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Abstract 
 

A general theoretical background for a class of parallel second derivative 
methods is introduced. A parallel block generalization of the Enright second derivative 
block methods are developed and their stabilities are investigated by means of root locus 
plots. The resultant parallel methods are found to be L–stable for block size 6≤k  and 
are of order (k+2).   
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1.0 Introduction 

Parallel block methods for solving the stiff initial value problem 
α== )(,)(' 0xyyfy       (1.1) 

are developed. The idea of block method is believed to have originated from Milne’s book [3, 12], where 
a method to generate starting values for a multi step method is discussed. Watts and Shampine [18] used 
the idea when they considered implicit block methods. An early notable work dedicated to parallel block 
methods are those of Birta and Abou–Rabia [1, 3], and of Chu and Hamilton [5].  

Chu and Hamilton [5] introduced multi–block methods, Houwen and Sommeijer [9] developed 
block Runge–Kutta methods, Voss and Abbas [17] considered block predictor – corrector schemes, 
Omarjid [15] developed block methods based on Adams type formulas, Zarina et al [20] implemented a 
variable step size block methods based on Backward differentiation type methods, Yahaya and Kumleng 
[19] developed a block method that stabilizes Simpson’s method, Muka and Ikhile [13] also stabilized 
Simpson’s method by means of employing second derivative in a parallel block method. 

Zarina et al [20] observed that most block methods developed are only suitable for non stiff 
ODEs. The work of Yahaya and Kumleng [19] shows that Block methods can be used to improve the 
stability of methods adjudged unstable when used alone. This is achieved by adjoining a LMM in block 
form to make the resultant method to become stable. We are motivated to develop a class of block 
methods that are not only suitable for stiff ODEs but in addition are L–stable. Dalhquist order barrier 
places a very severe restriction on Linear Multi step Methods [8, 11]. One way of circumventing this 
barrier is to introduce the second derivative as done in Enright [6] and Chakravarti and Kamel [4]. Zarina 
et al [20] were able to  
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achieve their aim by developing block methods based on backward differentiation method. Backward 
differentiation methods are known to be suitable for mildly stiff ODEs. In the spirit of Enright [6], we 
develop block methods with second derivatives. 

The paper is organized as follows in Section 2 we consider the basic theory of the second 
derivative block method, in Section 3 we introduce the Generalized Enright block methods, Section 4 
stability analysis of Generalized Enright block method is done using the root locus plot [10], in section 5 
numerical experiment. 
 
2.0 Parallel second derivative block methods 
Definition 2.1 

Let iny + denote a numerical approximation to the exact solution values )( ihxy n + , and Let 

),...,,( 211 knnnn yyyY ++++ =  and ),...,,( 21 nknknn yyyY +−+−= , also let a block of second derivative be defined as 

),...,,()( 211 knnnn fffYF ++++ ′′′=′ and ),...,,()( 21 nknknn fffYF ′′′=′ +−+− . A one block k-point second derivative 

method of our interest is defined by the recurrence relation 

)()()()( 1
22

11 +++ ′+′+++= nnnnnn YFGhYFEhYhDFYhBFAYY   (2.1) 

where A,B,D,E,G are k × k matrices with real entries. The elements are carefully chosen with stability and 
accuracy requirement in mind. )()( 11 ++ ′ nn YFandYF are vectors with components )()( jnjn yfandyf ++ ′ , 

j = 1,2,…,k respectively. Our aim is to develop methods from (2.1) that are A–stable which are 
implementable on parallel processors. In order to achieve the later the block need be parallelizable [3, 16]. 
Methods whose blocks are parallelizable are often explicit.  Implicit block methods are easily 
parallelizable if their implicit co-efficient blocks are diagonal.  For this reason we set matrices D and G in 
(2.1) to be diagonal. 
 
3.0 Generalized Enright block methods: Parallelization of Enright [6] second derivative 

sequential method 
Based on the nature of matrices A, B, D, E, and G, parallel second derivative block methods that 

have computational complexities which compare with traditional LMMs can be developed.  Note that 
second derivative parallel block backward differentiation type formulas (SDBDF) developed in [14] are 
of the form in (2.1) with matrices B and E set to zero. In this section, parallel block methods of 
generalized Enright methods are developed. Enright [6] considered the following class of second 
derivative LMMs 
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Enright in an attempt to get methods that are stiffly–stable, re-model (3.1) as  

.10
2

1
0

1 +−+
=

+ ′++= ∑ nrn

k

r
rnn fhfhyy γβ    (3.2) 

If we set k = 1in (3.2), then 

;10
2

1011 +++ ′+++= nnnnn fhfhfhyy γββ    (3.3) 

which is the simplest form of zero stable Enright’s methods. Block equivalent of (3.2) is therefore  

)()()( 1
2

11 +++ ′+++= nnnnn YFGhYhDFYhBFAYY   (3.4) 

