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Abstract

This paper is essentially devoted to the property of solutions to a system of
ordinary differential equations modelling thermal explosion in combustible dusty gas
containing fuel droplet with generalised temperature dependent rate of reaction
governed by Arrhenius power-law model. Theorems are stated and proofs provided on
the qualitative properties of new system equations governing the physical model. New
closed-form solutions are obtained based on quadratic approximations to the Arrhenius
terms under realistic conditions. The results show that the delay before ignition depend

significantly on interphase heat exchange parameter ®a and energy needed to transfer
heat from gas phase to solid phase parameter 4/ . It is intended to describe the

numerical analysis of the new problem in a later paper.

Nomenclature
English symbols

A pre-exponential factor (1/s)

B dimensionless parameter expressing ratio of |dteat of evaporatioand specificcombustion energ
Cs molar concentration combustilgaseous mixturekol/nt)

Cu specific heat capacity of the gas phat constant pressura‘kg?),
Cos specific heat capacity of the solid phase at congeessur(JK kg?),,
E activation energyJkmol)

L latent heat of evaporatiod/kg)

mg molar mass (kdgmol)

n numerical exponent

Ny number of droplets per uniblume(m?),

Ng number of solid particles per unit volu (m®)

Q specific combustion energyd(kg)

Ry droplet radiusrt)

Rs solid particle radiusng)

R, universal gas constanikmol *K™?)

t time ()

Tqo combustible gas initigbmperaturek)

To dusty particle initiatemperatureg)

Tq combustible gas temperatuge) (

Ts dusty particle temperaturg)

Greek Symbols

p densityof the combustible gaseous mixt (kg/nr°)
0 thermal conductivity\Wm*K%)

¢ volumetric phase content (dimensionl

9

B

Stefan-Boltzmann'’s constant
dimensionless activation energy
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T dimensionless time

0 dimensionless parameter expressing reciprocéleo€haracteristic time for adiabatic temperatise r
oy dimensionless parameter expressing heat losowigection from gas phase#
o dimensionless parameter expressing heat loss diati@ from gas phase

a3 dimensionless parameter expressing interphaseskelaange between gas and solid particle
] dimensionless parameter expressing energy néedehsfer heat from gas phase to solid phase
p* dimensionless parameter expressing energy ndedadhporate all fuel droplets

W dimensionless parameter expressing energy needemhsume all gas concentration

Subscripts

0 initial

g gas mixture,

f combustible gas component of the mixture (fuel);
d liquid droplets;

p constant pressure,

S solid particles

i ignition

«Q

1.0 Introduction

The concept of thermal explosion in combustible dusty gas contdumhglroplets is of great
importance in safety aspect of nuclear facilities, furnac&s tgrbines and internal combustion engines,
coal mine etc. The essence of the inert solid partidldedé combustible gas is to delay the ignition or
explosion which could cause catastrophe. The phase of reseazombustion and explosion that began
at the end of the nineteenth century and continues to thissdagsociated with the invention of the
internal combustion engine, with the development of explosive technalud)yof internal ballistics for
artillery, and, in recent decade, with the extensive introduction of jet and elrggees. In many respects,
these have stimulated the rapid development of combustion scigdlceThe procedure for thermal
explosion in gases, which contain fuel droplets, has been of muctsingiter Semenov [32] developed
the basic theory of phenomenon of thermal explosion, models thahaee complicated have been
suggested in [27] and [34].

