Journal of the Nigerian Association of Mathematical Physics
Volume 14 (May, 2009), pp 105 - 116
© J. of NAMP

A new derivation of continuous collocation multistp methods using
power series as basis function

!S. A. Okunuga and?J. Ehigie
!Department of Mathematics, University of Lagos, Lagos, Nigeria
’RDPU, Lagos State University, Ojo, Lagos, Nigeria

Abstract

Some derivations of Continuous Linear Multistep Methods are
given in this paper. The paper provides the use of both collocation and
interpolation techniques to obtain the schemes. Rather than using
Chebyshev polynomials as basis function as it was always done in the past,
we introduced the use of direct form of power series as an alternative to the
derivation of these schemes. Multistep Methods have over the years been
one of the most popular and acceptable methods for generating solutions to
initial value problems of Ordinary Differential Equations.
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1.0 Introduction

Over the years, several authors have consideredditecation methods as ways of
generating numerical solutions to Ordinary Diffar@nEquations (ODEs). The collocation
method is dated as far back as 1956 in the wonkechout by Lanczos [1] (see also Herman,
[2]. Lanczos introduced the standard collocatiathad with some selected points. However,
Fox and Parker introduced the use of Chebyshewpatjals in the collocating the existing
method which was captioned as the Lanczos-Tau mdtoa and Parker, [3]. Also, Ortiz [4]
went on to discuss the general Tau method whichlatas extended by Onumanyi and Ortiz
[5] to a method known as the Collocation-Tau methdte Standard Collocation method with
method of selected points provides a direct extensi the Tau method to linear ODEs with
non polynomial coefficients. The Collocation -Tawethod however uses the Chebyshev
perturbation terms to select the collocation poi@&unuga and Onumanyi [6, 7] gave the
generalized Tau method which permits exact fraelioalues in the computation with more
than onet- term as perturbation on the right hand side eflithear differential equation. This
was later extended to Non-linear differential egquegt with some linearization being
introduced on the Tau method by Okunuga and Sof[8lv

Other researchers such as Onumanyi et al. [9], ¥dand Alabi [10], Fatokun [11]
have however introduced some other variants otttlecation methods which recently led to
some continuous collocation approach. The intradoaif the continuous collocation schemes
as against the discrete schemes includes thehaicbétter global error can be estimated and
approximations can be equally obtained at all iotgyoints. Furthermore, the

Corresponding author:
Telephone: 08023244422

Journal of the Nigerian Association of Mathematical Physics Volume 14 (May, 2009) 105 - 116
Continuous collocation multistep methods S. A. Okuuga and. J. Ehigie J of NAMP



introduction of the continuous collocation metha been able to bridge the gap between the
discrete collocation methods and the conventionaltistep methods. Thus it is possible to
write the Linear Multistep Methods (LMMs) in forni some continuous collocation schemes.

Various technigues have been suggested for theatien of LMMs. In this paper we
propose the use of generalized power series asiafoaction on the collocation method which
will lead to some continuous collocation schemeabsae easily linked to the LMMs.

2.0  General collocation method
It is a known fact that the Linear Multistep Metlsodave over the years being very
useful in generating solutions to IVP in ODEs. €ider the Initial Value problem (IVP)

y' (%) = f(x y(x) Y(%) = Yo (2.1)
The LMMs for solving the IVP (2.1) can be develogadsome collocation and interpolation
techniques. The generaistep method or LMM of step numbkrgiven by Lambert [12] is
written as,

[ K
Zaj yn+j = hZﬁ] fn+j ! ak ¢ O (22)
j=0 j=0

whereaj and ﬁj are uniquely determined arfis the step length, such th&jn — Xk =nh

The LMMs generate discrete multistep schemes (#2)h are used for solving the IVP (2.1).
There have been various forms of the LMM which weigcussed by Henrici (1962) [13],
Lambert [12], Fatunla [14], as well as Butcher [15]

