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Abstract 
 

In this paper, we investigate a dynamical system  in a random setting of dual 
randomness in space and time variables in which both the imperfection of the structure 
and the load function are considered random , each with a statistical zero-mean .The 
auto- covariance of the load is correlated as an exponentially decaying function of the 
time variable .For simplicity, the normal displacement at a point on the shell surface is 
discretized into a symmetric pre-buckling mode and a buckling mode that has both 
axisymmetric and non-axisymmetric components. The imperfection is assumed in the 
shape of the buckling mode with its axisymmetric and  non-axisymmetric amplitudes 
considered random-all with known first and second statistical moments. All these 
random parameters induce some form of randomness on the normal displacement  
whose mean square we shall first seek as a suitable statistical characterization of the 
random process for determining the dynamic buckling load which is determined 
asymptotically using perturbation methods. 

 

 
1.0 Introduction 

It has been observed that most of the existing investigations so far on the stability of elastic 
structures in dynamical systems have primarily concentrated  on deterministic loading histories which 
include step loading, impulsive loading, rectangular loading, triangular loading, slowly varying time-
dependent loading and some other specific loadings such as those treated by Svalbonas and Kalnins [1] , 
among others. Very little, in our judgment, has been recorded on extending the frontiers of investigations 
to the cases where the load or forcing function in a dynamic buckling setting, is random – a practical 
problem in man’s daily life. Such practical time-dependent random loadings are many and varied and 
include earthquake ground motion, wind gust, the launch phase of missile flight and pyrotechnic firing- 
all which are treated as randomly non-stationary processes [2]. 

The analysis reported here however introduces randomness on two prongs of attack, first; it is 
introduced through the time-dependent loading history which is correlated as a slowly decaying normal 
“Gaussian” function of the univariate time variable. Second, it is further introduced by way of spatial 
coordinates through the imperfection parameters whose various amplitudes, both axisymmetric and non-
axisymmetric, are considered random. In other word, randomness is here introduced in both space and 
time parameters. 
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The study reported here is an extension of that in [3] on the same structure. However, the analysis 

recorded here greatly differs from that in [3] on two fronts namely (a) the admission of pre-buckling 
inertia and (b) the admission of randomness on the imperfection-the two which were not treated in the 
earlier consideration. Such inclusions significantly alter the mathematical sophistication of the present 
analysis. 
 
2.0 Mathematical formulation  

The original equations were derived by Danielson [4] who discretized the normal displacement 
( )txW ,  at a point on the shell surface in the form  

( ) ( ) ( ) ( ) ( ) ( ) ( )yxtyxtyxttyxW , W~, W~, W~,, 221100 ξξξ ++=   (2.1) 

where 10 W, W  and 2W are the symmetric pre-buckling mode, the axisymmetric buckling mode and the 

non-axisymmetric buckling mode respectively ( all functions of  spatial coordinates), and ( ) ( )tt ~ , ~
10 ξξ  

and, ( )t~2ξ  are their respective time dependent amplitudes, where t~  is the time variable. He equally 

discretized the imperfection ( )yxW ,  in the shape of the buckling mode, namely 

( ) ( ) ( )yxWyxWyxW ,,, 2211 ξξ +=     (2.2) 

where 1ξ  and 2ξ  are their respective axisymmetric  and non-axisymmetric  amplitudes. In our study, both 

1ξ  and 2ξ  are here considered random parameters with certain imbued statistical characterizations such 
as statistical  means and second statistical moments, both which are considered  simultaneously non-
vanishing .By introducing equations (2.1) and (2.2) into the governing compatibility equation  and 
equation of dynamic equilibrium, Danielson obtained  and solved the following  coupled equations , 
which we have here refined by the addition of uniformly viscous damping  terms on all the modes, and 
this damping is taken proportional to the first degree of the velocity 
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Here, 

( )tF ~  is the forcing function or loading history which, in Danielson’s  consideration, was  the step load  

characterized by ( )tF ~ =1 , while λ  is the load amplitude , nondimensionalized with respect to the 

classical buckling load Cλ .Thus , we have  10 ≤<< Cλλ , and 0c  is the damping coefficient such that 