The focus of this research work is therefore on the long stgmuioblem of thermal explosion
and ignition in a combustible gas containing fuel droplets and it®rws applications to furnaces, gas
turbines and internal combustion engines [23, 27, and 33, 34, 35]. Over yeeest the theoretical
analysis of this problem has been performed mainly by thefusedern computers. In this regard, there
exist many computational packages that have proved useful. phelsages have been developed to take
into account heat and mass transfer and combustion processesiritire of gas and fuel droplets in a
self-consistent manner [8 and 28-30]. This approach, however, is niculgaly helpful in aiding and
understanding the relative contribution of various processes. ématitve approach to the problem is to
analyse the equations in some limiting cases. This cannotceeplamputational methods but can
complement them. One of these analyses is based on the gealmstymptotic method of integral
manifolds [13-22]. Klammer et al. [25] investigated ignition, combnsand detonation processes in
dusty gases with combustion reaction. The dusty gas was consadeaetivo-continuum medium taking
into account transport effects in the phases and non-equilibriumicdereactions. Two-dimensional
problems of ignition and detonation were developed in a plane gabersed by a supersonic inflow
stream and heating of the closed end of the gallery are studrether analytical method of catastrophe
and two finite-difference numerical method&ainov and Shaurman [26] studied the limits of flame
propagation in a gas with suspended inert particles in the preséneeernal heat removal. The
mathematical model used was based on an unsteady heatdiffugdb-temperature model of gas
combustion in the presence of inert particles. The probles sedved by a numerical method. A
parametric analysis was performed, and critical values opdnameter that characterizes external heat
removal were obtained. Dispersed-phase parameters were ideterfor which the two-temperature
nature of the medium was insignificant. For this case, an tinaltimate for the critical parameters of
flame quenching was obtained. At the moment of flame quenching, atmakh flame-propagation
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velocity in a dusty, gadecreases by a factor \/ﬁ compared with the flame velocity in the dusty

under adiabatic condition®en-Dor and Igra [9] considered the relaxation zoneirmmormal shocl
waves in a reacting dusty gas. It was assumedhbaiass monatomicThe conservation equations fo
suspension composed of an ionized gas and small dast particles were formulated and then so
numerically. The solution revealed that the presesfcthe dust has a significant effect on the st
flow field. Because of the dust, the relaxation zevas longer than in the pure plasma case;
equilibrium values for the suspension pressuredamsity was higher than in the c-free case, whereas
the values obtained for the temperature, degreenization, and velocity was lower. The numeri
solution was executed for shock Mach numbers ranfiom 10 to 17. It was found that the thern
relaxation length for the plasma decreases rapidtii increasing shock Mach number, whereas
thermal relaation length for the suspension increases slighitli increasing M Gol'dshtein et al. [13
studied criteria for thermal explosion with rea¢teonsumption in a dusty gas. The dynamical regiofi
the system were classified as slow regimes, theexj@osion with delay and thermal explosion (with
delay). The critical transition conditions for thlifferent dynamical regimes were analysed. T
emphasized that the critical conditions for traositetween slow regimes and explosion with delag
a thermal explosion limit. The Thermal explosion limwas described in the phase space by-called
duck-trajectory. Ebayed [11] investigated the critical conditiongtd adiabatic explosion problem o
gas-solid (dusty gas) mixture. The definitionsed for the homogeneous gas to determine critjoatitre
used for the gaselid mixture. The analysis revealed that the atasslefinition of the critical point ca
be adopted and modified to determine the criticaldition in ¥—7 and* —& domains. It vas also found
that using the definition of criticality as an iétion point in the critical trajectory in tt &—m plane
gives the same results as given by the classidadititen of criticality. It was interesting to sdbat the
critical and maximum gats in the gas temperat—concentration domain could coincide. It was fo
that the presence of a solid produces more thammtical temperature. The limiting cases of thelpem
were also offered. The numerical solution showeat the supercritid trajectory shows a therm
runaway for the gas over the solid at the end adtren.

