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Abstract 
 

We consider the continental crust under damage. We use the observed results 
of microseism in many seismic stations of the world which was established to study the 
time series of the activities of the continental crust with a view to predicting possible 
time of occurrence of earthquake. We  consider microseism time series model with 
codal waves as the main source of energy and show that it is an adoptable model for 
predicting earthquake occurrence. 

 

 

 

1.0 Introduction 
In the previous study Oyesanya [1] considered one of the microseism time series model –Duffing oscillator. 
In that study ,the following  were highlighteds 
i. Microseism time series are nonstationary. 
ii. Microseism time series are stochastic .  
iii. From the point of view of data  analysis , there is strong evidence in favour of a nonlinear 

character of microseism time series . 
The same results–nonstationarity, stochasticity and nonlinearity  were also obtained for the time series 

generated by a Duffing oscillator Guckenheimer and Holmes [2] as well as n-well potential forced oscillator , having 
added, in both  cases , additive noise to account for stochasticity . Hence a Duffing oscillator with noise is an 
adoptable model for the study of microseism time series. Thus we study the Duffing oscillator 

3 cos( )q q q q tδ α β γ ω+ − + =&& &     (1.1) 

Where  δ  is the coefficient of damping, α the proper or resonant frequency of the system in the absence of 
external forces, β the coefficient of nonlinearity, γ the amplitude of the external harmonic force. 

In this present study, we consider  the second mentioned  (but not treated) model in Oyesanya [1] namely  
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where 
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V t α β= − +  is the classical bi-stable potential and i stands for each coda wave contribution 

proposed by Correig et al [3]. We show that it is a good model for predicting earthquake occurrence. 
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Coda waves are the result of a multiple scattering process. In the course of its propagation, three different 
regimes can be distinguished; the ballistic regime (associated with non-scattered energy), the diffusion regime 
(characterized by a diffusively decay with time due to multiple scattering) and the equipartitioning regime. We 
understand equipartitioning regime as that regime for which the energy is separated into multiple wave packets due 
to multiple scattering, where initial coherent wave-fronts are broken and re-radiated as in Huygens reflections. 

Seismic stations are established to study the time series of the activities of the continental crust with a view 
to predicting possible time of occurrence of earthquake.  

In this study an attempt is made to look at the model for predicting earthquake occurrence from a different 
viewpoint by considering coda waves as the main source of energy in the model of microseism time series proposed 
by Correig et al [3]. 
 
2.0 Model description 

Correig et al [4] proposed the model of microseism time series given by 
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V V q α β= − +  is the potential and ( )tε  is random noise assumed 

to be white noise, δ is the coefficient of damping, β  the coefficient of nonlinearity, 1γ  the amplitudes of 

the two external harmonic forces of frequency  and iω Γ the noise amplitude. 

As can readily be seen, equation (2.1) constitutes a generalization of the Duffing equation, with 
two external harmonic forces, external noise and parametric resonance.  These two external forces 
constitute the input of energy of the system. 

However, in the equipartitioned regime these forces will be negligible. As noted in Correig et al 
[3], the main source of energy responsible for the excitation of the equilibrium fluctuations is provided by 
the presence of coda waves, in the diffuse or equipartition regime, originated by the continuous 
occurrence of earthquakes of different magnitude and at different places, defining an extended sources.  

 To take into account coda waves as the main source of energy, our model (2.1) need to be 
modified. We consider the model of a simple exponential relaxation process, defined as  
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As coda waves are continuously generated, we will consider a summation of exponential 
processes, with the inter-event time following a Poisson distribution. We assume an initial amplitude N0 
constant for each exponential process and finally, a random phase has been added. Thus, our model 
becomes  
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Where actually V(q) is the classical bistable potential ( )
2 4
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q q
V q

βα= − + , and the sub-

index i stands for each of coda wave contribution. 
 
 
We see that if we suppose that a device is subject to shocks that occur in accordance with a 

Poisson process having rate λ . The ith shock gives rise to a damage Di. The  , 1,iD i ≥  are assumed to 

be independent and identically distributed and also to be independent of { }( ), 0 ,N t t ≥  where  ( )N t  
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denotes the number of shocks in [0, t ]. The damage due to a shock is assumed to decrease exponentially 

in time. That is, if a shock has an initial damage D, then a time t later its damage is 
tDe α−
. 

 If we suppose that the damages are additive, then( )D t , the damage at t, can be expressed 
as  
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where Si represents the arrival time of the ith shock. We can determine the expected damage E[D(t)] at t 
as follows: see Sheldom [5]. We see that our model takes care of the nature of microseism as observed – 
nonststionarity, stochasticity and nonlinearity. 

