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Nomenclature 
English symbols 
A pre-exponential factor (1/s)  

B dimensionless parameter expressing ratio of latent heat of evaporation 
Cf molar concentration combustible 
Cpg specific heat capacity of the gas phase 
Cps specific heat capacity of the solid phase at constant pressure 
E activation energy (J/kmol) 

L  latent heat of evaporation (J/kg) 
mf molar mass (kg/kmol) 

n numerical exponent 

nd number of droplets per unit volume 
ns number of solid particles per unit volume
Q specific combustion energy ((J/kg
Rd droplet radius (m) 
Rs solid particle radius (m) 
Ru universal gas constant (Jkmol-1K-1

t time (s) 
Tg0 combustible gas initial temperature (
Ts0 dusty particle initial temperature (
Tg combustible gas temperature (K) 
Ts dusty particle temperature (K) 

Greek Symbols  
ρ density of the combustible gaseous mixture
� thermal conductivity (Wm-1K-1) 
ϕ  volumetric phase content (dimensionless)

σ Stefan-Boltzmann’s constant 
β dimensionless activation energy 
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τ  dimensionless time  
∂ dimensionless parameter expressing reciprocal of the characteristic time for  adiabatic temperature rise 
α1 dimensionless parameter expressing heat loss via convection from gas phase# 
α2 dimensionless parameter expressing heat loss via radiation from gas phase 
α3 dimensionless parameter expressing interphase heat exchange between gas and solid particle 
µ dimensionless parameter expressing energy needed to transfer heat from gas phase to solid phase  
µ* dimensionless parameter expressing energy needed to evaporate all fuel droplets  
ψ  dimensionless parameter expressing energy needed to consume all gas concentration  

Subscripts  
0 initial 
g gas mixture,  
f combustible gas component of the mixture (fuel);  
d liquid droplets;  
p constant pressure,  
s solid particles  
ig ignition 
 
1.0 Introduction 

The concept of thermal explosion in combustible dusty gas containing fuel droplets is of great 
importance in safety aspect of nuclear facilities, furnaces, gas turbines and internal combustion engines, 
coal mine etc. The essence of the inert solid particles in the combustible gas is to delay the ignition or 
explosion which could cause catastrophe. The phase of research on combustion and explosion that began 
at the end of the nineteenth century and continues to this day is associated with the invention of the 
internal combustion engine, with the development of explosive technology and of internal ballistics for 
artillery, and, in recent decade, with the extensive introduction of jet and diesel engines. In many respects, 
these have stimulated the rapid development of combustion science [36]. The procedure for thermal 
explosion in gases, which contain fuel droplets, has been of much interest. After Semenov [32] developed 
the basic theory of phenomenon of thermal explosion, models that are more complicated have been 
suggested in [27] and [34]. 

