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Abstract

In this paper, we investigate a dynamical system in a random setting of dual
randomness in space and time variables in which both the imperfection of the structure
and the load function are considered random , each with a statistical zero-mean .The
auto- covariance of the load is correlated as an exponentially decaying function of the
time variable .For simplicity, the normal displacement at a point on the shell surfaceis
discretized into a symmetric pre-buckling mode and a buckling mode that has both
axisymmetric and non-axisymmetric components. The imperfection is assumed in the
shape of the buckling mode with its axisymmetric and non-axisymmetric amplitudes
considered random-all with known first and second statistical moments. All these
random parameters induce some form of randomness on the normal displacement
whose mean square we shall first seek as a suitable statistical characterization of the
random process for determining the dynamic buckling load which is determined
asymptotically using perturbation methods.

1.0 Introduction

It has been observed that most of the existing investigatmrfarson the stability of elastic
structures in dynamical systems have primarily concendtrate@ deterministic loading histories which
include step loading, impulsive loading, rectangular loading, triandodaling, slowly varying time-
dependent loading and some other specific loadings such as tetsel foy Svalbonas and Kalnins [1] ,
among others. Very little, in our judgment, has been recorded on extehdifrgntiers of investigations
to the cases where the load or forcing function in a dynamiclibgcketting, is random — a practical
problem in man’s daily life. Such practical time-dependent rand@dings are many and varied and
include earthquake ground motion, wind gust, the launch phase derflight and pyrotechnic firing-
all which are treated as randomly non-stationary processes [2].

The analysis reported here however introduces randomness goranwgs of attack, first; it is
introduced through the time-dependent loading history which is cauetest a slowly decaying normal
“Gaussian” function of the univariate time variable. Secdand; further introduced by way of spatial
coordinates through the imperfection parameters whose vanuifwades, both axisymmetric and non-
axisymmetric, are considered random. In other word, randomnesgeeisntreduced in both space and
time parameters.
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The study reported here is an extension of that in [3] on the sancture. However, the analysis
recorded here greatly differs from that in [3] on two fromésnely (a) the admission of pre-buckling
inertia and (b) the admission of randomness on the imperfectiomthetiich were not treated in the
earlier consideration. Such inclusions significantly altertahematical sophistication of the present
analysis.

2.0 Mathematical formulation
The original equations were derived by Danielson [4] who dizeetihe normal displacement

W(x,t) at a point on the shell surface in the form

W(x, y,t) = &(T) W, (%, y) + & (F) Wi (x, y) + & (F) Wa(x,y) (2.1)
where W, ,W, and W, are the symmetric pre-buckling mode, the axisymmetric bucklinde and the
non-axisymmetric buckling mode respectively ( all functions pétial coordinates), and’o(f),fl(f)
and, Ez(f) are their respective time dependent amplitudes, wheris the time variable. He equally
discretized the imperfectidW(x, y) in the shape of the buckling mode, namely

W (x, y) = W (x, y)+ EW5(x, y) (2.2)

whereg?1 and g?z are their respective axisymmetric and non-axisymmetric amplitrdear study, both

&, and &, are here considered random parameters with certain imbuisticsththaracterizations such

as statistical means and second statistical moments, both até considered simultaneously non-
vanishing .By introducing equations (2.1) and (2.2) into the governingaiduiity equation and
equation of dynamic equilibrium, Danielson obtained and solved the fooveoupled equations |,
which we have here refined by the addition of uniformly viscouspilag terms on all the modes, and
this damping is taken proportional to the first degree of the velocity

1.d%, . d& ., _ (=

R Rk +& = AF(f) (23)
idifl+cd—{1+<r 1-&)-kE2+k,E2 = &8 24

af dt 2 0 dt l( 0) kl 1 252 150 ( )Here'
1d%, _dé _ _z
o Yo el &) aL =8 (25)
5(0):%?): 0,i=0,1,2 (2.6)