10 0 <<< c .Similarly, i ω , 2,1,0=i are the circular frequencies of the associated modes and are such 

that  1,2j , 1
1

=<
−j

j

ω
ω

.We note that 0k , 0 21 >>k  are small constants (compared to unity) and  in our 

quest for solution, we are to determine a particular value of λ , namely Dλ , called the dynamic buckling 

load , satisfying the inequality 10 ≤<<< CSD λλλ ,for which the structure buckles dynamically and 

where Sλ  is the associated static buckling load. We define Dλ  as the largest load parameter for which the 
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solution of the problem (2.3)-(2.6) remains bounded for all time 0~ >t .The determination of Dλ  easily 
follows [3, 5-8] from the maximization 

( )7.202 =
∇ad

dλ
where 

2
a∇  is the maximum mean square displacement as a function of time variable  and considered as a 

suitable statistical characterization of the randomly induced normal displacement .In his  solution , 

Danielson, among other assumptions,  neglected  both 1ξ  and 2
11ξk . However, Ette [7, 8] has shown that 

some of Danielson’s assumptions were either superfluous or, they over simplified the problem. Hence , 
we shall retain all the terms in equations (2.3)-(2.6) .In order to use the maximization (2.7), we shall first 
determine, using perturbation methods, a uniformly valid asymptotic expression of the normal 
displacement ( )tW ~  as a function of time . We note, ab initio,  that by the simplification that yielded 
equations (2.3)-(2.6), the spatial variables have been explicitly eliminated. We shall next determine the 

maximum mean square normal displacement 2
a∇ ,bearing in mind that the mean displacement W

~
 is 

obtained from  W 
~ =W , where the averaging process L  is defined as 

( ) ( )8.2~ 
T
1

 T   ,  ][ 
0

tdLimE
T

∫∞→≡= LLLLL  

and ][ LE  denotes the Mathematical  expectation of the quantity in square bracket ][L  .Thus 

,depending on  the parameter inside the bracket ][L , ][ LE  shall denote either the first or second 

statistical moment of the random parameter Z , for example , as in 22 Z
~

][   , Z
~

][ == ZEZE .The 
averaging process in (2.8) is both possible and plausible because the randomness of the load function 

( )tF ~  is mathematically  and statistically independent of the randomness of the imperfection parameters 

1ξ  and 2ξ . 
  
3.0 Solution of the problem 

We let tt ~
0 ω= , whereby we get 
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On substituting (3.1) into (2.3)-(2.6), and simplifying, we get 
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where ( ) 
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Here ( )tf is a zero-mean Gaussian stationary random dynamic load function, with exponentially 

decaying autocorrelation ( ) t 
0

α−= eRtR f , where 10   ,10 0 <<<< αR  .The solution of (3.2) , using 

(3.5) for 0=i , is 
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On substituting (3.6) into (3.3) for ( )t0ξ  , we have 
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We let 

( ) ( ) ( ) ( ) i

i
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i tttt ∈=∈= ∑∑

∞
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∞

= 1
2

1
1    , ζξηξ                 (3.11) 

On substituting (3.11) into (3.7)-(3.10), we have the following equations 
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On 

solving (3.12), we have  

( ) ( ) ( ) ( ) ( ) ( ) ( )3.17       1P 0 , P 1 ,    sin ,  d 2

0

22
P 

11

2

<<−==−= ∫
−

δδψτψ
ψ

ττττξη
τδt

P
e

qtGqt We next 

solve (3.14) and get 

( ) ( ) ( ) ( ) ( ) ( ) ( )3.181Q 0 , Q 1Q ,   sin ,d 222
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−