The focus of this research work is therefore on the long standing problem of thermal explosion 
and ignition in a combustible gas containing fuel droplets and its numerous applications to furnaces, gas 
turbines and internal combustion engines [23, 27, and 33, 34, 35]. Over recent years, the theoretical 
analysis of this problem has been performed mainly by the use of modern computers. In this regard, there 
exist many computational packages that have proved useful. These packages have been developed to take 
into account heat and mass transfer and combustion processes in the mixture of gas and fuel droplets in a 
self-consistent manner [8 and 28-30]. This approach, however, is not particularly helpful in aiding and 
understanding the relative contribution of various processes. An alternative approach to the problem is to 
analyse the equations in some limiting cases. This cannot replace computational methods but can 
complement them. One of these analyses is based on the geometrical asymptotic method of integral 
manifolds [13-22].  Klammer et al. [25] investigated ignition, combustion and detonation processes in 
dusty gases with combustion reaction. The dusty gas was considered as a two-continuum medium taking 
into account transport effects in the phases and non-equilibrium chemical reactions. Two-dimensional 
problems of ignition and detonation were developed in a plane gallery caused by a supersonic inflow 
stream and heating of the closed end of the gallery are studied with the analytical method of catastrophe 
and two finite-difference numerical methods. Krainov and Shaurman [26] studied the limits of flame 
propagation in a gas with suspended inert particles in the presence of external heat removal. The 
mathematical model used was based on an unsteady heat-diffusion two-temperature model of gas 
combustion in the presence of inert particles. The problem was solved by a numerical method. A 
parametric analysis was performed, and critical values of the parameter that characterizes external heat 
removal were obtained. Dispersed-phase parameters were determined for which the two-temperature 
nature of the medium was insignificant. For this case, an analytic estimate for the critical parameters of 
flame quenching was obtained. At the moment of flame quenching, the normal flame-propagation 
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velocity in a dusty, gas decreases by a factor of
under adiabatic conditions. Ben-Dor and Igra [9] considered the relaxation zone behind normal shock 
waves in a reacting dusty gas. It was assumed that the gas i
suspension composed of an ionized gas and small solid dust particles were formulated and then solved 
numerically. The solution revealed that the presence of the dust has a significant effect on the postshock 
flow field. Because of the dust, the relaxation zone was longer than in the pure plasma case; the 
equilibrium values for the suspension pressure and density was higher than in the dust
the values obtained for the temperature, degree of ion
solution was executed for shock Mach numbers ranging from 10 to 17. It was found that the thermal 
relaxation length for the plasma decreases rapidly with increasing shock Mach number, whereas the 
thermal relaxation length for the suspension increases slightly with increasing M. 
studied criteria for thermal explosion with reactant consumption in a dusty gas. The dynamical regimes of 
the system were classified as slow regimes, thermal expl
delay). The critical transition conditions for the different dynamical regimes were analysed. They 
emphasized that the critical conditions for transition between slow regimes and explosion with delay was 
a thermal explosion limit. The Thermal explosion limit was described in the phase space by a so
duck-trajectory.  El-sayed [11] investigated the critical conditions of the adiabatic explosion problem of a 
gas–solid (dusty gas) mixture. The definitions u
used for the gas–solid mixture. The analysis revealed that the classical definition of the critical point can 
be adopted and modified to determine the critical condition in 
that using the definition of criticality as an inflection point in the critical trajectory in the 
gives the same results as given by the classical definition of criticality. It was interesting to see that the 
critical and maximum points in the gas temperature
that the presence of a solid produces more than one critical temperature. The limiting cases of the problem 
were also offered. The numerical solution showed that the supercritica
runaway for the gas over the solid at the end of reaction. 

In this paper, attempt has been made to extend the problem of thermal explosion in a combustible 
gas containing fuel droplets with addition of inert solid particles an
temperature dependence of the reaction rate (i.e. Arrhenius Power
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temperature dependence of density and thermal conductivity of the gas. Therefore, a generalised physical 
model for thermal explosion in combustible dusty gas mixture containing fuel droplets is developed in the 
present paper. The main interest is focused on property of solutions to 
linear ordinary differential equations governing the physical model. Moreover, n
are obtained based on quadratic approximations to the Arrhenius terms under realistic conditions. The 
results show that the delay before ignition depend significantly on interphase heat exchange parameter 

 and energy needed to transfer heat from gas phase to solid phase parameter
 

 
2.0 Mathematical model 

In this study, we consider the problem of thermal explosion in combustible gas containing fuel 
droplets with addition of solid particles. Dusty gas is a combustible gas with addition of solid particles. It 
is assumed that the solid phase is inert, mono
thick.  The reaction is fast and highly exothermic [13, 22]. 
temperature dependent Arrhenius equation and temperature dependent thermo
gas are taking into account. The fuel droplet’s surface temperature is assumed to be constant. Following 
[1], the system of governing equations has the form: 
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In this study, we introduce the following dimensionless variables: 
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Some special cases of the system of coupled non-linear ordinary differential equations (2.7) -(2.10) with 
initial conditions (2.11) and related problems have been studied for 0≠n and 03 =α  ( see for example 

[1], [3], [4] and the references therein). In the events that 0=n  and parameters 21, αα and 3α  are varied, 

analyses have been performed both analytically and numerically in ( [ 6, 12-22, 32, 36] and references 
sited therein). 
 
3.0 Properties of Solutions 

The aim of this section is to formulate some basic theorems relating to the properties of solutions 
of initial value problem (2.7)–(2.11) and establish the proofs respectively. 
Theorem 3.1 (Existence and Uniqueness Theorem) 
   If c≤τ , 10 cg ≤≤ θ , 20 cs ≤≤ θ , 31 cr ≤− , 41 c≤−η , 110 d≤≤ α , 220 d≤≤ α , 

330 d≤≤ α , 10 <<≤ β , 10 <<≤ B , 0>δ , 04 ≥α , 0>µ , 0>∗µ  and 0>∗ψ , then for 0>c  and 

{ }5.0,0,2−∈n , there exists a unique solution of the system of coupled non-linear differential equations 
(2.7) – (2.10) which satisfies the initial conditions (2.11) .  
Proof 
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Then there exists a number (Lipschitz constant) ,0, ∞<≤ KK  such that  

