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Abstract 
 

Sufficient conditions for the complete controllability of perturbed infinite 
delay systems are eveloped. The results are established using the Schauder’s fixed point 
theorem. An example is also given.  

 

 

Keywords: Delay systems, perturbation, complete controllability, properness 
 

 2000 Mathematics subject classification: Primary 93B05; Secondary 34H05 
 
 
1.0 Introduction 

The theory of functional differential equation have been studied by several authors, for example 
Driver [8], Hale [9], Tadmore [14] etc., and independent results obtained. The study of functional 
differential equation has application in population dynamics, conveyor belts, metal rolling system, urban 
traffic, and capacity management. 

The control equations of linear and nonlinear functional differential equations have applications 
in some economic and physiological systems, as well as electromagnetic systems composed of 
subsystems interconnected by hydraulic and various other linkages. Motivation for such control systems 
and its application in other fields can be found in Iheagwam [10], Chukwu [4], Davies [6-7], Niamsup and 
Phat [12] etc. 

Owing to difficulty that arises in presenting real life situation in ecology, epidemics, population 
growth etc., the study of integro-differential equation with infinite delay has emerged as a branch of 
modern research (see Burton [2], Corduneanu [5], and Lakshmikantham [11] for details). For example, in 
most biological populations the accumulation of metabolic products may seriously inconvenience a 
population, and one of the consequences can be a fall in the birth rate and an increase in the mortality rate. 
If it is assumed that the total toxic action on birth and death rates is expressed by an integral term in the 
logistic equation, then an appropriate model is an integro-differential equation with infinite delay 
(Balachandran and Dauer [1]). These studies have been extended to the controllability of infinite 
functional differential equations in recent years. In [1], Balachandran and Dauer gave sufficient condition 
for the null controllability of nonlinear infinite delay systems with time varying multiple delays in 
control. Sinha [13], developed sufficient conditions for the null controllability of nonlinear infinite delay 
systems with restrained controls. Davies [6] proved sufficient condition for the Euclidean controllability 
of infinite delay systems with limited controls. 
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Motivated by the works in [1, 6, 13] we shall forge ahead to investigate the complete 
controllability of perturbed infinite delay systems by the notion of linearization and the application of 
Schauder’s fixed point theorem. This will extend the work in Davies [6], and other known result in the 
subject 

 
2.0 Basic notations and preliminaries  

Let E denote the real line and ],[ 10 ttJ = an interval inE . For a positive integer n , we 

denote by 
nE , the space of real n -tupples with the Euclidean norm denoted by ⋅ . Let 0≥≥ hγ  be 

given real numbers (γ  may be ∞+ ). The function ),0[]0,[: ∞→−γη  is lebesgue integrable on 

,]0,[ γ− positive and non-decreasing on ]0,[ γ− .  Let )],0,([ nEBB γ−=  be the Banach space of 

functions which are continuous and bounded on ],0,[ γ−  and such that 
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h
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nEttx →− ],[: γ , let  
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t Ex →− ]0,[: γ  be defined by ),()( θθ += txxt  ]0,[ γθ −∈ . Let 

)1(
2W  denote the Sobolev 

space )],0,([)1(
2

nEhW −  of functions 
nEh →− ]0,[:φ  whose derivative are square integrable.  We 

consider the infinite delay system given as 
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and its perturbation 
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where   ∑
=
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K
kk tAtL
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)(),( φφ   (2.3) 

satisfied almost everywhere on ),(].,[ 10 φtLtt  is continuous in t , linear in kA.φ is a continuous

nn ×   matrix function for τ≤≤ kt0 , )(θA is an nn ×  matrix whose elements are square 

integrable on ]0,(−∞ and C is an mn ×  matrix function. The n-vector function f  is continuous and 
absolutely continuous.  
The controls u  are square integrable with values in the unit cube    

{ }mjuEuC j
mm ......1,1: =≤∈=    

The variation of constant formula for system (2.1) by Davies [6] and all its necessary assumption 
is 

∫ ∫∫ ∞−
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The corresponding result for (2.2) at 1tt =  following the methods Sinha [13] is given by  
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 (2.5) 

Define Y(s,t) = X(t – s)C, and the controllability matrix by dsstYstYtW
t

t

T

∫= 1

0

),(),()( 1  where T  

denotes the matrix transpose. 
Definition 2.1 

System (2.2) is completely controllable if for every ,, 1
)1(

2
nExW ∈∈φ  there exists a 

01 tt > and an admissible control u such that the solution ),,( 1 ftx φ of (2.2) satisfies 

φφ =),,( 0 ftx  and 11 ),,( xftx =φ  

 
3.0 Controllability results  

Here, we give theorems which will summarize our results on relative controllability of the system 
(2.1).  Following the methods of Chukwu [3] we introduce the “determining equations” for the system  
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=
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where 100 tt <= and 10, AA  and C are constant matrices, as 
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and define  }),0[;)(,...,)(,)({)(ˆ
11101 tssQsQsQtQ nn ∈= −  

Proposition 3.1 

The control system (2.1) is relatively controllable in 
nE  on the interval ],[ 10 tt  if and only if 

.)(ˆ
1 ntQrank n =   

Remark 3.1 
To prove the above Proposition, we use the fact that CstXstY )(),( −=  and proceeds as in 

Theorem 2.1 of Davies [6] and the references therein. 
Proposition 3.2 

System (2.1) is proper on 0110 ],,[ tttt >  if and only if the origin is an interior point of )( 1tR . 