∫ δδθτθ
θ

ττττξζ
τδ Qt e

ptGpRt We 

expect the solution of (3.13), for ( )t2η  , to be uniformly valid on substituting for both ( )t1η  and ( )t1ζ  . 
Thus, on solving (3.13), we have 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )19.3     Pd 
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substituting for ( )t1η  and ( )t1ζ  in (3.19) from (3.15) and (3.18) and simplifying, we have 
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The solution of (3.15) is 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∫∫ −−−−−=
tt

ttpQtGtpRt
0

11
2

0

1
2

2 3.21d ττζτητττζτζ On 

further simplifying equation (3.21), we have 
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It 

follows that 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )23.32
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1121 L+++++∈++=∈+= ζζηηηζηξξ tttw We 

shall next determine the mean normal displacement ( ) ,
~

txWW =  and now note that ( )i  the averaging 

process , namely L , is distributive over individual terms in (3.23) and ( )ii  the upper limit of the 

averaging process with respect to time is hereafter evaluated at infinity ,using (2.8). We recall that  

( ) ( ) ( ) ( )3.240 t,  10 ,  tf    
0 ≥<<+== − αττ τα tfeRRf so that at 

0=τ , we have  ( ) ( )2
0 )(0 tfRR f ==  , which is the variance of the random load function.  The zero–

mean imperfection is characterized by 0][ ][ 21 == ξξ EE .  However , non-vanishing statistical second 

order moments are characterized by 1,r0 , ][ E , ][ E 212
2

21
2

1 <<== rrr ξξ  , while the zero-mean load 

function is characterized by 0( =tf .On executing a term-by-term  evaluation of w , using (3.23), 

we have , as the first term, the term 1η  and second term 1ζ  simplified respectively to give 
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The actual evaluation of terms in w  shows that every other term vanishes except  ( )2
2η and 
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2η  whose values we now evaluate as follows: 
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follows that 

( ) [ ] ( )27.3  986422
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above evaluation, we have used the assumption that ][ E ][ ][ 2121 ξξξξ EE = ,which implies that 1ξ  and 

2ξ  are statistically independent. 
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3.1 Maximum square displacement 
 The autocorrelation ( )21,ttRw  of the displacement ( )tw  is defined as  

( ) ( ) ( ){ } ( ) ( ){ }          , 221121 twtwtwtwttRw −−=             (3.28a) 
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It is also defined as 

( ) ( ) ( ){ } ( ) ( ){ }     τττ +−+−= twtwtwtwRw             (3.28b) 

Thus when 0=τ , we have the mean square displacement ( )t2∇  as  
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In determining ( )t2∇ , we substitute into (3.29) and note that we only need to evaluate ( ){ }2  tw  
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 tw , is obtainable from (3.27). Using (3.23), we obtain 
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We now evaluate each term in (3.30).By omitting tentatively the multiplicative factors 2,3,4 , =∈ ii  in 
the terms in (3.30), we have 
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We note that virtually all the terms of order 3∈ in (3.30) vanish on evaluation. A typical term of this order 
is 
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To evaluate this and other similar terms of this order, we note, as in [9, page 343, equations (7.28) – 

(7.29b)], that, if jjj ffZ −= , where ( )jj tff = , then  

( ) ( )∑∑ ∏ ==
pairs 

qlj
pairs 

j 221  ZZ Z  Z 
all

spk
all

km ZZZZZZZ LL              (3.34b) 

for ,plkj ≠≠≠ etc., and 

01 221 =+mZZZ L                (3.34c) 

This means that, in (3.34b), the number of averages over pairs is equal to the number of different ways 
that m2  different variables in 
 
 

mZZZ  221 L  can be chosen in pairs. Of course, this number of ways is equal to 
( )

! 2

! 2
m m

m
 .Thus if, for 

example, 2=m  (as in our case), then, there are three different ways in which the product 4321 ZZZZ  

factors out into the following three co-variances 

    4231413243214321 ZZZZZZZZZZZZZZZZ ++=              (3.34d) 

However ,if m  is odd, (for example m =1), then from (3.34c), we have a product of three values, namely 

321 ZZZ  ,to be chosen in pairs and we thus have  

0321 =ZZZ                (3.34e) 

On applying (3.34e) to (3.34a), we observe that in this case, 1=m  and Z1 = f( 21 ττ −−t ), Z2 =  f(

63 ττ −−t ), Z3 = f( 643 τττ −−−t ) and therefore we have ( ) ( )6321 ττττ −−−− tftf  