F(t~) is the forcing function or loading history which, in Danielson’s wm@ration, was the step load
characterized byF(t~):1 , while A is the load amplitude , nondimensionalized with respect to the
classical buckling loadl. .Thus , we haveO< A < A. <1, andc, is the damping coefficient such that
0<c, <<1.Similarly, w,, i = 0L2are the circular frequencies of the associated modes arslLieine

.

that —— <1, j=1,2 .We note thatk, > 0,k, >0 are small constants (compared to unity) and in our
-1

quest for solution, we are to determine a particular valué afiamely A, , called the dynamic buckling

load , satisfying the inequalit) < A, <Ag <A, <1,for which the structure buckles dynamically and

where A is the associated static buckling load. We defigeas the largest load parameter for which the
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solution of the problem (2.3)-(2.6) remaibheunded for all timet > 0.The determination ofl, easily
follows [3, 5-8] from the maximization

dA

2

doi;

Di is the maximum mean square displacement as a function ofvaneble and considered as a
suitable statistical characterization of the randomly induced alodisplacement .In his solution ,

Danielson, among other assumptions, neglected ﬁoﬁmd klff. However, Ette [7, 8] has shown that

some of Danielson’s assumptions were either superfluous or, tleesiowplified the problem. Hence ,
we shall retain all the terms in equations (2.3)-(2.6) .In ordergdhesmaximization (2.7), we shall first
determine, using perturbation methods, a uniformly valid asymp®tjression of the normal

displacemenl\N(f) as a function of time . We note, ab initio, that by the simgplibn that yielded
equations (2.3)-(2.6), the spatial variables have been explidittynated. We shall next determine the

=0 (2.7)where

maximum mean square normal displacemE@t,bearing in mind that the mean displacem\?!‘%t is
obtained fromW =< (W) > where the averaging proce{s{s--» is defined as

<<>> =E[-](), () =LimT - oo%]'(...)df (28)

and E[---] denotes the Mathematical expectation of the quantity in sduaeket [---] .Thus
,depending on the parameter inside the bragket, E[---] shall denote either the first or second
statistical moment of the random parameier for example , as inE[Z] =7, E[Z?] =272 The

averaging process in (2.8) is both possible and plausible letagandomness of the load function
F(t) is mathematically and statistically independent of tinel@enness of the imperfection parameters

& andé,.

3.0  Solution of the problem
We lett = w,t , whereby we get

d()_,,d0) () _ .0°() (32)

dt dt ' dt? dt’
On substituting (3.1) into (2.3)-(2.6), and simplifying, we get
o s25% g a) (22
O(Ijtfl #2077 St g (P - P2 Je -kl + i) = PEE, (33)
125 S g Q00 )+ Q06 = QO (34)
5(o)=%t(o)= 0,i=0,1,2 (3.9
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where P:(ﬂj ,Q:(%j ,Cotty =20 ,0<P<1,0<Q<1,0<d<1, f(t)= F(Lj
@, @, @,

Here f(t)is a zero-mean Gaussian stationary random dynamic load functitn,ewponentially

decaying autocorrelatiofir, (t)= Roe_”m, where 0< R, <1, 0<a <1 .The solution of (3.2) , using

(3.5)fori =0, is
Ajh ~7)dr ,h(r)=2 . 9=4/0-5) (3.6)
On substituting (3.6) into (3.3) foo(t) , we have
% +205 PZ% +&(PP-06G() )+ P2~ k& +k,&2)=0ZG(t) (37)
ddztfz " 25Q2% + &,(Q*-ORG(1))+ Q%¢, =0REG() (38)
i3 (o)=%t(o)=o i=1,2 (3.9 e
0= (%jz 0<0<1, R= ( j =J:h (310)
&)= 2/7 0, &)= ;4 (1)t (3.11)
On substituting (3.11) into (3.7)-(3.10), we have the following equations
M7, s% +20 PZ% +P, = &G (3.12
M7, = G, + P2 (ka7 — k.72 (313
NG, = ddii - 25Q2% +Q%, =ERG (314)0n
N, = R(,G-Qnd, (315)
qi(o):d”di_t(‘”:zi(o):%(‘”:o,izl,z (3.19