Many of the Linear Multistep Schemes given by (Zh2ve been proved to have
satisfied some stability conditions. Due to theunaiof various problems, other variants of the
LMM do exist in the literature. Some of these imguthe hybrid LMM, second derivative
LMM and the generalized Multiderivative LMM Okunudaambert, and Butcher, [18; 17; and
10]. These are variously developed to improvesit®iracy of the results being obtained when
solving the IVP (2.1) and other higher order lin€dDEs. Thus, the Continuous Collocation
approach, which require collocating at some poixgs of the Lineark -step method (2.2) is

rewritten in continuous form as,
k k
2.0 Yoy =0 B () Fos; (2.2a)
i=0 i=0

where ,Bj (X) is now defined as a function afand it is continuously differentiable at least

once. In this paper, we developed some continuausistep collocation methods with some
collocation points taken at the grid points usiogie form of Series or polynomials £ x)*as
the basis function.
2.1 Power series collocation

The Taylor polynomial is the ultimate in osculatidfor a single argumen,, the
values of the polynomial and its firat derivatives are required to match those of a given
function y(x). That is p®’(x,) = y"”(x,), r = 042,---,n. The existence and uniqueness of

such a polynomial is well known and they are ctassresults of analysis. The Taylor's
formula settles the existence issue directly byilmtthg such polynomial in the form

n ()
P9 = Y X0 (- xg)' 3
r=0 )

Analytic function has the property that for oo, the approximate function p(x) reduces to y(x).

Based on this argument, we propose a polynomiassar form of (2.3) as the basis function
for deriving the LMM.

In the work done to date, Onumanyi et al. [9] dedivsome finite difference methods
that lead to some LMMs for the solution of IVPsS@GDESs of the form (2.1). By appropriate
selection of points for both interpolation and colition, many important classes of finite
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difference methods were recovered and new metheds generated. These authors also used a
collocating function of the form

M
yx)= Y apx
k=0

Adeniyi and Alabi [10] derived the continuous LMNdg using some Chebyshev polynomial
functions as basis functions. These authors prapas®llocating function of the form

M
Y(X)=Z ajTj(X_thj, X S X< Xy
j=0

whereT;(§) are some Chebyshev functions which are usedsis famction in their work. We
however propose in this paper a basis functioh@form

M
y(x) = Y aj(x=x)' (2.4)

r=0
which is in form of (2.3) and will be shown to hadentical results and methods with the work
of other previous authors. We are able to genematiee methods by our new approach which
makes this different from other previous works amdpler than that of Adeniyi and Alabi [10].
The series (2.4) proposed here shall be used fbr dmllocation and interpolation techniques
that such methods may require.

The use of this basis function will permit us toride some continuous LMM of
various orders and consequently the discrete fasnare also obtained. We shall make
comparison of our methods with those generated diyguthe Chebyshev polynomials. The
power series (2.4) permits smooth functions in Wh#&'s are suitably determined by
collocation techniques, so as to generate some LiMsntinuous form.

3.0 Linear multistep methods

The LMM have over the years been very useful inegating solutions to IVP in ODE.
There has been various form of the LMM which weegivied by Lambert [12, 17], Fatunla
[14], as well as Butcher [15]. All of these schenggven in the form of equation (2.2) are in
discrete form. Among the existing methods of degvihe LMM in discrete form include the
interpolation approach, numerical integration, Baykeries expansion and through the
determination of the order of the LMM. These vasidechniques were developed over the
years because no single approach can really praglegisting multistep schemes. There are
still some schemes that can be written in the fofn{2.2) by fixing certain values for the
coefficients ofy,,; andf,,; which may not be easily obtained by the technidisted above.
Hence the need to seek more approaches of dethasg all important schemes.

It is also useful to note that many of these scleehave been proved to have satisfied
some stability conditions. Due to the nature ofioxs problems, other variants of the LMM
exist also in literature. Some of these includegbeond derivative LMMs. These are equally
developed to improve the accuracy of the numeriesiilts being obtained when solving the
IVP.

