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Abstract 
 

This work investigates cholera as a disease using mathematical models with 
emphasis on its endemic nature. The focal point is to investigate the persistent endemic 
nature of cholera in Nigeria using mathematical model. We found that, there can be no 
backward bifurcation because there existed only one positive endemic equilibrium. In 
other words, it is not possible for multiple endemic equilibria to exist if the reproduction 
number is less than one. Even when reproduction number is greater than one, only a 
single endemic equilibrium is shown to exist.  There was however a transcritical 
(forward) bifurcation explaining the existence of a single endemic equilibrium. 
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1.0 Introduction  
Cholera epidemic was first presented formally in Snow’s seminal work in 1855 where he 

associated cholera with contaminated water supply – see Codeco [1].  Over a century later, Cockburn and 
Cassanos [2] published an article on epidemiology of endemic cholera in Asia. Then McCormack et al [3] 
investigated cholera in a rural community of Pakistan. In Nigeria, outbreaks of the disease have been 
occurring with increasing frequency since the first outbreak in 1970 – see Epstein [4].  Most of the 
available literature lay credence to the fact that V. cholerae 01 was the main causative agent of cholera 
and much effort was directed towards its control. 

A lot of epidemiological surveillances on cholera epidemics have been published – see for 
example Hustin and Luby [5] and Lawoyin et al [6], but of particular interest to us is the mathematical 
model formulated by Capasso and Paveri-Fontana [7] to describe the 1973’s cholera epidemics in Italy. 
This model was a system of two ordinary differential equations, considering dynamics of the infected and 
that of the toxigenic V. cholerae in an aquatic reservoir. Codeco [1] extended Capasso and Paveri-Fontana 
[7] model to a system of three ordinary differential equations by including the susceptible class. Our 
model tends to include the carrying capacity of the organism by using a logistic growth approach that 
incorporates demographic factors and examine show these will affect the endemic nature of cholera in 
Nigeria. 
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2.0 Model formulations 

A careful observation however, shows that bacteria population growth is fitted excellently with a 
logistic equation – see Britton [8].  Since the probability of catching cholera depends on the concentration 
of V. cholerae in aquatic environment, it behooves us to know the carrying capacity of the aquatic 
environment. The logistic term accommodates a carrying capacity for the aquatic environment hosting the 
bacteria. Basically, the growth term for the bacteria population used in Codeco [1] suggests that the 
population growth of bacteria is linear. In this work, we propose a model that incorporates demographic 
factors. In view of the foregoing, we proposed a model by using the logistic growth approach in line with 
Britton [8] and Appendix I. 

Let S(t), I(t), B(t) be the number of susceptible individuals, the infected and the concentration of 
the toxigenic V. cholerae in water at given time t respectively. 

Let Λ be the recruitment rate into the susceptible class, which could include immigrants and / or 
newborns that are uninfected. We assume that µ is the per capita natural human death rate; then µ1  is 
an average lifespan of individuals in the total human population N. Let ‘a’ be the per capita exposure rate 
to contaminated water (day-1). Let )(Bθ  be the probability of any one exposed to contaminated water and 
food to catch cholera. This is dependent on the concentration of the toxigenic V. cholerae in water. Let d 
be the per capita cholera related death rate (day-1). We assume that β  is the rate of recovering from 
cholera, r is the growth rate of V.cholerae in the aquatic environment. K is the carrying capacity of 
V.cholerae in the aquatic reservoir, k is the concentration of V.cholerae in water that yields 50% chance 
of catching cholera and e is the per capita contribution of the infected to the population of V.cholerae.  
The model is: 

dt

dS
=Λ – aθ(B)S – µS     (2.1a) 

dt

dI
=aθ(B)S – (µ + d + β)I                (2.1b) 

dt

dB
 = rB(1 – B/K) – nB + eI    (2.1c) 

S(0) = N, I(0) > 0, B(0) = 0     (2.2) 
Given the model in (2.1a – 2.1c) above, Isere (2009 – see Appendix I) showed that the disease free 
equilibrium (DFE) becomes stable if the rate of exposure of people to contaminated water (the 
transmission rate) and the rate of contribution of the infested to V. cholerae is less than the concentration 
of V. cholerae in water that yields 50% chance of catching cholera.  That is if the basic reproduction ratio, 
R0, is less than unity, where 

  R0  =  ( )( )










++−
Λ

βµµ drnk

ae
    (2.3) 

Hence, if R0  < 0, the DFE is asymptotically stable. 
 If 0R  < 1, the disease dies out, but if 0R > 1, it remains endemic in the population. If Ro >1, a 

disease outbreak can easily occur (the equilibrium point under consideration becomes unstable the 
infection spreads). For a detailed understanding of (2.1a – 2.1c) and proof of (2.3) see Appendix I). 

 Suppose we define R0 as R0  = ( )µβ ++− drnk

ea

)(
S0    where S0 = Λ / µ  (asymptotic  
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population size). But Sc is the critical number of susceptible pool above which an outbreak occurs with 
the introduction of infective into the community. This happens when 0R  = 1 (i.e. the threshold value). For 

this value of 0R   

 
( )
ae

drnk
Sc

βµ ++−= )(
 (2.4) 

We observe from (2.4) thatcS , increases proportionally to k, (n – r) and the removal rates )( βµ ++ d   

as well the net loss rate of the V. cholerae in water. It decreases as the contamination of water ‘a’ and the 
contribution of the infected ‘e’ to the population of the organism is increased. 
 
