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Abstract

We consider the continental crust under damage. We use the observed results
of microseism in many seismic stations of the world which was established to study the
time series of the activities of the continental crust with a view to predicting possible
time of occurrence of earthquake. We consider microseism time series model with
codal waves as the main source of energy and show that it is an adoptable model for
predicting earthquake occurrence.

1.0  Introduction

In the previous study Oyesanya [1] considered drieeomicroseism time series model —Duffing ostilta

In that study ,the following were highlighteds

i. Microseism time series are nonstationary.

. Microseism time series are stochastic .

iii. From the point of view of data analysis , theis strong evidence in favour of a nonlinear
character of microseism time series .

The same results—nonstationarity, stochasticity mmadlinearity were also obtained for the time e®ri
generated by a Duffing oscillator Guckenheimer Hotimes [2] as well as n-well potential forced dstdr , having
added, in both cases , additive noise to accoamstbchasticity . Hence a Duffing oscillator witloise is an
adoptable model for the study of microseism tinméese Thus we study the Duffing oscillator

. . 3 _
g+oq-aq+pBq° = ycost) (1.1)
Where O is the coefficient of damping, the proper or resonant frequency of the systethdrabsence of

external forces} the coefficient of nonlinearity, the amplitude of the external harmonic force.
In this present study, we consider the secondiored (but not treated) model in Oyesanya [1] Hgme
P=q
(1.2)
A - -t
b+ (a) +3p= Nozeﬂ(t t)
dq i=1
2 4
wherev(t) = —aoq—+ ﬂq_ is the classical bi-stable potential andtands for each coda wave contribution
4

proposed by Correig et al [3]. We show that it go@d model for predicting earthquake occurrence.
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Coda waves are the result of a multiple scattepimgess. In the course of its propagation, thréferdnt
regimes can be distinguished; the ballistic regif@@ssociated with non-scattered energy), the difusiegime
(characterized by a diffusively decay with time doemultiple scattering) and the equipartitioniregime. We
understand equipartitioning regime as that regionenhich the energy is separated into multiple wpaekets due
to multiple scattering, where initial coherent wdkants are broken and re-radiated as in Huygeftecteons.

Seismic stations are established to study the senies of the activities of the continental crughva view
to predicting possible time of occurrence of eantiicp.

In this study an attempt is made to look at the @hdak predicting earthquake occurrence from aedént
viewpoint by considering coda waves as the maimcgaf energy in the model of microseism time sepmposed
by Correig et al [3].

2.0  Model description
Correig et al [4] proposed the model of microseism time series given by

q=p
p+"’Vagq)+ao:iylcos(a4t)+re(t)} @

2 4
whereV is defined a¥ (q) = _aq?J, ,qu is the potential ang (t) is random noise assumed

to be white noiseg is the coefficient of damping3 the coefficient of nonlinearityy; the amplitudes of
the two external harmonic forces of frequerwyandr the noise amplitude.

As can readily be seen, equation (2.1) constitutes a geneagiphithe Duffing equation, with
two external harmonic forces, external noise and paramestnaece. These two external forces
constitute the input of energy of the system.

However, in the equipartitioned regime these forces will lgtigible. As noted in Correig et al
[3], the main source of energy responsible for the excitation ofgtékeium fluctuations is provided by
the presence of coda waves, in the diffuse or equipartiégime, originated by the continuous
occurrence of earthquakes of different magnitude and at differens ptiefening an extended sources.

To take into account coda waves as the main source of energy, our model (2.1) need to be

modified. We consider the model of a simple exponential relaxation proefisgddas

N(t)= Ne“,t=0
N(t)=0t<0
As coda waves are continuously generated, we will consider a aionnof exponential
processes, with the inter-event time following a Poisson distibutVe assume an initial amplitutig

constant for each exponential process and finally, a random phasedmsadded. Thus, our model
becomes

(2.2)

p=g
Y C)

(2.3)
p +
daq

+ @) - NOZe/‘(t_tl)
i=1

2 4
Where actually/(q) is the classical bistable potentm(l(q) = —aoq?+'8%, and the sub-

indexi stands for each of coda wave contribution.