Proof 
This is Theorem 2.3 of Davies [6] 
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4.0 Main result  
Here, we are now ready to obtain our main result on the complete controllability of the nonlinear 

delay system (2.2). For this, we take  

( ) mmnnn EEEEEuuxxxp ××××∈= 10210 ,,,,  

and let 10210 uuxxxp ++++=  

Theorem 4.1 
In (2.2) assume; 

(i) System (2.1) is relatively controllable on ],[ 10 tt  

(ii ) The continuous function f satisfies the growth condition 

     0
),(

lim =
∞→ p

ptf
p

 

uniformly in ],[ 10 ttt ∈ , then system (2.2) is completely controllable on ],[ 10 tt . 

Proof 
From equation (2.5), the solution of system (2.2) can be rewritten as 
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let B  be the Banach space of all functions mn EEttux ×→],[:),( 10  where x  is continuous and u  is 

an admissible control function. The norm on B  is uxux +=),(  where 

)(sup txx =  for ],[ 10 ttt ∈  

)(sup tuu =  for ],[ 1tht −∈  

Let BBT →:  be an operator defined by ),(),( vyuxT =  where  
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for ],,[ 10 ttt ∈  and )()( tty φ=  for ].0,[ ht −∈  

Observe that the control )(tv is capable of steering the solution of system (2.2) to 1x  at 1tt = . 

Let 101 ),(sup tttforstYa ≤≤= , )( 1
1
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},,max{ 11 hatb = , 14211 10 taabac = , 142 10 tac = , baaad 3211 10=  
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Let f satisfy the following condition: for each pair of positive constant c  and d , there exists a positive 

constant r such that, if ,rp ≤  then rdptfc ≤+),(  for all ],[ 10 ttt ∈ . Let r be chosen so that this 
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We have just shown that if B(r)= (
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55
:),

r
uand

r
xBux .  Then T:B(r)→ 

B(r), where B(r) is a bounded set, hence T is well defined. 
We shall now show that T is completely continuous or T is a sequentially compact operator. Since 

f is continuous, it follows that T is continuous. Let )(rB′  be a bounded subset of )(rB . Consider the 

sequence )()},{( BTvy ji ′∈ , such that ),(),( jjji uxTvy =  for some K,2,1),( =′∈ jforBux jj .  

Since f is continuous, ( ) ),2(),1(,(, −− txtxtxtf u(t), u(t-h) ) is uniformly bounded for all ],[ 10 ttt ∈ . It 

follows that },{ ji vy  is a bounded sequence in )(rB . Hence )}({ tv j  is an equicontinous and a uniformly 

bounded sequence on ],[ 1th− . Since each )(tv j has both right hand left hand limits at 0tt =  and 

htt −= 1 , we can apply Ascoli’s theorem on ],[ 10 htt −  to the sequence )}({ tv j . Therefore, there exists 

a subsequence of  )}({ tv j  which converges uniformly to a continuous function on ],[ 10 htt − . Also, 

since )}({ tyi  is a uniformly bounded and equicontinous sequence on ],[ 1th− , a further application of 

Ascoli’s theorem yields a further subsequence )},{( ji vy  which converges B to some ),( 00 uy . It 

follows that )(BT ′  is sequentially compact. Hence the closure )}({ BT ′  is sequentially compact. Thus, T 

is completely continuous. Since )(rB  is closed, bounded and convex, the Schauder fixed-point theorem 

implies that T has a fixed point )(),( rBux ∈  which is the required solution of system (2.2) capable of 
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satisfying the boundary conditions 00 )( xtx =  and 11)( xtx =  for 01 tt >  and nExx ∈10, .This by 

implication means that  
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Hence, 

system (2.2) is completely controllable on ],[ 10 tt . 

Corollary 4.1 
In system (2.2) assume that 

(i) (2.1) has ntQrank n =)(ˆ
1  

(ii)  (2.1) is proper 

(iii)  f satisfies the condition 0
),(

lim =
∞→ p

ptf
p

 

Then system (2.2) is completely controllable on ],[ 10 tt . 

Proof 
Immediately from Proposition 3.1, 3.2 and Theorem 3.1 
 

5.0 Example 
Consider the system 
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and its perturbation 
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To see that system (5.1) is proper in any interval ],[ 10 tt , we use the determining equation for each s  as 

follows 
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Since rank 2)(ˆ
2 =tQ  for each 01 tt > the system (5.1) is relatively controllable on each interval 

],[ 10 tt  on 
nE .  Moreover, 
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Hence, 

we conclude that system (4.2) by Theorem 3.1 is completely controllable on  ],[ 10 tt   

 
6.0 Conclusion 

Sufficient conditions for the complete controllability of a nonlinear system with infinite delay are 
derived. These conditions were given by the relative controllability of the linear part and the application 
of Schauder’s fixed point theorem on the perturbation function.  
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