solving (3 12), we have

Equ G(t-7)dr ,q(r)= e_zzrsint//r ,w:Pyll—(5P2)2,0<(5P2)<1 (3.19we next

solve (3. 14) and get
szzj Glt-7)dr, p(r) = e_(:rsinHT,H:Q\/l—(sz)z 0<(6@)<1  (3.18we

expect the solution of (3.13), fay, (t) , to be uniformly valid on substituting for bom(t) and Zl(t) .
Thus, on solving (3.13), we have
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jq G(t-1),(t-7)d r+Pz{kqu(r)qf(t—r)dr—kzjq(r)if(t—r)dr (319)on

substituting forlyl( ) and Zl(t) in (3.19) from (3.15) and (3.18) and simplifying, we have

n,(t) =7 (1) + () +n(t) (3.20a)
where
t (t-1y) (t-1y) (t-1-7)
=& | f | aghhtlt-r,-7)ft-1-7,-7.)dddd, (32wm)
0 0

t (t_rl) (t-1)) (t-1,-7,) (t-17,)

P0=P&E[ [ [ [ [agwhhflt-7,-1,-7,)f(t-7,-7,-7)d,-d; (3.204
0 0 0 0 0
(t-1y) (t-11) (t-1,-75) (b-13-75)

.[ J. J. J. Oapzpshzthsf(t_rl_Tz—T4)f(t—T1—T3—r5)x

0 0 0

d--
d,

n(t) :_szz( zRZ) 'c[ where
! (3.204
h =h(z,), p, =plz,).a, =a(r).d, =d(r),i1=1.2.3;
The solution of (3.15) is
Zz(t) I ( )Zl(t_ -Q _[ T)’71 th_ ) (3'2])0n
0
further simplifying equation (3.21), we have

&ft)=2(t)+ () (3222)
ot (t-r) (t-r) (t-r-72)
Zgl)(t):R‘lEz_[ _[ _[ j plpzf]sh4f(t—T1—T2—T4)f(t—T1—T3)d1---d4 It
0 O 0 0
t (t-n) (t-n) (t-n7) (t-773)

Zgz)(t):_QzRZglng.J. J. '[ '[ ploep3h4hsf(t—r1—r2—r4)f(t—r1—r3—r5)d1-~-d5(3.2293
follows that ot i

wt) = &(t)+ &) =0 (7 + C ) O (09 472 +7 + 70+ 22+ (323)we
shall next determine the mean normal displaceMTém«W(x,t) >> and now note thaﬁi) the averaging

process , namel%(---», is distributive over individual terms in (3.23) an(icﬂ) the upper limit of the
averaging process with respect to time is hereafter evaluatgthay ,using (2.8). We recall that
R (r)=Re“!"=(f(t)f(t+1)),0<a<1,t20 (3.24s0 that at

7=0, we have R, (0)=R, :<(f (t))2> , which is the variance of the random load function. The zero-

mean imperfection is characterized B[&,]=E[£,]=0. However , non-vanishing statistical second
order moments are characterized BY&,*] =r, ,E[&?] =1, ,0<r1,r, <1, while the zero-mean load

function is characterized b§/f (t> =0.0n executing a term-by-term evaluation<<§w>>, using (3.23),

we have , as the first term, the te((vy1>> and second ter(ﬁ(l» simplified respectively to give

Journal of the Nigerian Association of Mathematical Physics Volume 14(May, 2009) 9 - 20
Randomly imperfect spherical cap A. M. Ette J of NAMP



(1) =58 [Janfti-r ) ldd, =0 ¢)) =ReE@)[an(h-n-r))dd=0.  (3.250)