We see that if we suppose that a device is subject to shiwak®ccur in accordance with a
Poisson process having rafe. The ith shock gives rise to a damageThe Di ,1 =1, are assumed to

be independent and identically distributed and also to be indepanfd%hi(t),t > O} , where N(t)
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denotes the number of shocks in {Q, The damage due to a shock is assumed to decrease expbnential

in time. That is, if a shock has an initial damage D, then attlater its damage iDe_m.
If we suppose that the damages are additive,[{{#p, the damage at t, can be expressed
as

()
D(t)=> De ™
i=1

where§ represents the arrival time of the ith shock. We carrmiaie the expected damaggD(t)] at t
as follows: see Sheldom [5]. We see that our model takeso€dine nature of microseism as observed —
nonststionarity, stochasticity and nonlinearity.

We note that the stability analysis of this model will help us in ptiedi earthquake occurrences.

3.0 Stability analysis

In general, the notions of stability of a solution and boundedofa solution are independent;
for example, the solutions=t + x, of X =1 are stable but not bounded. However, in the case of linear
systems the two notions are equivalent as seen from the establishethats

All solutions of a linear system are stable if and onlthdy are bounded David [6]. We now
investigate the stability or otherwise of the linear part of our model.

Consider our model

p=0

i=1

pr+ a\géQ) +5p — Noieﬁ(t—ti)

q, ,a°
where V() =—a,—+[—.
(@ =-a,—+5,
The above model can be written in matrix form to get
q=p

p'=a,0-0p- L+ NKe"

where K:zn: et

i=1

I

The linear part of our model is given by

q 0 1 \[a
8 a, —0)|r
To determine the solutions to the linear part of our model, we have thigeheadues of the
(0 1 .
matrix are given by
a, -0
rr+d)-a,=0

Journal of the Nigerian Association of Mathematical Physics Volume 14(May, 2009) 1 - 8
A mathematical model for earthquake occurrence M. yesanya and O. C Collins  J of NAMP



r’+dr-a,=0

_—0+,/0% +4a,

i.e r, =
' 2
—0-,/0" +4a
and r,=- 5 2.

Since d,a, = 0, then/d” + 4a, =0 and —J +,/d° +4a, = 0. Therefore we must have thgt> 0
andr, <0. SinceA is the rate for the Poisson process, the above result shoantpatoda waves with
rate equal tor; is permissible for our model. The implication of this is tbae of the solutions

X (t) = €™ to the linear part of our model will be unbounded, sk} = €" — © ast — .

Hence since not all the solutions of the linear part of our model is bdutigen we conclude that
not all solutions of the linear part of our model is stable.t &hto say that some of the solutions to the
linear part of our model is unstable.

Having shown that the linear part of our model is unstable.cdnfirm the instability of our
model, we will study the nonlinear part of our model together withesttraorems and definitions that
will help us to solve the problem. One of the result is the Njoku and Onjaedult which we now state
Theorem 3.1Njoku and Omarri [7].

Assumed > 0. Moreover, suppose thal is a strict lower anq(_? is a strict upper solution of
the equation{+9dq+ g(t,q) = h(t) which satisfy@ < f then, the equation has at least one

unstable T-periodic solution é with a << é<<,[_? provided that the number of th&periodic

solutions is finite.
Our model in (2.3), can be written as

q+d:4_a0q+ﬁq3 — Nozeﬂ(t—h) (31)
t=1
We can easily observe by comparing the differential equdiierj + g(t,q) = h(t) in Theorem

n
3.1 with our model equation (3.1) thgit,q) = —a,q + A9° andh(t) = NOZe”(Hl) .
t=1
Hence our model equation (3.1) is a special case of the difdrequation in Theorem 3.1 and
therefore can be used to investigate the stability or wiberof our model if in addition our model also
satisfy the remaining conditions of upper and lower solutions in Theorem 3.1. Toncthvai our model
satisfy these conditions, we see Theorem 3.2 below.
Theorem 3.2
Consider the equation (3.1)which can be written as

§+ & -0+ A = Noe" Y €
t=1

provided that A2 +310- 9%, = 0 and LA’ = N,K,
n

where K= Ze_ﬁt‘,
i=1

the equation (3.1) has
p)

q,(t) = _Ae?
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asa strict upper solution and
(A +1)t

q,(t) = Ae 3

asa dtrict lower solutionswhere AZ 0.
Proof
The differential equation can be re-written as
§+0q-a,q+ 89> -NKe" =0
at