In this paper we shall develop the continuous fainthe LMMs, which permits
collocating at various points rather than the uslisdrete formulas.

The derivation given in this paper is quite diffegréom the usual techniques given by
Lambert and Butcher, but will end up to yield tleene LMMs which in this paper could be
written both in discrete and continuous forms.

Definition 3.1
Consider the IVP

Y ()= (% y(¥). (%) = Yo, XO[X5, Y], ¥(¥. f(x,y)OR"
Where we assume that there exist some LipschitgtaotL such that,

If(xy) - f(x2|<Lly-7, O(xY), (x 200X, o) xR"
This implies that the IVP has a unique solution.
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Definition 3.2
The first characteristics polynomial of the LMMZ2is given by

pE) =Y ay &'
r=0

The methods for whictp(&) = Ek - Ek_l are called Adams methods, while those that have

p(&) = {k - {k_z are the Nystrom methods.

3.1 Derivation of continuous LMM
Consider the polynomial function

M
Y9 =Y aj(x=x)) Oy X S X< X, (3.1)
j=0
over each of the sub-intervak][, xk+p] of [a,b] where M is appropriately chosen anfx)
approximates the solution y(x) of equation (2.1isTshall be used as basis function to derive
some LMMs in the continuous form.

The technigue which is being employed for the deidn of the schemes is by setting

M = n+1 in equation (3.1). Hence we write
n+1

Y(X)=> a,(x=x)" C y(x) X, S XS Xy (3.2)
j=0
as the trial or basis function. This satisfiesuhperturbed ODE,
Y'()=F(xy(x).  Y(x)=Y, X S X< X, (3.3)

We shall collocate equation (3.3) &n+1) pointsx,,;, j= 012..,n and also
interpolate the trial polynomial (3.2) & to give the requiredn + 2) equations for the unique
determination ofa; . Doing this, we write

f(x,)="f.,,j=012..
(Xk ]) k+j J } (34)
Y(%) =Y,
To derive a one step LMM, we sat=1, in (3.2), so that
Y(X)=a0+a1(x_xk)+a2(x_xk)2 (3.5)
From (3.4), we have
Y'(%)=TF. Y'(Xs)=Fen (3.6)
Y(X)=Y,
Using (3.5) in (3.6), we obtain the three equations
Y(xk) =ag =Yk
Y'(xg) =g = fk

Y () =84 + 28, (X = X) = fis
Representing this in the matrix form to get,
1 0 0})a Y,
0 h O |a |=| hf
0 h 2n*)a, hf..
On solving, sincea and a; are known, theray is determined as
_ fka— Tk

a, =
2 2(Xk+1 — Xk)

Substituting in (3.5), we obtain
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fe+1 — fi 2
Y (%) =Y + fie(x=x¢) + = (x = x) (3.7)
2(Xk +1 — Xk)
Equation (3,7) is the continuous formulation ofreeestep method. To obtain its discrete form,
we evaluate ak = Xy 4+1 to obtain

h
Y — Y :E(fkﬂ +f) (3.8)

Equation (3.8) is the well-known trapezoidal metlmbdrder 2 and it is an implicit one-step
scheme. On the other hand if we put Xy +2 in (3.7), we shall equally obtain the explicit 2-
step scheme as:

Yk+2 — Yk =2hfg41 (3.9)
This is a two —step explicit LMM and it is callduet Mid-point Rule. We can also derive some
other two step methods by setting= 2 in (3.2). That is

Y(X) =23:aj (x-x.)’ (3.10)
By collocating and interpolating a@anéiku , we have

Y'(x)=f,

Y (Xesa) = faa

Y'(Xei2) = fir

Y(X) =Y,
This in turn is rewritten to includa as,

Y(%)=a,=Y,

Y'(x)=a,=f,

Y’(Xk+1) =335 (Xyyy — Xk)2 +28, (X = %)+ 3

i — 2
Y (Xiaz) =385 (X = %) +28,(Xei, = %) + 3
Representation on a matrix yields the system:

10 0 0 Ya) (Y
Oh 0 0 |al | hf
0 h 2h* 3h%|a,| |hf,

0 h 40* 120 )\a,) (hi.,

Solving for a and a, sinceay and a; are already known above, then we obtain

ap = —= feo +2f -5 f
2 2Xr1— %) - 2 k+2 k+175 'k
1
= (f,, -2+ f
a3 6(Xk+1—Xk)2( k+2 k+1 k)

Substituting fora,, a,, a,, a, in equation (3.10), we obtain

1
Y=Y+ fe(x=xi0) + o -% fie+2 +2fk+1‘% fieJ(x= %)
(3.11)

1
[ frap = 2fan + B (x=x0)°
6h?
Evaluating atx = X,,,, we obtain the discrete form of equation (3.11gradimplification as

Yk+2 =Yk =%h[fk+2 + 414 + fi] (3.12)
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which is the Simpson’s method. Equation (3.11h&s ¢ontinuous formulation of the discrete
scheme (3.12) and it is known to be of order 4,ridefL3].
3.2 TheN-step optimal order

We shall at this point consider in a general forbcMM of optimal order with n steps.
n+1

We consider our trial polynomial (3.2), that ?é(x):Zaj (x—x,)' . On substituting into
j=0
the IVP (2.1) and collocating at+1 points X,,;, j :] 0,12,...,n and interpolating ai, to
give a(n+2) systems of equations for the unique determinatioa,;'s, j=0L2..,n+1,
we shall obtain,
Y00 = ans1(x=xi) ™+ an (x=xi)" + an-g (x =) " +
+ag(x—x) +ap(x-x)? +ar (x~ x) + ag
Y'(%) = (n+Dan+1(x = xi) " +nan (x=xi )"+ (n-Dan_g (x—x )" +

+3ag(x - x)2 +2ap(x~ X¢) +a1 = (X, Y)

Interpolating atx, and Collocating ai, , X,.;, Xco s - - -+ Xiun» WE Obtain
Y (X ) =2a,=Y,
Y'(x)=a,=f,
Y (%n) = (N D@, (Xn =% )" +Na, (X = %)™ + . _f
+38, (X = %)% +28,(Xy = %) + 3 -
Y (Xer2) = (N DA, (X, = %)™ + 18, (X, = Xk)n_l to. _f
+38, (X2 _Xk)2 +28, (X = X) T3y -
Y'(Xes) = (N+ D@, (Xeys — Xk)n +Na, (X ~ Xk)n_l *o. .
+38, (X3 _Xk)2 +28, (X ~ %) tay .
Y (Xern) = (N DA, (X = %,)" + 03, (X = Xk)n_l *e. _f
+38, (Xen = Xk)2 +28, (Xun = X) T3 o
This leads toa, =Y, , ha =hf,
(n+Da,,,h™ +na,h" +..+3a,h® +2a,h* +ah=hf,
2"(n+Da,,,h"* +2" na h" +..+2°.3a,h® + 22a,h* + g, (h) =hf,,,
3"[{n+Da,,,h"" +3"" [ha h" +..+ 3% Ba,h® + 3[2a,h* + a h=hf,,
(n+) " @, ,,h"* +n" @ h" +..+n® Bah® +nRa,h* +ah=hf, .,
Representing this in a matrix form, the followisgdieduced.
1 0 0 0 o0 0 0 a0 Yi
0 h 0 0 o0 0 0 a hfi
0 h 20 3 - nff (n+Hh a hfiesq
0 h 2@ 223 ... 2"imH 2+l ag |=| N
0 h 3 Fad - I g™ ar | | hlias
0 : : : : : :
0 h n2h® 3 - "I ) E™ fane) \hfana

This can be solved using Numerical solvers forititeependent solutions &, a,, ..., &,

When the values ofa,, a,, ..., a,,; are substituted into the basis function, the teshtained
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gives the continuous formulation of the Linear nstdp method, while specific evaluation at
point X, gives the discrete equivalent.