The actual evaluation of terms I<’(W>> shows that every other term vanishes exce{;@t]gz)» and

<</7£3)>> whose values we now evaluate as follows:

<<’7£2)>> = P2k1E[<?12] TT an2q3h4h5< f (t LT T4)f (t LTI T5) > d;---d

Y
fiveintegrals

R (3.25b)
= P2k1 jj Guq2q3h4thf (Tz L i P Ts) dl"'ds = P2k1r1R3T2T4T5T6T7
fi(\)/einte(;rals
where
_ 7 _ 1 P\ ar g —
T2 —-([Q(Tbr = 52 +[//2 ) T4 —-([h(z—)e dr —m (3.25¢)
< ? 1
T. = e’’'dr = a<OoP?, T.=|h(r)"dr=—~—— ,a<9 (3.25d
5 J(;CI(T) r (5P2—0)2 e a 6 !: (r)er7dr G-af+ ¢ a<o ( )
2 1
T.=|qglr)e“"dr = (3.25€)
' {q( ) (5P2+a)2+(,1/2

We also have

<<’7£3)>> = _R2R4k2E [C?zz] _[ : _[ 0, P, p3h4hs< f (t LTI~ T4)f (t S S Ts) >d1' ’ 'ds
0 0
five integrals
= _P2R4k2r2 J- ) J- G, P, p3h4h5Rf (Tz T, Ts)dl' ) ’d5 = _P2R4Rok2r2T2T4T6T8T9 (3263) It
0 0

—
five integrals

where
°° AN 1
T, = | plr)e”"dr = a<dQ?, T,=|plr)edr = ,(3.26
8 .([p() (5Q2—a)2+92 0 .([p() (5Q2+a)2+82 (3.261)
follows that
(wlt))) = RP?CF [ kAT, TTTT, - kR, T,TTLT, (327)In  the

above evaluation, we have used the assumptionBtiéié,] = E[&,1E[€,] .which implies thaté, and
g?z are statistically independent.
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3.1 Maximum square displacement
The autocorrelatiorRW(tl,tz) of the displacememv(t) is defined as

R(tta) = (( ) - ((wdt))) Hdeo) - ((w(t))) 1)) (3.284)
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It is also defined as
R(r) = ({ {wle) - ((w(eh) Honde + ) ((we + 7)) ) (3.28b)

Thus whenr =0, we have the mean square displacen’@?r(lt) as

0°(t) = R,(0) = ({fwlt))) ~ (wht) )’ (3.:29)
In determining Dz(t), we substitute into (3.29) and note that we only need to eva{éz{w(t)}z»
because the second term , nan(e{kw(t) >>2 is obtainable from (3.27). Using (3.23), we obtain
({wl))) =( (T (7 + 2061+ 2 )+20F (g + il + 1+ 4P

+Z/721+1/722)+1/723 +le1+le2) [[ 0% 2% %+ 70 4 727+ (3.30)
w2 0 (2 47 + 70+ Z2)+ 2 + 70 422 )2 (Z + )+ ) )+

We now evaluate each term in (3.30).By omitting tentativedyrttultiplicative factordl ,i =2,3,4 in
the terms in (3.30), we have

<<’712>>=E[<?12] I"'I q1q2h3h4<f(t_Tl_Ts)f(t_Tz_T4)>d1"'d4

N
four integrals (331)
=n J.j &,9,hsh, R, (Tl tT;—T,~ )d -d, = rlRoTTzT
0 0
four integrals
2<<’71(2>> =2E [gl]E [‘?2] JJ G PP, R, (Tl BRI i T4) =0 (3:32)
foir inte(;rals
((¢2))=EIEIR* [--[ pphhR (5 +7,-1,-7,)did, = ,RRTTLLT, (3.33)
0 0

—
four integrals

We note that virtually all the terms of ordétin (3.30) vanish on evaluation. A typical term bistorder
is