3.0 Endemic cholera   
 Endemicity refers to a situation whereby a disease seems to be locally persistent in a community 
over a long period of time. In such situation, the community is vulnerable. Since S0 >Sc, the introduction 
of an infective in the community starts a cholera outbreak. In this case, however, cholera does not vanish 
after the first peak – see Codeco [1]. 
Setting the derivatives in (2.1a-2.1c) to zero and solving algebraically, we obtain the endemic 

equilibrium, in terms of *λ , the incidence evaluated at the endemic equilibrium 

  
µλ +

Λ=∗
*

S   (3.1) 

Let  ( )Βaθλ = , 
βµ

λ
++

=Ι∗

d

S**

  (3.2) 

Setting (2.1c) to zero result in a quadratic equation which gives the solution (the positive one) as rB 

( ) 01 =+−− eInBK
B  

  0
2

=+−− eInB
K

rB
rB   (3.3) 

 ( ) 0
2

=+−− eI
K

rB
Bnr   (3.4) 

Let =
K

r
ε and z = r – n , εB2 – zB – eI = 0.  We would expect r < < K for this problem.  

εB2 – zB – eI = 0, ε →0, zB + eI  =  0 

 B* = 
rn

eI

nr

eI
B

−
=

−
−=∗

**

   (3.5) 

Substituting (3.1) into (3.2), we have 

 ( )βµµλ
λ

+++
Λ=Ι

d)( *

*
*   (3.6) 

But  
Bk

aB

+
=λ   (3.7) 

Substituting (3.5) into (3.7), we have 
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−
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rn
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rn

ae

−
Ι+−

−
Ι

∗
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∗

Ι+−
Ι

ernk

ae

)(
  (3.8) 

or ∗λ =  
Λ++++−

Λ
∗∗

∗

λβµµλ
λ

edrnk

ae

))()((
 

Λ++++−=Λ ∗∗∗∗ edrnkae
2

))()(( λβµµλλλ  

0))()((
2

=Λ−+++−+Λ ∗∗∗∗ aedrnke λβµµλλλ  

0))(( 22

=Λ−+++++−+Λ ∗∗∗∗∗∗ aeddrnke λµβµµβλλµλλλ  

0))(())(( 22

=Λ−++−+++−+Λ ∗∗∗∗∗∗∗ aedrnkdrnke λµβµµλβλλµλλλ  

0]))(([))((
22

=Λ−++−+++−+Λ ∗∗∗ aedrnkdrnke βµµλβµλλ  

0]))(([)])(([
2

=Λ−++−+++−+Λ ∗∗ aedrnkdrnke βµµλβµλ  

which implies 0=∗λ  or 
aR

Ra

aR

aaR

+
−

=
+
−

=∗

0

0

0

0 )1(λ .  Endemic equilibrium exists only if  10 >R . If 

10 =R , it reduces to the DFE’.  This shows that we have a unique endemic equilibrium. There is a 

transcritical bifurcation at the point 10 =R  when the DFE loses its stability and the endemic equilibrium 

then exists when 10 >R . If 10 <R , endemic equilibrium seizes to exist. 

 
4.0  Conclusion 

We found that, there can be no backward bifurcations because; there existed only one positive 
endemic equilibrium. In other words, it is not possible for multiple endemic equilibria to exist if the 
reproduction number is less than one. Even when reproduction number is greater than one, only a single 
endemic equilibrium is shown to exist.  There was however a transcritical (forward) bifurcation 
explaining the existence of a single endemic equilibrium.  
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Appendix I 
With the model given in (2.1a) – (2.1c) in this work we easily see that the equilibrium solutions for which 
the system will no longer change is only when the rate of change are equated to zero. On the other hand 
local stability analysis helps us to determine the behaviour of the different populations near the 
equilibrium solutions. To achieve this, we compute the linearization of the system, which we obtained 
from the Jacobian matrix, J, of the system. Hence 
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A community becomes cholera-free at the point (S0, I0, B0) = (Λ/µ,0,0). We refer to this point as the 
Disease-Free Equilibrium (DFE).  All individuals are susceptible.  There are neither infective nor immune 
individuals nor toxigenic bacteria in the water.  The expected population size at this state will simply be 

the solution of S
dt

ds µ−Λ=  to give t
iStS µµµ −Λ−+Λ= l)/(/)(  where iS  is the initial number of susceptible 

individuals in the population.  It is easy to see that as ,/, µΛ→∞→ St , which is the asymptotic 
population size. Hence the entire population will comprise wholly of susceptible individuals. 
 Now, what will happen if a small number of infective come into this community? Will the disease Free 
State be achieved?  Therefore, we carry out the stability analysis for the steady state to obtain: 
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with eigenvalues as; ( ) ( )( )
µ

µβµµµβµλµλ
k

nrdkaeknrdk

2

4
,

2

21

++−++Λ++++−−==  and 

( ) ( )( )
µ

µβµµµβµλ
k

nrdkaeknrdk

2

4 2
1 ++−++Λ−+++−−=

  

For λ2 to be negative, this implies that 

))(4( 2µβµµ ++−++Λ nrdkaek  < )( µβµ +++− nrdk   (*) 

If (*) is satisfied then the DFE will be asymptotically stable. The disease dies out with time.  
That is, if the rate of exposure of people to contaminated water (the transmission rate) and the rate of 
contribution of the infested to V. cholerae is less than the concentration of V. cholerae in water that yields 
50% chance of catching cholera. This DFE becomes asymptotically stable. 
From (*) above, we observe that 

 ( )( ) ( )( ) 
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Since (n-r) is the net loss rate with (n - r) > 0, then ( )( ) 
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Hence, if 10 <R , the DFE is asymptotically stable, where 0R  =  ( )µβµ ++−
Λ
drnk

ae

)(
. 
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