Now, for Q, (t) =—Ae?, the above equation becomes

2 A At At
0, (t) + 56, (t) - ,0,(t) + B — N Ke'* = —A%e3 - A%5e3 +a pe’

3.1 A
-pA’e" - N Ke"

At

:_—;‘[/12 +331 - 9a, Je* - BA%" ~ N Ke"

— A Y
=0- N, Ke" - N_Ke"

=-2N Ke" <0 { sinceN,> 0K > 0 antiz }(
At
Thus, q (t) =—-Ae?® is a strict upper solution of the differential equation (3.1)

(A +1)t

Next , consider, (t) = Ae * . Substitutingq (t) =q, (t) into the differential equation, we get

paf

% (t) * 5C|(t) _aoqz(t) +,3C|z(t) -N OKeAt =

9
A+1 (A+2)t (A+Dt .
PGAE i ~ahe * +pAE - N Ke"
(A+1)t (A+1)t (A+2t
=é(A2+2/]+1)e 3 +M5e 8 +A_5e 3 -
9 3 3
(A+1)t (1)
3_[(A+1)t At
a,Ae ° +pBAe" —NKe
(A+1)t (A+1)t
:g(/l2+3/15—9a0)e 3 +€(2/1+1+ Dle @ +NKe"" -NKe"
(A+)t

A A
:O+§(2/1 +3P+Je * +NKe" (et —])

>0 {sinceN, K A> 0 anti> }0
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= 0,(t) + 0, (t) ~ @, (t) + Bay(t) - N Ke" >0

(A+1)t
Hence,q2 (t) = Ae * s a strict lower solution of the differential equation (3.1)ndAthe inequality
At At (A+1)t

~Ae® <Ae®<Ae ® shows thag, (t) < g, (t)
Having shown that our model (3.1) satisfies all the conditiortkgarem 3.1, then we conclude

that our model (3.1) has at least one unstable T-periodic soﬁltiwith Q< és g, provided that the

number of T-periodic solutions is finite. Our next task is torpr this result and see how we can apply

it to predict earthquake occurrence.
Theorem 3.1can be interpreted in terms of seismic time seriefigiway. If the solution lies

between the primary (maximum) peak and the lower (minimum) pleate is likely going to be at least
one earthquake occurrence and we can adduce that equation (&tl)elaas one asymptotically unstable

T- periodic solutiong.
Note
1. The assumption

A*+30 -9, = 0and BA*=N,K, where K =>e™
i=1

is the implication of the solutiog(t) = Ae* where A% 0 of our model
n
4+0q-a,q+ B9’ =Nge"d e,
i=1
where A, 5,a,,N, > 0.

At
If we substituteq(t) = Ae?® into our model, we get
M
g‘(/lz +30) - 9a,)e® + BA’E" ~ NoKe" = 0

providedA*+3A -9, =0 and BA’=N/K ,wherek = Zn: et .
i=1

The first assumption A* + 319 — 9, = Ois valid , since it is a quadratic equation with two

distinct real rootsd,, A, of which one of the roots satisfy the conditidr™> O in our model. We can
solve the quadratic equation to get

) _ =30+3/0° + 4, _3

1 2 rl
-30-3/0° + 4
A, = ° =3
2

But we know that

_ 3/ 2
_5_'_ ’52_'_40,0 >O:> 30+ 25 +4a0 >0
Thus, we have thaaﬂl > (0. Therefore we conclude that the assumption
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A2 +30 -9,=0
is compatible with the conditiod > 0O in our model.
2. Also the second assumption

n
BA=NK, Az0 where K=>¢e"
i=1
as we have seen helped us to simplify our problem, since by thismpson we can add
,8A3e(]t = NOKef" together. This second assumption does not change the + (positiwe) afaour model

neither does it affect our result.

4.0 Conclusion

Microseisms have been widely studied, both observationally ancetioadly, through its power
spectra, with the aim of improving the detestability of the afrivne of seismic waves that signal the
occurrence of earthquake.

In this present study we have focused our interest on the memrosieie series model with coda
waves as the main source of energy and have shown tha igaed model for predicting earthquake
occurrence.
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