2<<’71’72>>:2E[§_(12] ]2]2 qll‘boeq4l‘g|‘}3<f(t—Z'l—l'z)f(t—T3—T6)f(t—T3—T4—T6)>dl-~-d6 (3.34a)

A
sixintegrals
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To evaluate this and other similar terms of thideor we note, as in [9, page 343, equations (7~28)
(7.29b)], that, ifZ; = f, =(f,), where f, = f(t;), then

(2.2,Z,)= 3| M(zz) )= S(zz)(zz,)(z.2.)) (3.34b)

all pairs all pairs

for j2k#1 £ p, etc., and

(ZZ,Zy1) =0 (3.34¢)

This means that, in (3.34b), the number of averages pairs is equal to the number of different svay
that 2m different variables in

|
can be chosen in pairs. Of course, this numbexayfs is equal tm .Thus if, for

2"m!

27,7

2m

example,m=2 (as in our case), then, there are three differays in which the produc{tZIZZZSZ4>
factors out into the following three co-variances

(2.2,2,2,)=(2,2,)(Z,Z,) +(Z,Z,)(2,Z,) +(Z,Z5)(Z,Z,) (3.34d)

However ,if m is odd, (for examplén =1), then from (3.34c), we have a product of thrgleies, namely
(Z,Z,Z,) .to be chosen in pairs and we thus have

(2,2,2,)=0 (3.34e)
On applying (3.34e) to (3.34a), we observe thathis casen=1 andz, = f(t—-7,-1,), Z, = f(
t-r,-15), Z = f(t-r,—-7,—-7s) and therefore we have(f(t—rl—rz)f(t—r3—rﬁ)

f (t —T;-T,— rﬁ) > =0. Therefore we hav§<</71/72 >> =0. Alternatively, we can write the following
<f(t_Tl_rz)f(t_rs_Te)f(t_rs_u_Te)>:

(tt-1,-1,)f(t-1,-1,) ) f{t-715-7,~1,)) ) =0

where (3.35) vanishes becaL(sb(t 7,7, T6)> > =0. We now simplify terms of ordér*in (3.30)

(3.35)

and the first terrr<</7£1) 2>> simplifies to
<<’7£l) 2>> =E [4?12] Oj: : T q1q2h3h4q5q6h7hB< f (t - Ts)f (t LT T4)x
0 0 (3.36a)

\_V_J
eight integrals
f(t —Is- T7)f (t ~Is 71 _Ts)dl"'ds
We easily recognize (3.36a) as a four-point cotimavherebym=2 (as in (44d)).Thus, as expected,
(3.36a) factors out into the following three coaages

<<'7gJ 2>> = E[Elz] T ) ]3 qlqzm‘hosckmrb[Rr (Ts —0 _T4)Rf (T7 I~ Ts) +R (Tl thI _7-7) X

—
eightintegrals

R(T1+T2+T4—Z’5—Z'6—T7)+Rf(l'1+l'3—TS—TG—Ts)Rf(Tl+T2+T4—T5—T7)]d1-~-d8

The first iterated integral in (3.36b) is easilyrfpemed to give R2r,T.T, T T, while the second and

(3.36b)

third integrals in (3.36b) have the same valuewaiuation and each giveR’r, T T, T T, T,,T,,, where
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. 1 1
T,=|ge*"dr= , T..=|ge**"d 20<0P? (3.36¢C
. {q Pt iy eyt jq (OGP 20+ (8359
Thus, we haven << >> = R(TZT2T2T, + 2T AT, T 2T, T,T,,) (3.36d)

We now evaluate the ter<r</7§2) 2>> as

<<’7£2) 2>> = P4k12E[4?14] T ’ T qlqzqshtrkoewoerbh& f (t L T4)f (t LT Ts) X

— (3.378.)
tenintegrals
f(t_TG_T7_T9)f(t_Ts _Ts_rlo)>d1"'d10
= 3k12(E[<?12] )2 J. ) I Uﬂ%%h&%%%mﬂo[ R; (Tz t, T TS)RT (T7 Tl TlO)
0 0
tenintegrals
Ry (Tl PRt Iy TQ)R1 (Tl REERE I TlO) (3.37b)