 .4,3,2,1,,,,max =












∂
∂

∂
∂

∂
∂

∂
∂= i 

g

r

g
 

gg
K ii

s

i

g

i

i ηθθ
                (3.11) 

Consequently, 
ηθθ ∂

∂
∂
∂

∂
∂

∂
∂ ii

s

i

g

i g

r

ggg
 ,,,  for each .4,3,2,1=i  is bounded and ),,,,( ηθθτ rg sgi  for each 

.4,3,2,1=i  is Lipschitz continuous.  Hence, there exists a unique solution of the system of coupled non-
linear ordinary differential equations (2.7)–(2.10) which satisfies the initial conditions (2.11). 
Theorem 3.2  

Let ),( 31 ααδ +> ,0>δ 03 >α . Then gθ is an increasing function of τ . 

 
 

Proof  
Suppose 0→β , 1=r  and 1=η , the system of equations (2.7)-(2.10) reduces to  

( ) ( )sggg
g

d

d
θθαθαθδ

τ
θ

−−−= 31exp                 (3.12) 

( )sg
s

d

d θθµα
τ
θ

−= 3 , sg θθ ≥                 (3.13) 

with the initial conditions 0)0(,0)0( == sg θθ . 

We shall prove the result by Picard iteration. Thus, we 
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( )[ ]
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−−−+=

=

=

∫

∫

−−

−−−−

.)()()()(

,)()()())(exp()()(

,0)(

,0)(
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skgkssk

skgkgkgkggk

s

g

τ

τ

θθµατθτθ

θθαθαθδτθτθ

τθ
τθ

        (3.14) 

For 1=k , we have  

( )[ ]
( ) 







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−−−+=

∫

∫

.)()()()(
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τ

τ

θθµατθτθ

θθαθαθδτθτθ
     (3.15) 

Thus, we obtain 

δτδτθ
τ

== ∫ dsg 01 )( , 0)(1 =τθ s .                 (3.16) 

We assume it is true for nk = , that is  

( )[ ]
( ) 
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
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 (3.17) 

For 1+= nk , we get  
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
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Therefore, we find that 
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τ
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   (3.19) 

By Maclaurin series expansion of  )exp( gnθ  and )exp( 1−gnθ , we obtain  
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  (3.20) 

Since ),( 31 ααδ +> 0>δ , 03 >α , 0>µ  and sg θθ ≥ ,  we have  

( ) ( ) ( )

( ) ( ){ } 











≥−−−=−













−+











+

−
+

−
>−

∫

∫

−−+

−
−−

+

.0)()()()()()(

)()(
!3!2

)()(

0 1131

0 13

3
1

32
1

2

1

dsssss

dsss

sngnsngnsnsn

snsn
gngngngn

gngn

τ

τ

θθθθµατθτθ

θθα
θθθθ

δτθτθ L

(3.21) 

Thus     0)()(1 >−+ τθτθ gngn .                 (3.22) 

Hence )(τθ g is an increasing function of τ . This completes the proof. 

Theorem 3.3 
Let ,)( 31 δαα <+ ,1>δ 03 >α . Then 0≥sθ . 

Proof 
We shall prove the result by Picard iteration. 
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    (3.23) 

For 1=k , we have  
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Thus, we obtain    

δτδτθ
τ

== ∫ dsg 01 )( , 0)(1 =τθ s .                           (3.25) 

For 2=k , we have  
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Thus, we obtain  
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So that 
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We assume that 1)( −> snsn θτθ . Hence, by Picard iteration we have  

( )dsss sngnssn ∫ −+=+

τ
θθµατθτθ

0301 )()()()( .                     (3.29) 

But 0)()( ≥− τθτθ sngn , 03 >α and 0>µ . Therefore, 0)(1 ≥+ τθsn . This completes the proof. 

Theorem 3.4 
Let ),( 31 ααδ +> ,0>δ 03 >α . Then ∞→gθ  in finite time i.e. blows up.  