In this paper, attempt has been made to extengrtidem of thermal explosion in a combusti
gas containing fuel droplets with addition of ingolid particles ad to generalised the problem basec
temperature dependence of the reaction rate (ieAius Powelaw model equation [1, 24]) given

K(T,) = A(Tg /Tgo)n exp(— E/ RJTg) while taking into account convective and radiatineat losses, ar

temperature dependence @ndity and thermal conductivity of the gas. Thamfa generalised physic
model for thermal explosion in combustible dustg gaxture containing fuel droplets is developethia
present paper. The main interest is focused onepippf solutions tcthe new system of coupled r-
linear ordinary differential equations governing hysical model. Moreoverew close-form solutions
are obtained based on quadratic approximationsidoAtrhenius terms under realistic conditions.
results show thathe delay before ignition depend significantly oterphase heat exchange param
2z and energy needed to transfer heat from gas pbasdid phase parame 4 .

2.0  Mathematical model

In this study, we consider the problem of thermgilesion in combustible gas containing fi
droplets with addion of solid particles. Dusty gas is a combustilzle gith addition of solid particles.
is assumed that the solid phase is inert, r-size and uniformly heated and the dusty gas icalbyi
thick. The reaction is fast and highly exotherfdi8, 22]. The rate of reaction is based generalized
temperature dependent Arrhenius equation and texnperdependent ther-physical properties of tk
gas are taking into account. The fuel droplet'sasig temperature is assumed to be constant. Folig
[1], the system of governing equations has the fi
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-1 dTg _ -nTn -E TQ ( )
Cpg¢gpgngng =Q,m;, ¢gcf ADTgo Tg ex - 47R, nd)lgo — Tg —Tgo
R.T, Tgo

dt
—4rRin,o (T -TSh) —4Rn A (T, - T,) (2.1)
Py T =ARNA(T, -T,) @2)
de 1 /190 Tg 1 4 4
=- 2T -T,)-——o@-T (2.3)
dt Log Ry TgO( ’ 90) Loy 7 s0)

Py —— © . ==P,C ATy Ty ex;{F;Tg] RN \/;(T -T, ) 4rtf:;nda(T94_Tg40) (24)with  the

me f
foIIowmg initial conditions:
T, ) = Tgo Ts(0) =T, R;(0) =Ry,.¢; (0) = ¢y - (2.5)

2.1 Non-dimensional analysis
In this study, we introduce the following dimensionless variables:

T -T.)E C t
,esz( 2) r= , p=—" r=—. (2.6)
RuTsO RdO CfO tD

We assume that at initial stage the temperature of gasaliddparticles are the same i.€, =T,.

Therefore, using (2.6) in (2.1)-(2.5), the dimensionless system ofrgogezquations has the following
form:

(1+,6’99)—1 :5/7(1+,Beg)n eXp(1+[§9 }—r{aleg a+pe,)
rayr| @+ pe,) -1} -a.l6, -6,) 2.7)
?;9: = 0'3,u(0 -6,) (2.8)
%:_%{aleg (1+,6’6’g)+azr[(1+,86’g)4—1]} (2.9)

%: ~a,6n L+ B6,) exp(1+‘;ge JH//r{ 6,,/ A+ pB6,) +a, r[1+ p6,) _1]} (2.10)
9

with the initial conditions:
6,(00=0, 6,(00=0,r(0) =1, 7(0) =1. (2.11)
In equations (2.7) — (2.11) the following dimensionless parameters have lvednaat:

p=RTw gL 5 EQfmfcmAztDeXp(_ E ) 4 = MRuNeduts
E Qf PgoC o RiTgo R, Tgo PgoCre Py
47RZ n,oT L Et ATR Nt C T2
a, = 10 4% 9070 g = sNsAsly L a, =By, u°= Pgo 3pg¢gRu 9 (2.12)
PgoCrfR, PgoC Py 470Ny P4 EL
_ PgoC Py _ PaoCp®sRiTo0
psts ’ EmefOL .
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Some special cases of the system of coupled neatliordinary differential equations (2.7) -(2.10hw
initial conditions (2.11) and related problems haeen studied fon # Oand a, =0 ( see for example

[1], [3], [4] and the references therein). In themrts thah = 0 and parametere,, a,anda, are varied,

analyses have been performed both analyticallyramderically in ( [ 6, 12-22, 32, 36] and references
sited therein).