( ) 0 643 =−−− τττtf .  Therefore we have 02 21 =ηη .  Alternatively, we can write the following 
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where (3.35) vanishes because ( ) 0  643 =−−− τττtf .  We now simplify terms of order 4∈ in (3.30) 

and the first term ( ) 2 1
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integrals  

0 0

2
1

2 1
2

d 

][ 

dtftf

tftfhhqqhhqqE

eight

L

321

L

τττττ

τττττξη

−−−−−

×−−−−−= ∫ ∫
∞ ∞

            (3.36a) 

We easily recognize (3.36a) as a four-point correlation whereby 2=m  (as in (44d)).Thus, as expected, 
(3.36a) factors out into the following three covariances 

( ) ( )[ ( ) ( )

( ) ( ) ( ) ] 817542186531765421

753186742387654321

integrals  

0 0

2
1

2 1
2

d  

][ 

dRRR

RRRhhqqhhqqE

fff

fff

eight

L

321

L

ττττττττττττττττ

ττττττττττξη

−−++−−−++−−−++

×−−++−−−−= ∫ ∫
∞ ∞

(3.36b) 

The first iterated integral in (3.36b) is easily performed to give 6
2

5
2

4
2

21
2
0 TTTTrR  while the second and 

third integrals in (3.36b) have the same value on evaluation and each gives 13127
2

65
2

41
2
0 TTTTTTrR , where  
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2
222

0

  2
13222

0

  2
12  2 , 

)2 (

1
  , 

)2 (

1
P

P
dqeT

P
dqeT δα

ψαδ
τ

ψαδ
τ τατα <

+−
==

++
== ∫∫

∞∞
−     (3.36c) 

Thus, we haven  ( ) ( )13126

2
65

2
46

2
5

2
4

2
2

2
01

2 1
2 22 TTTTTTTTTTRr +=η             (3.36d) 

We now evaluate the term ( ) 2 2
2η  as 

 
 

( ) ( ) ( )

( ) ( ) 1011086976

53142110987654321

integralsten  

0 0

4
1

2
1

42 2
2

d  

 ][ 

dtftf

tftfhhqqqhhqqqEkP

L

321

L

ττττττ

ττττττξη

−−−−−−

×−−−−−−= ∫ ∫
∞ ∞

           (3.37a) 

( ) ( ) ( )[

( ) ( )
( ) ( ) ] 1019765311086421

1086531976421

10897534210987654321

integralsten  

0 0

22
1

2
1

d   

   ][ 3

dRR

RR

RRhhqqqhhqqqEk

ff

ff

ff

L

321

L

ττττττττττττ
ττττττττττττ

ττττττττξ

−−−++−−−+++

−−−++−−−+++

−−+−−+= ∫ ∫
∞ ∞

       (3.37b) 

The first integral in (3.37b) has the value 2
7

2
6

2
5

2
4

2
2

2
1

2
0

2
1

43 TTTTTrRkP  while the second and third 

in (3.37b) are equal on evaluation and each of them is evaluated to give 12
2

7
2

6
2

5
2

5
2

4
22

1
2
1

43 TTTTTTRrkP o  . 

Thus we have 

][ 12
2

7
2

6
2

5
2

5
2

4
2

7
2

6
2

5
2

4
2

2
2
0

2
1

2
1

22 )2(
2 2  3 TTTTTTTTTTTRkrP +=η             (3.37c) 

We next evaluate  the term ( ) 2 3
2η  in the following way: 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )[

