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Abstract 
 

The study of the statistical properties of the non-linear random wave had been 
earlier investigated. In this work we introduce a bi-parametric distribution of non-
linear stochastic processes, in studying the properties of second-order random processes 
with a narrow-band spectrum. This incidentally concerns the mechanics of the water 
waves. In particular, the expressions of the probability density function are further 
investigated, using this bi-parameter.  This analysis will enable the designer to choose 
wave parameters, within a limit, that will yield an acceptable level of risk. Secondly, 
such probabilistic based design criterion may result in substantial cost saving if 
uncertainties in the wave estimates are incorporated.   
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1.0 Introduction 
 The effect of non-linearity for random (wind-generated) sea waves were firstly investigated by 
Longuet-Higgins [1]. He obtained the first three terms of Gram-Charlier series for the probability density 
function of the normalized free surface displacement. This was found correct for any shape of the energy 
spectrum. 
 After, Tayfun [2, 3] obtained the probability density function which explained the exceedances of 
the crest (absolute maximum) for the free surface displacement in an, undisturbed wave field. The 
corresponding probability of the exceedance of the trough (absolute minimum) was then derived by Tung 
and Huang [4].  Arena and Fedele [5] extended the theory to the crest and the trough distributions of a 
general nonlinear narrow-band stochastic family, which involves many process in the mechanics of the 
sea waves. 
 In this work a new theoretical approach is proposed to investigate the effects of non-linearity in 
the studying of the mechanics of sea waves. In this case, a bi-parametric distribution of non-linear 
stochastic processes is introduced. 
 Some properties of the stochastic distribution are derived. Further, the characteristics function 
was obtained using the Laplace transformation method and the corresponding probability density function 
was given by the inverse Fourier transform of the characteristics function.  
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2.0 The properties of a stochastic distribution with narrow-band spectrum 
We use the coordinator axis (x,y) in which x-axis is perpendicular to the wave crest and y-axis 

perpendicular to its origin being on the shoreline. 
We define the distribution ψ of stochastic processes axis (x, y) as parameters following (Arena 

and Fedele [5].  

( ) ( ) ( )[ ] ( ) ( )[ ] ( ) ( )[ ],sin,cos,cos,,, 2222 tXayxhtXayxgtXayxftyx ++=ψ  (2.1) 
where a  is stochastic variable with Rayleigh Distribution and where  

X(t) = ω0t + υ      (2.2) 
ω0 is the angular frequency, t the time and υ a stochastic variable uniformly distributed in (0, 2π).  By 
defining the two stochastic processes:  
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where 2σ is the variance of both the linear processes acos(X) and asin(X), equation (2.1) may be 
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The processes (Z1,Z2) are both Gaussian (with zero mean value and unitary variance) and stochastically 
independently Borgman [6]. Therefore, the joint probability density function is given by    
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From equation (2.4) we obtain the mean value and the variance of ψ which are respectively given by 
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we may consider the following normal stochastic distribution defined as: 

( ) ( ) (2.11)            ,Z 21
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σ
ψψζ

ψ

+−++=−= ZZ  in which 

�1 and �2 are deterministic parameters. The properties of the (2.11) rely on these two parameters. As an 
example and following Ejinkonye [7] analytical expressions of the third and fourth moments of the family 
are given respectively by: 
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3.0 The probability density function 
 Let us consider the normalized distribution ζ [equation 2.13]. The characteristics function of 

ζ is equal to the mean value of 
ωζie  
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and may be rewritten as following Arena et al [5] as 
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with the integrals I1 and I2 respectively defined as: 
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The integrals 1I  and 2I  are evaluated by using Laplace transform method.  In particular, defining  tz =2
1  

and  tz =2
2 , the integrals (3.3) and (3.4) are respectively given by  
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where     
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defines the Laplace transform of g(t): 
The Laplace transforms in equations (3.5) and (3.6) becomes respectively: 
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and the characteristics function (3.2) is given by: 
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Finally, the probability density function 
ζf  is obtained by applying the inverse Fourier transform 

to the characteristic function ζiw
l , that is  
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jn which 1−F  is the inverse Fourier transform operator, define as  
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from equation (3.10) and (3.11) we obtain the general expression of the probability density function 
ζf . 
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4.0 The zero-mean value processes  

The stochastic distribution (2.1) has zero mean value if G + H = 0.  In this case expression (2.4) 
may be rewritten as  
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And the dimensionless process ζ  in (2.11) may be rewritten as  
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Let us note that G+H = 0 implies 21 αα −= of equation (2.10).  The distribution with zero –mean value 
has then only one parameter.  The expressions (2.13) of the third moment and (2.14) of the fourth moment 
become as the following 

αβζ 33 6= ,   ( )4244 482413 ααβζ ++=     (4.3) 
Finally, the probability density function (3.13) for the zero-mean processes reduces itself to 
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Figure 4.1 shows the probability density function (4.4), for fixed value of the parameter α . Let us note 
that the probability density function (4.4) tends to the Gaussian distribution when 0→α . 
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Figure 4.1: The probability density function 

 
5.0 Conclusion 

The properties of the distribution
 ( ) ( ) ( )[ ] gtXayxftyx cos,,, +=ψ
For this purpose the analytical expressions of the probability density function were derived.

It is illustrated that all these properties depend upon two deterministic parameters named 

2α . For zero mean Gaussian processes we have 
freedom. 

These bi-parameters will be useful in solving some problems of random ocean waves. First,
allows the designer to choose wave parameters within a limit that will yield an acceptable level of risk. 
Second, such probabilistic-based design criterion may result in substantial cost saving if uncertainties in 
the wave estimates are incorporated. 
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y density function ςf  (equation (4.4), for fixed values of α . The ςf  tends to the Gaussian 

distribution as α →→→→0. 
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( ) ( )[ ] ( ) ( )[ ]tXayxhtXayxg 2222 sin,cos, +  have been investigated. 

For this purpose the analytical expressions of the probability density function were derived.
It is illustrated that all these properties depend upon two deterministic parameters named 

. For zero mean Gaussian processes we have 1α =- 2α  and the distribution has only one degree of 
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