities are inversely proportionaldimensionless thickness in varying
degrees.

The slopes of dimensionless pressure against##ts) and dimensionless pressure derivative against
exp(-n7/4ty) are the same.
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