3.0  Properties of Solutions

The aim of this section is to formulate some b#sorems relating to the properties of solutions
of initial value problem (2.7)—(2.11) and establish proofs respectively.
Theorem 3.1 Existence and Uniqueness Theoyem

If |f<c,0<6,<c, 0<f<c,|r-l<c,|p-1<c,, Osa;<d, Os<a,<d,,
0<a,<d,,0<fB<<1,0<B<<1, >0, a,20, 4>0, 4" >0 andy" >0, then forc>0 and

n D{— 2, 0,0.5}, there exists a unique solution of the systenmoopéed non-linear differential equations
(2.7) — (2.10) which satisfies the initial condit#(2.11) .

Proof
Let
9(; = gl(r gg' s1r1l7)
0, = 9,(1,6,,6,,1,1), (3.1)
r _QS(T' g’ s' ',7)
:g4(rigg’es’ 7/7)
such that
0,(7,6,,0,,r,7) = {1+ 6, H . (8,,m) - H _(8,,1) - H (8, 6.)}
gZ(T eg’ s’r’”) IUH (8 )
ﬂ (3.2)
95(7,6,.,6,,r,7) ==-—H_(6,,r)
9,(7,6,,6,,1,1) = a4H (6y.7) +¢"H (6,.1)
. 6,
where H:(6,.17) =5/7(1+,6’499) ex;{1+ﬁng, (3.3)
H (8,.1) =r{ a6, @+ p8,) +ay|l+p6,) -1}, (3.4)
He(6,.6,) =a,(6, - 6.). (3.5)

Now, we need to show thaj, (r,H .,r,n7) for eachi = 1,234 is Lipschitz continuous. Differentiating
g,(7,6,,6.r,n) for eachi = 1,234 with respect tog,, &,r ands respectively. Hence, we have

g'Ys?

a max max max 1 + n 1 + max 1 + C max max
agl SAHF™ I HE }J{ (ﬁ(,ﬁ’cf(:l)]Hp - 23)J "l AR (3.6)
g 1 , .
0G| g (09| @+ /) [ max g, Hpe™
<d,, < HM™ +d, @1+ 1+ -1, [ —
6.~ > |or y(1+c){ 2L+ C5) [( pe)’ ]} on|” (+c,)
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09, | 09, 09, _ g 1992 -
<d,u,—==<d,u, =0, |—==0, 3.7
ag,|= " ‘aes allIP® o 3.7)
O
Z%S 2(1+,3é11)(1+c o gg; -0
g| s ¥ , (3.8)
693 IUD max 2 4 ags
< H™ +d,1+c;)|1+ -1 |[=—=0
o e GIRR L ESR VN
09,/ By’ {1+nﬁ<1+ﬁcl)Hmax+(1+c3)Jmax} ‘ag4=0
96,|” @+pc)| @+pe) 7 2 - joe (3.9)
09_4 wD max 2 4 _ ag_4 BI//D max
S Gy H g e[ o) -]} ‘aq < ooy
where
max n C
He™ =od+c,)(1+ fBc) eXp{h,chl]’
Hr = @re){de I+ Be, +d,arelar pe) -1f L. (3.10)
HE™ = d3|Cl _Cz|’
3 ={d, 2+ 36c,)T+ Be, +8Bd, A+ )L+ A)* |
Then there exists a number (Lipschitz const&nt)0 < K < oo, such that
K = max 99 |,|agi |, |agi|,|agi| i= 1234 (3.11)
™ o, ot [or lan]

Consequently, 9 ,Ggi ’Ggi ,agi for eachi = 1,2,34. is bounded anday,(7,6,,6.,r,n) for each
06, 06, or dn g
i = 1,2,34. is Lipschitz continuous. Hence, there exists iguassolution of the system of coupled non-
linear ordinary differential equations (2.7)—(2.Wjich satisfies the initial conditions (2.11).
Theorem 3.2
Let 0> (a, +@as;), 0>0,a,>0. Thend,is an increasing function af .

