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Abstract 
 

The aim here is to use an appropriate Chebyshev polynomial to produce 
accurate solution singular integral equations.  The method when applied to an example 
gives accurate result and demonstrates the general applications to singular integral 
equations. 
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1.0 Theory  
 The non-homogeneous volterra equation of the second kind of the form   
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is considered. The series solution of (1.1) consists, according to Waxwax and Khuri [4] and my 
unpublished work [1] in representing U(x) as a power series given by 
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Using the Taylor’s series expansion for f(x) and k(x, t) and assuming that the solution of (1.1) exists then 
the coefficient 0, ≥kak  is then determined by substituting (1.2) in (1.1) and using the Taylor’s series 

expansions of f(x) and ),( txk .  With this substitution, the difficult integral in the right-hand side of (1.1) 
will be transformed into ready solvable integrals.  Integrating the resulting classical integrals term by term 
and equating coefficients of similar powers of x from both sides of (1.1) leads to the determination of the 
coefficients 0, ≥kak  [2, 3, 4].  Having determined the coefficients, the solution to (1.1) is readily 

obtained in a power series form [3]. 
Example 1.1 
 Solve the integral equation 
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Solution 
 Inserting (1.2) into both sides of (1.3) leads to 
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Evaluating the integral on the right-hand side of (1.4) we get by using the first few terms of the equation 
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Equating the coefficient of similar powers of x yields 02 =ma for 0=m  
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Substituting (1.6) into (1.2) we obtain the solution U(x) in series form i.e. 
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In closed form )sin()( xxU = . 
Example 1.2 
 Solve the integral equation 
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Adopting the method above u(x) in closed form is given as 

     1)( xexU =      (1.9) 
 
2.0 Adoption of the method for singular integral equation 

In this section, the singular integral equation of the form 
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is considered. Here u(x) is now represented as 
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where )(tTi  is the Chebyshew polynomial of the first kind because the integration in (1.9) is in the region 

of [-1,  1].  So substituting (2.2) in (2.1) we have 
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For 3,2,1,0=i  we have 
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Expanding (2.4) we have  
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Integrating (2.5) leads to 
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Note     
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Using up to the third term of the Chebyshev polynomial and the above expansion we have 
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Equating the coefficient of x in (2.7) leads to the following equations 
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From (2.8),    
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So on substituting for K0,1,0, =iai  after integration we have 
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Here the level of accuracy for U(x) can be increased by admitting more terms in the expansion of 
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3.0 Conclusion 
 The approach presented in this manuscript produces solutions whose accuracy can be increased as 
desired and so it represents another accurate method different from the usual numerical methods for 
solving singular integral equation.  As shown above it is a general and simple method. 
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