R (41,41, -1y~ 1,~T )R (G, + 1, + 1, -1, -1, -1,) | d-d
The first integral in (3.37b) has the val@P *k>RZr’T, T T,/ T, T,/ while the second and third

in (3.37b) are equal on evaluation and each of tiseavaluated to giv8P K r*R*T/T T T T T, .
Thus we have

2
<<’7 2(2) >> = 3P2r12k12 R{? [T22T42T52T62T72 + 2T, 42T52T52T62T72T12] (3.37¢)

We next evaluate the ter«lyf’)z» in the following way:

<< >> P“szBE[é]j joupngh&qepypsmho( (t-1,-1,~1,)f(t-1,~1,~1,)

tenintegrals
f(t—TG—T7—T9)f(t—T6 T10)>d d:LO (3383)
:3k§(E[<?22] )2 J- ’ .[ QP p3h4i'gq6p7p8k5n0[ Rf (Tz R P TS)Rf (T7 Ty~ T~ TlO) On
0 0
tenintegrals
+Rf (T1+T2+T4_T6_T7 _TQ)Rf (T1+T3+T5_T6_T8_T10)
+Rf (Tl T+, T T _TlO)Rf (Tl LA T, _Tg)] dl"'dlo (338))

evaluation, the first iterated integral in (3.38yes 3Pk R%r/R:T/ T/ T,/ T, , while the second and

third integrals in (3.38b) are equal with each leated as3P*K R°r/RT T T T/T,,T,,. Thus, we
have

2
<< Q >> = 3PUIKZREZRE [ TRT2T2TZ + 2T 2T2T2T2T, T, | (3.380)
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We next evaluate the ter<»<( 2(1)2 > as

((e))=REE [-[ poanpRn(f-n-n-n)i ()

H_/
eight integrals

ft-7,-7,-7,)f(t-75-7,) ) dy-dg

(3.39a)

I I plthSh p5p6h7h8[R I,+7,— )Rf (T8+T6_T7)

H—’
eight integrals

+ R (r,+1,+1,-1,-1,-1, )R, (1, + 1, -1, - T,) (3.39b)
+Rf (T1+7-2 tTr,~ T _T7)Rf (7-1+T3_7-5 Tg TB)]dl 'ds

The first term in (3.39b) has the vali$ R°r, T/ T/ T T,

T, = T p(r)dr :(é'—Q212+W
0

While the second and terms in (3.39b) have equdleveon determination, each of value
RCR®r, T/ T T,T,T,,T,; where

where (3.39¢)

© 1 0 1
T,= e®'dr = -——,20<0 2;T = e dr=0— - (339d)
14 l‘p (5Q2—2a)2+6’2 QT l‘p (5Q2+2a)2+92
Thus, we have
<<Z§1)2>> Rer RE(TZT2T2TE + 2T 2T 2T, T T, o) (3.39%)

The term<<Zz(2) 2>> is next evaluated as

<<Z£2) 2>> = (Q@4 E[glz] E[C?zz] ]: ) ]: PG %h4hsp6q7 pshah_Lo< f (t Lo T4)f (t LT T5)><

0 o (3.40a)
tenintegrals
( Tg) f (t T6 10) > d le
QR nr, j j P4, psh hsp6q7 pshahlo[R T T, 171, )Rf (T7 Ty —Tg— TlO)
0 0
ten integrals
+R; (Tl T, T~ TQ)Rf (Tl th T~ T T~ TlO) (3.40b)