Proof
Supposes - 0, r =1 andy =1, the system of equations (2.7)-(2.10) reduces to
dé
2= sexdlg,)-a.6, - a,(6, - 6,) (3.12)
dé,
ar :as/,l(Hg —675), 6,20, (3.13)

with the initial conditionsg, (0) = 0, £,(0) =0.
We shall prove the result by Picard iteration. T
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6gO(T) = 0;
HSO (T) = 0’

Oy (1) = 0,0(1) + [ [ [5x0Oy 1 (8) ~ 01002 (9) = 13 (6 (9) ~ s (9], (314
0, (1) = (1) + [ (6,04(5) - 6,..(9))0s.
For k =1, we have
0,1 (1) = 8,0(7) + [ [6€xp(6,0(9)) = ,8,0(9) — @3 (6, () - 80(9))] s
T (3.15)
0,4(1) = 0o (1) + [ | (B,0(5) ~ B,0(5))ds.
Thus, we obtain
6,,(7) :jo dds=0r, 6,(r) =0. (3.16)
We assume it is true fdt = n, that is
0, (1) = 0, (1) + [ [ [5exp(6,,1(8)) = 0,84, ,(5) ~ @, (601 (5) - 6,11 ())]ds
0 i (3.17)
0, (1) = 0,0(1) + Aatt[ | (0n-1(5) = O,0i(9))ds.
Fork =n+1, we get
(3.18)

egn+l(T) = Hgo(r) + IOT [Jexp(ggn (S)) - alggn (S) - 0'3 (Hgn (S) - Hsn (S)) dS }

Os (1) = 00(1) + aatt[ | (640 (5) ~ 6,1 (9))ds.
Therefore, we find that
Oy a(1) = 6,(1) = [ {0]exp(@,,(9) -~ exp(@,.(8))] - ,(6,0(9) ~ 6,0-1(5)
= @.[(8,,(9) = 6(9)~ (604(9) = 01 s(9))] Jos
= [ {olexp(@,,(s)) - exp(@p1()] - (&, + @,)(6,,(5) - 6,,1(9)) (3.19)
+a,(6,,(s) - 6,,_,(s))}ds
O (1) = 60 (7) = st [ {(6,1(9) = 00(9)) - (B0 1(9) - s (9))} s

By Maclaurin series expansion &xp(@,,) andexp@,,,) , we obtain
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. 92 93 92 93
- = LTt LT ot 7ol
Byia(7) Hgn(r)—fo{dﬂh 0, + o + 3 + j [1+ Ogos * > + 3 + ﬂ

(0, + )B4 (9 = 0,4(9)+ (00 (9) ~ B a(9) s

(3.20)
Oys (1) = 6,0 (0) = [ {06,0(9) ~ G,0a(9))+ 6 -63.)., (605,
gn+1 on - J.O gn gn-1 2l 3l
= (0, + )0 (9 = Oy 1 (9)+ 03 (6 (9) = (9 .
Sinced >(a, +a), 0>0, a; >0, u>0 andg, = §,, we have
4 92n —Hzn_ 93n _93n_
Hgml(r) —Hgn(z’) > IO {5{( g ; g 1)+ ( 9 5 g 1)+..1 +a3(9m(s) —Hm_l(s))}ds (3.21)
Os (1) = 00 (1) = Ayt [ {(6,,(8) = 60 (9)) = (6,4(9) ~ s (9) } s 2 0
Thus O4ia (1) — 6,,(1) > 0. (3.22)
Henceg, (r) is an increasing function af. This completes the proof. 1]
Theorem 3.3
Let (o, +a,)<9d,5>1 a,>0.Thend,=0.
Proof
We shall prove the result by Picard iteration.
HgO(T) = 01
6,(1) =0,
r 3.23
0y (1) = B,0(7) + [ | [5xp(y1(9) = 0,041 (9) = (B 1 (8) ~ Bus (9) s, (3:23)
04 (1) = 0 (1) + At | (041 (5) = 044(9))0s.
For k =1, we have
0,,(1) = B,0(1) + [ | [5€xD(B,0(9)) ~ @18, () — @5 (8, () — B4 () ds 620
0,(7) = 0,(1) + ast[  (840(9) -~ 0.9(9))ds.
Thus, we obtain
B (1) = | 0 Sds=0r, 6,(r)=0. (3.25)
For k =2, we have
0,0 (T) = 8,0() + [ | [5exp(8,,(9) - @,8,,(5) - 1, (6,(5) — 6.1(5))]ds 26)