Proof 
Suppose 0→β , 1=r  and 1=η  in equation (2.7), we have  
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g

d

d
θαθααθδ

τ
θ

331 )()exp( ++−= .                           (3.30) 

By Maclaurin series expansion equation (3.30) becomes  
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This implies that  

2

!2 g
g

d
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τ
θ

≥ , since )( 31 ααδ +> , 0>δ and 03 >α .               (3.32) 

Now, let     2

!2 g
g

d

d
θδ

τ
θ

= .                 (3.33) 

By separation of variable, we have  

τδ
θ
θ

d
d

g

g

!22 = .                 (3.34) 

Integrating, we get 

δτ
θ

−
=

Cg

2
, C is constant of integration.              (3.35) 

By Picard iteration, we have δττθ =)(1g .  Start ∗=ττ , we have ∗= δττθ )(1g . Then ∗=ττ , 

∗≥ δττθ )(g , ∗
∗

∗ =
−

= δτ
δτ

τθ
Cg

2
)( .  Thus, we obtain  
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g
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Hence,  ∞→gθ  when  
∗

∗ +=
τδ

ττ
2

2
. This completes the proof. 

Theorem 3.5 
Let 0,01 >> ∗µα . Then 0→r  in finite time i.e. quenches.  

Proof 
Suppose 0→β  in equation (2.9), we have  

gd
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r θµα

τ
∗−= 1 .                 (3.37) 

Since 
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=
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2
, we get τ
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.  Integrating, we find that  
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where D is constant of integration. When ∗=ττ  and ∗= rr , we get ( )∗

∗
∗ −−= δτ

δ
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C
r

D ln
2

2
1

2

. 

Now, substituting D into (3.38), we obtain 
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.               (3.39) 

When 0=− δτC , we obtain   ∞−= ∗

22

22 rr
.                 (3.40) 

Hence, −∞=
2

2r
. This means that r becomes zero before 0=− δτC . This completes the proof. 

Theorem 3.6 
Let 0,1,0 ><<> ψδ B . Then 0→η  in finite time i.e. quenches.  

Proof 
Suppose 0→β , in equation (2.10) 1=r , we have  

ggB
d

d θψαθψδη
τ
η ∗+−= 1)exp( .                (3.41) 

By Maclaurin series expansion, we have 
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Journal of the Nigerian Association of Mathematical Physics Volume 14 (May, 2009), 135 - 150 

Modelling thermal explosion in combustible dusty gas   K. S. Adegbie   J of NAMP 

That is    













+−≤

!2
1

2
gB

d

d θ
ψδη

τ
η , since δηα B≈1 .              (3.43) 

Now let    













+−=

!2
1

2
gB

d

d θ
ψδη

τ
η .                (3.44) 

Substituting 
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θ
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2
into (3.44) and separating the variable, we have 
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Integrating equation (3.45) gives 
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where E is constant of integration.  Employing the initial condition 1=η  at 0=τ , we obtain 
C

B
E

ψ2=

.  Thus, we obtain 
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Taking the exponential of both sides yields 
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where ( )CBF ψ2exp= .  Hence, 0→η as 0→−δτC .This completes the proof. 
 
4.0 Adiabatic case for combustible dusty gas  

The basic idea of the model in this section is the competition between the heat production (due to 
exothermic reaction and high activation energy) and heat exchange between the gas and solid particle 
temperatures. The presence of heat exchange makes the adiabatic case ( )0,0 21 == αα  qualitatively 
informative. The proposed model is a two-temperature (gas-solid) system with reactant consumption. The 
system (2.7)-(2.10) is reduced to the following system: 

( ) ( )sgg
g

d

d
θθαθδη

τ
θ

−−= 3exp    (4.1) 

( )sg
s

d

d θθµα
τ
θ −= 3      (4.2) 

( )g 
d

d θηδα
τ
η

exp4−= .    (4.3) 

Multiplying both sides of equation (4.1) by 4α gives 

( ) ( )sgg
g

d

d
θθααθδηα

τ
θ

α −−= 4344 exp .   (4.4) 

Addition of equations (4.3) and (4.4) yields 

( )sg
g

d

d

d

d
θθαα

τ
η

τ
θ

α −−=+ 434 .    (4.5) 
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Using equation (4.2) in equation (4.5), we get 

τ
θ

µ
α

τ
η

τ
θ

α
d

d

d

d

d

d
sg 4

4 −=+ .   (4.6) 

Integrating equation (4.6) with respect to τ gives 

Gsg +−=+ θ
µ

αηθα 4
4 .   (4.7) 

Using the initial conditions 1,0,0 === ηθθ sg  
at 0=τ , we get 1=G .  Then equation (4.7) becomes 

   14
4 =++ sg θ

µ
αθαη .    (4.8) 

Substituting equation (4.8) into equation (4.1) yields  

( ) ( ) ( )η
ψ
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τ
θ

−++−= 11exp 3
3 Bd

d
gg

g
, since ψα B=4 .  (4.9) 

If we take the assumption that, in terms of the explosive behaviour, the consumption of reactant is 
insignificant, we assume 0=τη dd  and put 1=η  in equations (4.8) and (4.9). Thus we have   

   0=+ gs µθθ                  (4.10) 

( ) ( ) gg
g

d

d
θµαθδ

τ
θ

+−= 1exp 3 .               (4.11) 

Since equation (4.11) does possess closed form solution, following [7, 10] we assume the quadratic 
approximations to the Arrhenius term, i.e. 