+Rf(T1+T2+T4—T6—T7—rg)Rf(rl+r3+r5—r6—r7—r9)]dl...dlo
The first integral in (3.40b) is evaluated &%(QR)‘r,r,T2T2T2T2T2, while the second and third

integrals in (3.40b) are equal on evaluation, esfchalue R?(QR)'r,r,T2T2 T2T2T,T,T, ... Thus we
have
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<<ZZ(2) 2>> =Ry(QR)"rr (-I-321—42-'_62-'_72-'_82 + 2T42T62T72T8T9T14T15) (3.40c)

We now display a typical term of ord&F that multiplies the number 2 inside the inner ohaiacket
{} in equation (38), and show why this and all otsiemilar terms will vanish on evaluation. One of

such terms is’2<</7£1)/7£2)>> simplified as follows

2<<’7£1)’7£2)>> = szklE[zls] T : T qquhSh4qSoﬁq7hBh)< f (t -nL- Ts) f (t LI Z'4) X

—— (3.41a)
nine |ntegras
f(t—Z'5—TG—Tg)f(t—l's—l'7—l'g)>d1-~-d9
We know that
E[&’]1=E[&*]E[&]=0 (3.41b)

where (3.41b) follows becausE[g?l] =0. Therefore2<</7£1)/7£2)>> = 0.Every other term in the inner

chain bracket vanishes on similar circumstancethdtefore follows that the maximum mean square
displacement]? now takes the form

02 =% C,+I' C, +O ) (3.42a)
C, =RGC, .C, =| nT,T2T, +r,RT,T,T,T,] , C, = R’C, (3.42b)
C4 = l r1T22T42T52T6 + 2T42T5T62T12Tl3 + 3P4 2r12{ T22T42T52T62T72 + 2-I-42T52-|-62T72-I-:|.2 }
+ PRI TATATAT2TY + 2T 2T2T2T 2T, T, b+ RO{T2TATATE + 2T, T2, TT, T} (3.420)

2
+ (Q R)4 rer{ T32T42T62T72T8 + 2T42-|-62-|-72-I-B-I-Q-I-l4 } - (@J
where((w(t) )) is as obtained in (35) .
3.2: Dynamic buckling load A,

The dynamic buckling loadl is obtained from the maximization (2.7), and thealgrocedure
is to first reverse the series (3.42a) so that aveh

P=d,02 +d,(02f +--- (3.43a)
By substituting for(]2 from (3.42a-c) into (3.43a) and equating the doiefiits of (¥ and[1*, we get
respectively d, = i and d, = —C—g (3.43b)
Cl Cl
The maximization (2.7) easily follows directly fraf®.43a), to give
2
P2(h)= -2 = & (3.43c)
2d, ~ 2C,
If we evaluate (3.43a) at = A, we get 0= 4% (3.43d)
2
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wherel], is the value ofl at A = A, .0On substituting foiC, andC, in (3.43d) from (3.40a,b), we have

)l

4.0  Analysis of result and conclusion
Since the right hand side of equation (3.44) igpahdent of the load parametds, the result
gives a straightforward expression for determirilrggdynamic buckling load, . We easily observe that
A1
the result is of ordeR, 2, whereR, is the variance of the random load

By letting k;, =0, andk, =0 in two separate instances, we obtain the effefctse absence of each of

the quadratic nonlinearities, namelg, & and k,&7, that appear in the formulation of the problem. We
note that the effects of the coupling between tekling modes are obtained from the terms multipgyi
rr, in (3.44). Thus, we readily observe that the atffeof the coupling between the buckling modes is

possible only if we do not neglect any of the infipetion parameters because neglecting any of the
imperfection parameters automatically implies netiyig the effects of the coupling of the mode ikan

the shape of the neglected imperfection, with ahgiomode- be it buckling mode or pre-buckling mode
We strongly stress that the result is asymptoticadilid for, 0<c<1, 0<0<10<R<1,0<Q<1

and 0 < P <1,among other conditions .It is obvious that theadyit buckling loadA,, depends ,among

other things, on the ratios of frequen |ecsdl—j and(&j :

Wy Wy
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