0,,(1) = O,0(7) + @t [ (6,,(9) - 6.4(5))ds.
Thus, we obtain
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0,21 =] oloxe®)- (e + )

. (3.27)
0,,(1) = a | ds

So that

8,,(7) = exr(a'r)—g(a1 +a,)72-1>0
a6 (3.28)
0.,(1) = STTZ > 0.

We assume thal,, (7) > 6., . Hence, by Picard iteration we have

O (1) = Bo() + e[ (6,(9) ~ 80(9)) . (3.29)

Buté,, (1) - 6,,(r) 20, a;>0andu>0. Therefore,d,,,,(r) 2 0. This completes the pro{]
Theorem 3.4
Let 0> (a,+a;), 0>0,a,>0.Thend, - « infinite time i.e. blows up.

Proof
Supposes - 0, r =1 andsn =1 in equation (2.7), we have
dé
d—g =dexp@,) - (a, +a,)6, +a,f,. (3.30)
r
By Maclaurin series expansion equation (3.30) be&som
2 3
dé, _ 1+ 8 +‘99+09+ +a.)6. +a.6 3.31
ar ottt (a,+a3)6, +a,f,. (3.31)
This implies that
g, o ., .
—2>—@7,sinced >(a, +a,), 6>0anda, >0. (3.32)
dr 209
dé
Now, let —9= éé’gz (3.33)
dr 2
By separation of variable, we have
dé
— = édr (3.34)
6, 2
Integrating, we get
6, = 2 , Cis constant of integration. (3.35)
C-oJr
By Picard iteration, we haved,(r) =dr. Start 7=1, we have 6,(r)=0Jr,. Then 1 =1,

6,(r)=zor,, 6,(1.) = % =0r,. Thus, we obtain

O
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2

C=0dr+—,
or,’
(3.36)
g, = 2
¢ ory+(2ory)-or
Hence, 8, - © when 1 = ru+i. This completes the proof. 1]
’ 0’1,
Theorem 3.5
Let @, >0, 7 >0. Thenr - 0 in finite time i.e. quenches.
Proof
Supposés — 0 in equation (2.9), we have
dr
rE =-au'e,. (3.37)
: —20’1,UD . :
Since 6, = , We getrdr = dr. Integrating, we find that
T 228 - r)+ D (3.38)
2 o

2
, . . I
where D is constant of integration. When=r7_, andr =r,, we getD— — 2al'UDIn(C 5TD)

Now, substituting D into (3.38), we obtain

2 2 o _
LIV Gl N (3.39)
2 2 o) C-dr
r.2 r2
When C - dr =0, we obtain > = % -0, (3.40)

2
r : ,
Hence,? = —oo . This means that becomes zero befol€ — or = 0. This completes the proof.

Theorem 3.6 O
Letd >0, B<<1 ¢ >0. Thenn - 0 in finite time i.e. quenches.

Proof
Supposé? - 0, in equation(2.10)r =1, we have

3’; = -Bydnexp@,) +ayb,. (3.41)
By Maclaurin series expansion, we have
dn _ % . b
—Byon| 1+6, + -+ -+ + a6
dT ‘/I ,7( 2 3| 1‘// g
(3.42)
Byon6;

=-Bydn - Bynb, - o
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2
That is 3_,7 < -Bydn (1+ Z_E:J , sincea, = B . (3.43)
4 !