We note that the stability analysis of this model will help us in predicting earthquake occurrences. 
 

3.0 Stability analysis 
In general, the notions of stability of a solution and boundedness of a solution are independent; 

for example, the solutions x = t + x0 of 1=′x  are stable but not bounded. However, in the case of linear 
systems the two notions are equivalent as seen from the established result that  

All solutions of a linear system are stable if and only if they are bounded David [6].  We now 
investigate the stability or otherwise of the linear part of our model. 

Consider our model  
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The above model can be written in matrix form to get 
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The linear part of our model is given by  
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To determine the solutions to the linear part of our model, we have that the eigenvalues of the 

matrix 
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 are given by  
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Since 0, 0 fαδ , then 04 0
2
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fαδδ ++− .  Therefore we must have that 1 0r >  

and 2 0r < . Since λ  is the rate for the Poisson process, the above result show that only coda waves with 

rate equal to 1r  is permissible for our model.  The implication of this is that one of the solutions 

1
1( ) r tx t e=  to the linear part of our model will be unbounded, since x1(t) = ∞→teη  as ∞→t . 

Hence since not all the solutions of the linear part of our model is bounded, then we conclude that 
not all solutions of the linear part of our model is stable.  That is to say that some of the solutions to the 
linear part of our model is unstable. 

Having shown that the linear part of our model is unstable.  To confirm the instability of our 
model, we will study the nonlinear part of our model together with some theorems and definitions that 
will help us to solve the problem. One of the result is the Njoku and Omari [7] result which we now state  
Theorem 3.1 Njoku and Omari [7].  

Assume 0.δ >  Moreover, suppose that α  is a strict lower and β  is a strict upper solution of 

the equation ( ) ( ),  which satisfy .q q g t q h tδ α β+ + = ≤&& &  then, the equation has at least one 

unstable T-periodic solution ˆ ˆ,  with S Sα β<< <<  provided that the number of the T-periodic 
solutions is finite.  

Our model in (2.3), can be written as  

( )∑
=

−=+−+
n

t

tteNqqqq
1

0
3

0
1λβαδ &&&    (3.1) 

We can easily observe by comparing the differential equation =++ ),( qtgqq &&& δ  h(t) in Theorem 

3.1 with our model equation (3.1) that g(t,q) 3
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Hence our model equation (3.1) is a special case of the differential equation in Theorem 3.1 and 
therefore can be used to investigate the stability or otherwise of our model if in addition our model also 
satisfy the remaining conditions of upper and lower solutions  in Theorem 3.1.  To confirm that our model 
satisfy these conditions, we see Theorem 3.2 below. 
Theorem 3.2 

Consider the equation (3.1) which can be written as  
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as a strict upper solution and  

( )
( )1

3
2

t

q t Ae
λ+

=  

as a strict lower solutions where A ≠ 0. 
Proof 

The differential equation can be re-written as 
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Having shown that our model (3.1) satisfies all the conditions in theorem 3.1, then we conclude 

that our model (3.1) has at least one unstable T-periodic solutionŜ , with 1 2
ˆq S q≤ ≤  provided that the 

number of T-periodic solutions is finite. Our next task is to interpret this result and see how we can apply 
it to predict earthquake occurrence. 

Theorem 3.1 can be interpreted in terms of seismic time series in this way. If the solution lies 
between the primary (maximum) peak and the lower (minimum) peak, there is likely going to be at least 
one earthquake occurrence and we can adduce that equation (3.1) has at least one asymptotically unstable 
T- periodic solution ̂ .q  
Note 
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The first assumption   2
03 9 0λ λδ α+ − = is  valid , since  it is a quadratic  equation with two 

distinct real roots 1 2,λ λ  of which  one of the roots  satisfy  the condition 0λ >  in our model. We can 

solve the quadratic equation to get  
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Thus, we have that 1 0λ > .  Therefore we conclude that the assumption  
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2
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is compatible with the condition 0λ >  in our model. 
2. Also the second assumption  
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as we have seen helped us to simplify our problem, since by this assumption we can add 
3
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t tA e N Keλ λβ =  together. This second assumption does not change the + (positive) nature of our model 

neither does it affect our result. 
 

4.0 Conclusion 
Microseisms have been widely studied, both observationally and theoretically, through its power 

spectra, with the aim of improving the detestability of the arrival time of seismic waves that signal the 
occurrence of earthquake. 

In this present study we have focused our interest on the microseism time series model with coda 
waves as the main source of energy and have shown that it is a good model for predicting earthquake 
occurrence. 
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