3.3 Derivation of classes of Adams methods

We shall further construct some continuous schentdsh yield classes of Adams Methods.
The Adams methods are broadly classified into twamely Adam-Bashforth (explicit)
schemes and Adam-Moulton (implicit) schemes. TlugHe IVP (2.1), the technique involves
is by settingM = n in (3.1) so that the trial or basis function beesm

n .
Y=Y a;(x=%)" L y(X), X X< X, (3.13)
j=0
This satisfies the unperturbed equation (3.3). ldCating (3.3) atn points X,,;,
j=022,..,(n-1) and interpolating the trial polynomial (3.13) &etX,,,, to give the
required (n+1) equations for the unique determination aff, j = 022,..,n. To derive a
one step Adam-Bashforth scheme, we Bet 1 in (3.13) and using equation (3.3), we have

Y'(%)=f
Y(%)=Y,
Using the basis function (3.13), we equally obtain
Y'(x)=a=f, Y(X)=a,=Y, (3.14)
On substitutinga, and a, in the basis function (3.13), we have the contirsufmrmulation as
Y(X)=Y, + f, (X—X%,) (3.15)
Evaluating ak,,,, we obtain the Euler explicit method
Y=Y, +hf, (3.16)

Similarly for a 2-step Adam-Bashforth method, et 2 in (3.13). Interpolating (3.13) at
X=Xg+1and collocating the derivative of (3.13) at=Xy and Xx+1, we obtain the
following equations.

Y(Xk+l) =a, t al(Xk+l - Xk) +ta, (Xk+1 - Xk)2

Y'(x)=a, +2la,(x=X,)

Y'(%)=a,=f,

Y (Xea) =0 + 203, (X = X,)
Solving we get

h
a8,=Yn _E[fkﬂ + fk]

1
a, :%(fkﬂ - fk)

This gives the continuous method as:
h 1
Y(X)=Yk+1—§[fk+1+ f]+ fk(x_xk)’L%[fkﬂ_ idx-x)?  (317)

Evaluating atx = X,,,, we obtain the discrete form as:

h
Yoy =Y +§(3fk+l - f,) (3.18)

Equation (3.17) is the continuous formulation of thvo-step Adams Bashforth scheme and the
discrete form is given by equation (3.18).
34 N-Step Adams-Bashforth scheme.

Using the trial polynomial (17) and substitutingairthe ordinary differential equation

(1), collocating atn points X,,;, j = 012,..,n-1 and interpolating atx,,,, to get an
(n+1) systems of equations for the unique determinatfoa, 's, j=0L2..,n.
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Doing this, we obtain,

Y (X) =an(x_ Xk)n + a-n—1(X_ Xk)n_l toot as(x_ Xk)3 + az(x_ Xk)2 + al(x_ Xk) +ta,
Y'(Q)=na, (x=x )" +(N=Da,, (x=x)"" +..+3a,(x= %) +2a,(x-x ) +a, =
f(xy).

Interpolating atx,,,_, and Collocating ak, , X1, Xc.p 1 -+ Xeun» WE Obtain

Interpolation:
_ _ n n-1
Y(Xn+k-1) = Yn+k-1 = @8n(Xk+n-1~Xk)" +an-1(Xk+n-1-Xk) ~+..

3 2
+ag(Xk+n-1~Xk)~ +a2(Xk+n-1 %) +* & (Xk+n-1 — Xk) + g
Collocation:

Y'(x)=a=f,
Y (%) = N, (Kag = X )™+ e+ 385 (X — Xk)2 +28, (X —X) T, = fiy

Y (Xerz) = N2, (Xer, = Xk)n_l +o 385 (X, Xk)2 +28,(X. =X ) ta = fi,

Y (Xera) = N8, (X = %)™+ 385 (Xeus = X) 285 (Xus = X ) + & = fig
Y'(Xk+n—1) = nan(xk+n—1 - Xk)n_l ot 3a3(xk+n—l - Xk)2 + 2a2(xk+n—l - Xk) ta = frina
(n-)"h"a, +(n-1)"*h"'a _, +..+(n-1)°h’a, +(n-1)*h%a, +(n-1ha +a,=
Yk+n—1