2
Now let dn _ —Byodn |1+ 9 | (3.44)
dr 2!

Substitutingd, :ﬁ into (3.44) and separating the variable, we have
-or

dn 2
—— =-Byd|l+ ——— |dr . 3.45
n v ( (C- JT)ZJ (349
Integrating equation (3.45) gives
2
Inn=-B r+—— |+ E, 3.46
n=-suef 1+ 2| (2.46)

, : : : o _ _ . _ 2By
where E is constant of integration. Employing the initaindition/7 =1 at 7 =0, we obtainE = <
. Thus, we obtain

Inp =-Byd| 1+ 2 + ZB(’U. (3.47)
o(C-or) C

Taking the exponential of both sides yields

n= Fexr{ Bg[/&( 50— &)D (3.48)

whereF = exr(ZBt///C Hence,7 -» 0asC—0r — 0.This completes the proof. 1]

4.0 Adiabatic case for combustible dusty gas

The basic idea of the model in this section isahiapetition between the heat production (due to
exothermic reaction and high activation energy) hadt exchange between the gas and solid particle
temperatures. The presence of heat exchange miagemsdiabatic caséal =0,a, = O) qualitatively

informative. The proposed model is a two-tempeeafgas-solid) system with reactant consumption. The
system (2.7)-(2.10) is reduced to the followingteys

dé
o = exde, )-a.(6, - 6,) (4.1)
T
dé
- =a,ul6,-6,) (4.2)
% =-a,0n exp(Hg) : (4.3)
Multiplying both sides of equation (4.1) lay, gives
dé
a, d—g =a,0n exr(é?g )— a.a, (Hg - HS). (4.4)
r
Addition of equations (4.3) and (4.4) yields
dH dn
2+ L =—qa,ll -6.) 4.5
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Using equation (4.2) in equation (4.5), we get
do, . dp __a, do,

=- . (4.6)
“dr dr U dr
Integrating equation (4.6) with respecttgives
a,b, +/7:—ﬂ93+G. 4.7)
7]
Using the initial conditiong, =0, &, =0, 7 =1 at7 =0, we getG =1. Then equation (4.7) becomes
n+ab, +ﬂt9S =1. (4.8)
M
Substituting equation (4.8) into equation (4.1)dse
dé,
d_ = 5/7exp(9 ) a,(1+ p)6, + 83(5 (1-n), sincea, =By . (4.9)

If we take the assumption that, in terms of thel@sipe behaviour, the consumption of reactant is
insignificant, we assumds/d7 =0 and put =1 in equations (4.8) and (4.9). Thus we have

6, +u6, =0 (4.10)
do,
? = Jexdﬁ ) L1+ /,1)49 4.11)

Since equation (4.11) does possess closed forntiggldollowing [7, 10] we assume the quadratic
approximations to the Arrhenius term, i.e.

exp@,) =1+(e-2)8, + 6. (4.12)
dé
Thus, equation (4.11) becomes —= O'ng +Q6,+0 (4.13)
dr
whereQ = [ O'(e— 2)—a3(1+ ,u)] Separating the variable and integrating equd#at), we have
IL:HH. (4.14)
B +Q6,+0
2 [ 206, +Q
Thus, we get —— tan 1[‘”—} =7+H. (4.15)
N40% - Q* 45° - Q°?

Using the initial conditiord, =0, we obtain

2 ) Q
H=——=  tan| ——— | . (4.16)
Va2 - Q? (\/452 —QZJ

Putting equation (4.16) into equation (4.15) gives
200, +Q
2 tan‘l( 9 ] =7+ 2 tan‘l(LJ (4.17)

V40?2 -Q? V40?2 -Q? V402 -Q? V40?2 -Q?