( ) ( )
( ) ( ) ] ( )bdRR

RR

RRhhppqhhppqEk

adtftf

tftfhhppqhhppqERkP

ff

ff

ff

38.3d   

   ][ 3

38.3d  

 ][ 

1019765311086421

1086531976421

10897534210987654321

integralsten  

0 0

22
2

2
2

1011086976

53142110987654321

integralsten  

0 0

4
2

82
2

42 3
2

L

321

L

L

321

L

ττττττττττττ
ττττττττττττ

ττττττττξ

ττττττ

ττττττξη

−−−++−−−+++

−−−++−−−+++

−−+−−+=

−−−−−−

×−−−−−−=

∫ ∫

∫ ∫

∞ ∞

∞ ∞

On 

evaluation, the first iterated integral in (3.38b) gives 2
9

2
8

2
5

2
4

2
0

2
2

82
2

43 TTTTRrRkP , while the second and 

third integrals in (3.38b) are equal with each  evaluated as 2
5

2
4

2
0

2
2

82
2

43 TTRrRkP  1312
2

9
2

8 TTTT .  Thus, we 

have  
( ) ][  2  3 1312

2
9

2
8

2
5

2
4

2
9

2
8

2
5

2
4

2
0

2
2

82
2

42 3
2 TTTTTTTTTTRrRkP +=η              (3.38c) 
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We next evaluate the term ( ) 2 1
2ζ  as  

( ) ( ) ( )

( ) ( ) 8175865

3142187654321

integralseight  

0 0

2
2

82 1
2

d  

 ][ E 

dtftf

tftfhhpphhppR

L

321

L

τττττ

τττττξζ

−−−−−

×−−−−−= ∫ ∫
∞ ∞

(3.39a) 

 
 
 

( )[ ( )

( ) ( )
( ) ( ) ] 818653175421

7531865421

76834287654321

integralseight  

0 0

2
8

d  

  

 r 

dRR

RR

RRhhpphhppR

ff

ff

ff

L

321

L

ττττττττττ
ττττττττττ

ττττττ

−−−+−−+++

−−+−−−+++

−+−+= ∫ ∫
∞ ∞

   (3.39b) 

The first term in (3.39b) has the value 2
9

2
6

2
4

2
32

82
0 TTTTrRR  

where    ( ) ( ) 222
0

3
 

1

θδ
ττ

+
== ∫

∞

Q
dpT               (3.39c) 

While the second and terms in (3.39b) have equal value on determination, each of value 

151498
2

6
2

42
82

0 TTTTTTrRR  where 

( ) ( )∫∫
∞∞

++
==<

+−
==

0
222

 2  -
15

0

2

222

 2 
14   

2Q 

1
  ; Q 2 , 

2Q 

1
 

θαδ
τδα

θαδ
τ τατα depTdepT             (3.39d) 

Thus, we have 
( ) ( )151498

2
6

2
4

2
9

2
6

2
4

2
3

2
02

82 1
2 2 TTTTTTTTTTRrR +=ζ             (3.39e) 

The term ( ) 2 2
2ζ  is next evaluated as 

( ) ( ) ( ) ( )

( ) ( ) 1011086976

53142110987654321

integralsten  

0 0

2
2

2
1

42 2
2

d  

 ][ E ][ 

dtftf

tftfhhpqphhpqpEQR

L

321

L

ττττττ

ττττττξξζ

−−−−−−

×−−−−−−= ∫ ∫
∞ ∞

     (3.40a) 

( ) ( ) ( )[

( ) ( )
( ) ( ) ] 101976531976421

1086531976421

10897534210987654321

integralsten  

0 0

21
4

d  dRR

RR

RRhhpqphhpqprrQR

ff

ff

ff

L

321

L

ττττττττττττ
ττττττττττττ

ττττττττ

−−−++−−−+++

−−−++−−−+++

−−+−−+= ∫ ∫
∞ ∞

    (3.40b) 

The first integral in (3.40b) is evaluated as ( ) 2
8

2
7

2
6

2
4

2
321

42
0 TTTTTrrQRR , while the second and third 

integrals in (3.40b) are equal on evaluation, each of value ( ) 2
4

2
321

42
0 TTrrQRR  151498

2
7

2
6 TTTTTT . Thus we 

have  
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( ) ( ) ( )151498
2

7
2

6
2

4
2

8
2

7
2

6
2

4
2

321
42

0

2 2
2 2 TTTTTTTTTTTTrrQRR +=ζ             (3.40c) 

We now display a typical term of order 4∈  that multiplies the number 2 inside the inner chain bracket 
{ }L  in equation (38), and show why this and all other similar terms will vanish on evaluation. One of 

such terms is ( ) ( )2
2

1
22 ηη simplified as follows 

( ) ( ) ( ) ( )