( ) 221)exp( ggg e θθθ +−+≈ .                 (4.12) 

Thus, equation (4.11) becomes  δθδθ
τ
θ
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d 2                 (4.13) 

where ( ) ( )[ ]µαδ +−−=Ω 12 3e .  Separating the variable and integrating equation (4.13), we have  

   H
d

gg

g +=
+Ω+∫ τ

δθδθ
θ

2
.                (4.14) 

Thus, we get  Hg +=









Ω−

Ω+

Ω−
− τ

δ

δθ

δ 22

1

22 4

2
tan

4

2
.               (4.15) 

Using the initial condition 0=gθ , we obtain 
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Putting equation (4.16) into equation (4.15) gives 
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Simplifying equation (4.17), we get 
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Hence, substituting equation (4.18) into equation (4.10) yields  
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Thermal runaway occurs when gθ becomes infinite )( ∞→gθ  at finite time.  The finite time (i.e. ignition 

time) identified as the time of this runaway is obtained from equation (4.17) as  
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and the results are valid for ( ) µδαµδ +<<+− 114 3 ee .   

 

 
Figure 4.1: Plot of combustible gas mixture temperature profile with time for ,3.0=δ  2=µ and 2.03 =α . 
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Figure 4.2: Plot of solid particle temperature profile with time for ,3.0=δ 2=µ  and 2.03 =α . 

 
 

 
Figure 4.3: Plot of combustible gas mixture temperature profile with time for   ,3.0=δ 1=µ  and 4.03 =α . 

 

 
Figure 4.4: Plot of solid particle temperature profile with time for ,3.0=δ 1=µ  and 4.03 =α . 
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Properties of solutions to validate the mathematical model of physical problem under 
consideration are adequately delineated. The criteria to establish the proofs of the theorems for the new 
problem are clearly stated.  

 
 

 
We display in Figures 4.1 to 4.2 the graphs of dimensionless combustible gas and solid particle 

temperatures against time when ,3.0=δ 2=µ  and 2.03 =α . We notice that convectional thermal 

explosion occur at ignition time 8.9=igτ  while the subsequent thermal explosions with freeze delay 

occur at different ignition times 4.23=igτ
 
and 1.37=igτ  respectively in gas phase whereas in solid 

phase it is vice versa. 
 Similarly, Figures 4.3 to 4.4 illustrate the graphs of gas and solid particle temperatures against 

time when ,3.0=δ 1=µ  and 4.03 =α . It is also observed that convectional thermal explosion occur at 

ignition time 0.43=igτ  while the subsequent thermal explosions with freeze delay occur at different 

ignition times 4.89=igτ and 8.135=igτ  respectively in gas phase whereas in solid phase it is vice 

versa. 
The analysis reveals that the ignition time exists when the interphase heat exchange parameter is 

within the range ( ) µδαµδ +<<+− 114 3 ee . 

 
6.0 Conclusion 

The problem of thermal explosion in combustible dusty gas mixtures containing fuel droplets 
have been extended to permit a more general temperature dependent rate of reaction for most typical 
practical reactions under physically reasonable assumptions. The mathematical formulation involves a 
system of four highly non-linear ordinary differential equations. The properties of solutions, which 
validate system of governing equations representing the physical model, were analysed by formulating 
theorems and establishing the proofs respectively. In multiple phase processes, interphase heat exchange 
plays the role of heat losses in homogeneous combustible gas mixtures. Specifically, adiabatic models for 
the self-ignition provide conceptual information concerning the system parameters which influence the 
self-ignition and delay effects. The adiabatic approach offers the possibility of analytical investigations. 
Therefore closed form analytic solutions were obtained based on quadratic approximations to the 
Arrhenius term for combustible gas mixtures temperature, solid particle temperature and ignition time 
from the simplified governing equations. It was found that existence and type of delay before ignition 
depend significantly on interphase heat exchange parameter 3α  and energy needed to transfer heat from 

gas phase to solid phase parameterµ . However, there is a jump from conventional thermal explosion to 
thermal explosions with freeze delay. Likewise, the solid particles do experience jumps at different 
ignition times. 
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