Simplifying equatlon (4.17), we get
,(r) = 452 92 tan( V407 - Q2 )+Q\/452 Q?
25 Va5 -0 ~qralias -a’r)

Hence, substituting equation (4.18) into equatba() yields

(4.18)

Journal of the Nigerian Association of Mathematical Physics Volume 14 (May, 2009) 135 - 150
Modelling thermal explosion in combustible dusty ga K. S. Adegbie J of NAMP



[ (402 - 0 )tanl3 407 - Q7+ Qa5 - 07
o.(n=L1a- , \ (4.19)
25 J4s? - Q7 - Qtan(§/48” - Q1

Thermal runaway occurs wheffy becomes infinitg(g, — o) at finite time. The finite time (i.e. ignition
time) identified as the time of this runaway isabed from equation (4.17) as

1 ) Q
I, = ————| m-2tan™| ———— ||, (4.20)
’ 452—92[ («/452—92]]

and the results are valid fof(e—4)/1+ U<a,<d®1l+u.
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Figure 4.1: Plot of combustible gas mixture temperature peofilth time for & = 0.3, M= 2and a, = 02.
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5.0

Figure 4.2 Plot of solid particle temperature profile witme ford = 0.3, 4 =2 anda, = 0.2.
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Figure 4.3: Plot of combustible gas mixture tempegaprofile with time for 0 = 0.3, 4 =1 anda, = 04.

Figure 4.4 Plot of solid particle temperature profile witme ford = 0.3, 4 =1 and a, = 04.
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Properties of solutions to validate the mathemhticendel of physical problem under
consideration are adequately delineated. The ieriterestablish the proofs of the theorems forrnbae
problem are clearly stated.

We display in Figures 4.1 to 4.2 the graphs of disienless combustible gas and solid particle
temperatures against time wheh= 03 4 =2 anda, = 0.2. We notice that convectional thermal

explosion occur at ignition time,; = 9.8 while the subsequent thermal explosions with fedelay

occur at different ignition times;, =234 and r;; =37.1 respectively in gas phase whereas in solid

phase it is vice versa.
Similarly, Figures 4.3 to 4.4 illustrate the grapsf gas and solid particle temperatures against

time whend = 03, ¢ =1 and a; = 04. Itis also observed that convectional thermal@sipn occur at
ignition time 7,; =43.0 while the subsequent thermal explosions with fedelay occur at different
ignition times 7,, =894 and 7,, =135.8 respectively in gas phase whereas in solid phage vice

versa.
The analysis reveals that the ignition time exighen the interphase heat exchange parameter is

within the rangeJ(e—4)/1+ U<a,<e/l+u.

6.0  Conclusion

The problem of thermal explosion in combustibletdugas mixtures containing fuel droplets
have been extended to permit a more general tetnperdependent rate of reaction for most typical
practical reactions under physically reasonableirapions. The mathematical formulation involves a
system of four highly non-linear ordinary differieitequations. The properties of solutions, which
validate system of governing equations represertiegphysical model, were analysed by formulating
theorems and establishing the proofs respectielynultiple phase processes, interphase heat egehan
plays the role of heat losses in homogeneous cdiblrigas mixtures. Specifically, adiabatic models
the self-ignition provide conceptual informationncerning the system parameters which influence the
self-ignition and delay effects. The adiabatic apph offers the possibility of analytical investigas.
Therefore closed form analytic solutions were otgdi based on quadratic approximations to the
Arrhenius term for combustible gas mixtures tempeeq solid particle temperature and ignition time
from the simplified governing equations. It was riduthat existence and type of delay before ignition

depend significantly on interphase heat exchangenpetera,; and energy needed to transfer heat from
gas phase to solid phase paramateHowever, there is a jump from conventional thérenglosion to

thermal explosions with freeze delay. Likewise, #wdid particles do experience jumps at different
ignition times.
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