Multiplying the collocations byh, we obtain

ha, =hf,

na,h" +..+3a,h® + 2a,h® + a,h=hf,_,

2"na h" +..+2%3a,h® + 22a,h* + a (h) =hf,,,

3" [ha,h" +...+ 3% [Ba,h® +3[2a,h* +ah=hf,_,

n(n-1)"*a h" +..+(n-1)% Ba,h® + (n-1) [2a,h® +ah=hf,,
Representing this on a matrix, the following isided,

Y,

1 (n-1)h (n-12)?h? (n-1%h® ... (n-1"h" a, kin-l

0 h 0 0 0 a, hfy

0 h oh? 3h? nh" a, | | N

0 h 2[2h? 22[Bh® ... 2"kt | a, |7| Mo

0 h 32h? 32m@h® . 3"'mh" | a, | | hfes

0 h (n-1)2h? (n-1)23Bh* - n(n-)"*h"\a,) \hf.
This can similarly be solved using some numericdvess for the independent solutions of
a,,a,,...,a,. When the values ofa,, a,, ..., , are substituted in the basis function, the

result obtained is called the continuous formutataf the Linear multistep method for its
discrete equivalent.
35 Adams-Moulton schemes

In a similar manner we can formulate the classedAddms-Moulton schemes in
continuous form by using our series as the bagistion. The Adams-Moulton schemes are
LMMS that are implicit in nature and are often usedthe corrector to the Adams-Bashforth
schemes. As such the derivation of this is equaliportant. Since the Adams-Moulton
methods are implicit, the appropriate technigue igse the trial or basis function of the form.

n+l
- _ j
Y=Y a;(x=x%)" L y(X), X SX<X,, (3.19)
j=0
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If we setn = 2, we can obtain a 2-step implicit method as follows

Y'(x)=f,
Y' (Xesa) = Fr
Y (Xerz) = fir
Y (Xes1) = i
Using the basis function (23) for n = 2, we get,
Y(Xu) = & +ha +h’a, +h%a,= Y,
Yi(x) =a =f
Y'(%.) = & +2ha, +3h%a,= f,, (3.20)
Y'(X..) = & +4ha, +12h°a,= f,,,
Solving (3.20), we obtain

1 1 1
a;=~— |fk+1 =5 fk =5 fk+2
T g2 2 2
1
azzm[4fk+l -3f, - fk+2]

h
85 =Yy _1_2[5fk +8fi — fk+2]
Substituting fom,, a,, &, anda, in (3.19) withn = 2 , we obtain

h

Y(X) :Yk+1_l—2[5fk +8fk+1 - fk+2]+ fk(x—xk)+

(3.21)
L 2_ 1 fk _ fk+2 3
—|4f -3f, - f X=X I _ Tk _ X=X
4h[ k+1 = 3fk — Fea2)(x—x) 3h2[k+1 Ty | XK

Evaluating atx = X,,, and simplify we obtain

8

Yio =Y * 5[5k +8Fics - f ] (3.22)

Equation (3.21) is the continuous formulation of a#xt-Moulton scheme, while equation
(3.22) is its discrete formula which is of order Several other methods can be obtained by the
same technigques demonstrated above.