( ) ( ) 91975865

42131987654321

integrals   nine

0 0

3
11

22
2

1
2

d  

 ][ 22

dtftf

tftfhhqqqhhqqEkP

L

321

L

ττττττ

τττττξηη

−−−−−−

×−−−−−= ∫ ∫
∞ ∞

    (3.41a) 

 
 
 
We know that 

0][ E ][ ][ 1
2

1
3

1 == ξξξ EE               (3.41b) 

where (3.41b) follows because 0][ E 1 =ξ . Therefore ( ) ( )2
2

1
22 ηη  = 0.Every other term in the inner 

chain bracket vanishes on similar circumstances. It therefore follows that the maximum mean square 

displacement 2
a∇  now takes the form 

( )  5
2

4
1

22 ∈+∈+=∈∇ OCCa               (3.42a) 

[ ] 4
2
029864

4
27

2
6413301 C  ,   C , CRTTTTRrTTTrCRC =+==              (3.42b) 

[ { }
{ } { }

( ) { } ( )




















−++

++++

+++=

2 

0
1498

2
7

2
6

2
48

2
7

2
6

2
4

2
321

4

151498
2

64
2

9
2

6
2

4
2

32
8

1312
2

9
2

8
2

5
2

4
2

9
2

8
2

6
2

4
2

2
2

2
82

2
4

12
2

7
2

6
2

5
2

4
2

7
2

6
2

5
2

4
2

2
2

1
2
1

4
1312

2
65

2
46

2
5

2
4

2
214

 2 

2 2 3

 2 32 

R

tw
TTTTTTTTTTTrrQR

TTTTTTTTTTrRTTTTTTTTTTTrRkP

TTTTTTTTTTrkPTTTTTTTTTrC

  (3.42c) 

where ( ) tw  is as obtained in (35) . 

3.2: Dynamic buckling load Dλ  

The dynamic buckling load Dλ is obtained from the maximization (2.7), and the usual procedure 
is to first reverse the series (3.42a) so that we have 

( ) L+∇+∇=∈ 22
2

2
1

2
aa dd               (3.43a) 

By substituting for 2
a∇  from (3.42a-c) into (3.43a) and equating the coefficients of 2∈  and 4∈ , we get 

respectively    3
1

2
2

1
1 d    and   ,

1
C

C

C
d −==              (3.43b) 

The maximization (2.7) easily follows directly from (3.43a), to give 

( )
2

2
1

2

12

22 C

C

d

d
Da =−=∇ λ               (3.43c) 

If we evaluate (3.43a) at Dλλ = , we get  
2

12

4C

C
D =∈               (3.43d) 
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where D∈  is the value of ∈  at Dλλ = .On substituting for 1C  and 2C in (3.43d) from (3.40a,b), we have 









=






















40

3

2 2

0

1

4 CR

C
D ω

ωλ                 (3.44) 

 
4.0 Analysis of result and conclusion 

Since the right hand side of equation (3.44) is independent of the load parameter Dλ , the result  

gives a straightforward expression for determining the dynamic buckling load Dλ . We easily observe that 

the result is of order 2

1

0

−
R , where 0R  is the variance of the random load  

 
 

 
By letting 01 =k , and 02 =k  in two separate instances, we  obtain the effects of the absence of each of 

the quadratic nonlinearities, namely  2
11ξk  and 2

22ξk , that appear in the formulation of the problem. We 
note that the effects of the coupling between the buckling modes are obtained from the terms multiplying 

21rr  in (3.44).  Thus, we readily observe that the effects of the coupling between the buckling modes is 
possible only if we do not neglect any of the imperfection parameters because neglecting any of the 
imperfection parameters automatically implies neglecting the effects of the coupling of the mode that is in 
the shape of the neglected imperfection, with any other mode- be it buckling mode or pre-buckling mode. 
We strongly stress that the result is asymptotically valid for, 1Q0 1,R0  10  ,10 <<<<<<<< δc  

and 10 << P ,among other conditions .It is obvious that the dynamic buckling load Dλ , depends ,among 

other things, on the ratios of frequencies 








0

1

ω
ω

 and 








0

2

ω
ω
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