Observe that matrix E in (2.1) has been set to zero. Also, matrix A in (3.4) is k x k matrix with zero 
elements except at the last column i.e 
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D and G are diagonal matrices. The elements of matrices A, B, D and G are determined using the Taylor 
expansion method and the method of undetermined coefficients.  
Lemma 3.1 

Let e = [1,1,1,...,1]T , and c = [1,2,3,..,k]T and let us define  

,...3,2,1,)1()( 211 =−−+−−= −−− jcGcjjkecjBjDcC jjjj
j   (3.5) 

A one block k-point second derivative method as given in (3.4) is of order p, if 0=jC , 01 ≠+pC  for j = 1, 

2,...,p. 
In order to compare the components of error vectors of methods (3.2) with the error constants 

corresponding to conventional linear multistep methods, we shall adopt the normalized error vectors as 
introduced by Sommeijer et al [16], and extended to the class of block methods in (3.4). For methods 
(3.4) the normalized error vectors is given as 

  .1;
))(()!1(

+=
++−

= pj
eGDBjj

C
E j

j     (3.6) 

Division is done component wise. The proposed Generalized Enright block methods (GEBM) are given 
as follows, after solving the arising order conditions pjC j ,,2,1,0 L== in (3.5). 

For k = 2, order p = 4 
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For k = 3, order p = 5 
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For k =4, order p = 6 
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For k = 5, order p = 7 
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For k = 6, p = 8 
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For k = 7, p = 9 
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Note that this method (k = 7, p = 9) is not A–stable, see Figure 4.6. 
 
4.0 Stability of the generalized Enright block methods (3.4) 
Definition 4.1 

When (2.1) is applied to the scalar test equation yy µ=′ , µ a complex constant with 0)Re( <µ , 

it yields the recurrence nn YzMY )(1 =+ . The matrix )(zM  is the amplification matrix and its eigen 

values the amplification factors.  

)()()( 212 EzzBAGzzDIzM ++−−= −    (4.1) 
Definition 4.2 

A k-dimensional block method with matrix A is called zero stable if nA  is uniformly bounded for 
all n. 
Definition 4.3 

An r-dimensional block method is called A-stable if the spectral radius ))(( zMρ is such that

1))(( ≤zMρ . 
Definition 4.4 

An r-dimensional block method is called L-stable if it is A-stable and if it has an amplification 
matrix with vanishing eigenvalues at infinity i.e 

0)()()(lim 212 =++−−= −

∞→
EzzBAGzzDIzM

z
    (4.2) 

Methods (3.4) are zero stable since the eigenvalues of matrix A are zeros and simple unity (it is uniformly 
bounded). Also, since E is the zero matrix in (3.4), eigenvalues of M(z) will all vanish at infinity. In what 
follows, we will examine the A–stability of method (3.4) using the root locus plot. The root locus of the 
stability region is given by the set of points determined by 1))(( ≤zMρ .Figures (4.1) – (4.5) are 
corresponding root locus plots of methods (3.7), (3.8), (3.9), (3.10) and (3.11) respectively. Figure (4.6) is 
a plot of block size k =7. 
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Figure 4.1: Root Locus plot k = 2   Figure 4.2: Root Locus plot k = 3 

   
Figure 4.3: Root Locus plot k=4       Figure 4.4: Root Locus plot of k=5 

 
Figure 4.5: Root Locus plot k = 6   Figure 4.6: Root Locus plot k = 7 

Observe that spectra radii for block sizes 6≤k  satisfy 1|))((| ≤zMρ  in the entire left region. 

Hence, GEBM for block sizes 6≤k are L-stable because of (4.2) while for block sizes 7≥k  GEBM are 
unstable for stiff IVPs. 

 
5.0 Numerical Experiment 

The implicitness of Generalized Enright block methods (GEBM) are resolve using modified 
Newton–Raphson’s technique suggested by Liniger and Willoughby (see [6]), while the starting values 

are generated using the inverse Euler method 
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+=+1  given by Fatunla [7]. Consider the 

stiff initial value problem given in [6], 
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Problem 5.1 
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We now present the result obtained by integrating (5.2) using GEBM with block size k =2. 

 
Figure 5.1 

The graph in Figure 5.1 shows the accuracy of method (3.4), when compared with the analytical 
solution of Problem 1.  Figure 5.1 shows that the numerical solution is in agreement with the theoretical 
solution; this made so because of the L–stability of the block method. 
Conclusively, second derivative block methods have improved stability region compared with sequential 
second derivative linear multistep methods. GEBM developed in this paper are L-stable for block sizes 

6≤k compared with sequential Enright’s methods [6] which are L–stable for k =2. SDBDF developed in 
[14] are zero unstable for block size 7≥k , while GEBM are not plagued by zero instability for any step 
length k.  
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Figure 5.2: Root Locus plot of SDBDF k = 7 

Compare Figure 5.2 with Figure 4.6. Also, for equal block sizes GEBM have higher order 
compared to SDBDF.  Results presented in Figure 5.1 shows GEBM are suited for integrating stiff initial 
value problems (1.1); this is true for the L–stable methods of block sizes 6≤k . 
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