4.0 Numerical example
Consider the system of ODE,

dfy)_ -0.5y y() =4 4.1)
dx\z) \4-0.3z-0.1y) ' ( z(0)=6 '
The differential equation is known to have an atiedy solution
y =46 and, ;= ~% ; +40
Using the Numerical Schemes, we obtafif,X) (1 Y ¥ and Z(x) [0 z(x) . The approximate

solution of the System of Ordinary Differential Edjon (4.1) is solved using the following
schemes derived above

2-Step Optimal Order Scheme (PTD2)

2-Step Adams-Bashforth Scheme (ABS2)

2-Step Adams-Moulton Scheme (AMM2)

The numerical results obtained by each Schemethtin errors are presented on Tables 4.1 —
4.4 below.
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Table 4.1: Table for the Numerical Solution of ( x)

X | PTD2 (y) | ABS2 ) | AMM2 (y) Exacty(x)
0.1| 3.804918| 3.804918 3.80491§ 3.80491
0.2| 3.619354| 3.61935b6 3.619354 3.61935
0.3| 3.442822| 3.442823 3.442831 3.44283
0.4| 3.274916| 3.27491} 3.274923 3.27492
0.5| 3.115197| 3.115198 3.115207 3.11520
0.6 | 2.963268| 2.963269 2.963277 2.96327
0.7 | 2.818748| 2.81875H 2.818757 2.81875
0.8| 2.681278| 2.681279 2.681281 2.68128
0.9| 2.550511| 2.550511 2.550517 2.55051

1 | 2.426121| 2.426121 2.426123 2.42612

Table 4.2: Table for the Error of Numerical Solution gf( x)

Error of vy,

X | PTD2 (y) | ABS2 ) | AMM2 (y)
0.1| 6.14E-07] 5.61E-0} 3.71E-08
0.2| 3.73E-07| 3.37E-0} 2.34E-08
0.3 9.4E-06] 8.89E-06 9.19E-Q7
0.4| 7.92E-06 6.79E-06 8.87E-07
0.5| 5.78E-06 4.86E-06 7.49E-07
0.6| 4.41E-06 3.74E-06 6.04E-07
0.7| 4.05E-06 2.74E-06 4.93E-07
0.8| 3.24E-06 2.32E-06 4.12E-07
0.9| 2.59E-06 2.23E-06 3.73E-07

1| 2.24E-06| 1.92E-06 2.19E-Q7
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Table 4.3:= Table for the Numerical Solution afx)

Exact
X PTD2 (2 | ABS2 9 AMM2 (2) | z(x)

0.1 6.064983 6.064964 6.06502 6.065027
0.2 6.126846 6.12682p 6.12687Y6 6.126883
0.3 6.185693 6.18567pP 6.185715 6.185722
0.4 6.241674 6.241658B 6.241686 6.241692
0.5 6.293974 6.294908 6.294926 6.294932

il

P

7

0

i

0.6 6.344732 6.34555 6.345571 6.345%76
0.7 6.393009 6.39373 6.393746 6.393749
0.8 6.438913 6.43860 6.439545 6.439573
0.9 6.482669 6.48236 6.48314 6.483162

1 6.524402 6.52400 6.524607 6.524626

Table 4.4:Table for the Error of Numerical Solution z{k)

Error of z;

X | PTD2 (2 ABS2 (2 AMM2 (2
0.1 4.40E-05 6.34E-05 7.34E-06
0.2 3.73E-05 5.37E-05 7.05E-06
0.3 2.94E-05 4.29E-05 6.84E-06
0.4 1.79E-05 3.92E-05 6.24E-06
0.5 9.58E-04 2.88E-05 5.52E-06
0.6 8.44E-04 2.48E-05 4.76E-06
0.7 7.41E-04 1.74E-05 3.32E-06
0.8 6.60E-04 9.66E-04 2.78E-05
0.9 4.93E-04| 7.93E-04 2.17E-05

1 2.24E-04 6.22E-04 1.89E-Q5

5.0 Conclusion

It has been shown that continuous collocation nustior solving IVPs can equally be
derived through the approach discussed in this rpdip& not compulsory to use the special
function as a basis function to derive these schemesimple power series used in this paper
is sufficed for such derivations. It should be wothat the Optimal Order produces a better
result than the Adams-Bashforth Schemes of the stepebut the Adams-Moulton scheme is
most accurate. The schemes generated are stabieasidtent.

The results generated in this paper could be comdpaith the continuous collocation
schemes generated by other authors cited in thik. wdl our derivations agreed with known
discrete formulas.
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