Egyptian fractions and practical numbers

${ }^{1}$ O. Izevbizua and ${ }^{2}$ A. Okormi
${ }^{1}$ Department of Mathematics , University of Benin
Benin City, Nigeria.
${ }^{2}$ Department of Mathematics Ambrose Alli University, Ekpoma, Nigeria.

Abstract

It is easily seen that if p can be written as the sum of distinct divisors of q, then the fraction $\frac{p}{q}$ can be expanded with no denominator greater than q itself. The idea behind this concept has provided another method for writing the Egyptian fractions (sum of Unit fractions) for any rational $\frac{p}{q}, q \neq 0$.

1.0 Introduction

Definition 1.1
A practical number is an integer N such that for all values of $n<N, n$ can be written as the sum of distinct divisors of N i.e. N is practical if every n with $1 \leq n \leq N$ is a sum of distinct divisors of N.

For example, the numbers 4 and 12 are practical numbers as shown below:

$N=4(n=1,2,3)$	$N=12(n=1,2, \ldots, 11)$
$1=1$	$1=1$
$2=2$	$2=2$
$3=2+1$	$3=2+1$
	$4=3+1$
	$5=4+1$
	$6=4+2$
	$7=4+3$
	$8=6+2$
	$9=6+3$
	$10=6+4$
	$11=6+2+3$

Table 1.1
On the other hand, 10 is not a practical number because

$$
\begin{aligned}
& N=10(n=1,2, \Lambda, 9) \\
& 1=1 \\
& 2=2 \\
& 4=3+1 \text { or } 4=2+2
\end{aligned}
$$

for $4=3+1,3$ is not a divisor of 10 and for $4=2+2$, the two numbers are not distinct. Below is the list of the first twenty practical numbers

Definition 1.2

$$
1,2,4,6,8,12,16,18,20,24,28,30,32,36,40,42,54,56,60
$$

An Egyptian Fraction is a sum of positive (Usually) distinct unit fractions e.g. $\frac{2}{7}=\frac{1}{4}+\frac{1}{28}$ (no unit fraction can be repeated [1]).

This work attempt to marry this two definitions with the purpose of being able to decompose the fraction $\frac{p}{q}$ into its Egyptian Fraction form. For example, if we want to expand $\frac{9}{20}$. Note that 9 can be written as a distinct divisors of 20 i.e. $9=4+5$, so

$$
\begin{aligned}
& \frac{9}{20}=\frac{4+5}{20}=\frac{1}{5}+\frac{1}{4} \\
& \frac{19}{28}=\frac{14+4+1}{28}=\frac{1}{2}+\frac{1}{7}+\frac{1}{28}
\end{aligned}
$$

Next we consider a theorem that connects practical numbers and Egyptian fractions.

Theorem 1.1

$\frac{m}{n}=\frac{1}{x_{1}}+\frac{1}{x^{2}}+\Lambda+\frac{1}{x_{k}}$ if and only if there exist positive integers M and N and divisors $D_{1}, D_{2}, \Lambda, D_{k}$ of N such that $\frac{M}{N}=\frac{m}{n}$ and $D_{1}+D_{2}+\Lambda+D_{k}=0(\bmod M)$. Also, the last condition can be replaced by $D_{1}+D_{2}+\Lambda+D_{k}=M$ and the condition $\left(D_{1}+D_{2}+\Lambda+D_{k}\right)=1$ may be added without affecting the validity of the theorem.

Proof

First, suppose M and N exist which satisfy given conditions. Then we simply have

$$
\begin{equation*}
\frac{m}{n}=\frac{M}{N}=\frac{D_{1}+D_{2}+\Lambda+D_{k}}{c N}=\frac{1}{\frac{c N}{D_{1}}}+\frac{1}{\frac{c N}{D_{2}}}+\Lambda+\frac{1}{\frac{c N}{D_{k}}} \tag{1.1}
\end{equation*}
$$

On the other hand, suppose $\frac{m}{n}=\frac{1}{x_{1}}+\frac{1}{x_{2}}+\Lambda+\frac{1}{x_{k}}$ is solvable. Then

$$
\begin{equation*}
\frac{m}{n}=\sum_{i=1}^{k} \frac{1}{x_{i}}=\frac{\sum_{i=1}^{k} x_{1} \Lambda x_{i-1} x_{i+1} \Lambda x_{k}}{x_{1}, x_{2} \Lambda x_{k}}=\frac{M}{N} \tag{1.2}
\end{equation*}
$$

Clearly, then $M=D_{1}+D_{2}+\Lambda+D_{k}$, where the D_{i} all divide N. And we are done. If $\left(D_{1}, D_{2}, \Lambda, D_{k}\right)=d \neq 1$, then we simply take $\frac{M}{d}$ and $\frac{N}{d}$ instead.
Also relating to Egyptian fractions, is an important property of practical numbers which was proved in [2]. Here we, state the theorem without proof.

Theorem 1.2

If n is a practical number and q is any number relatively prime with n and $q<2 n$, then $q n$ is also practical.

Proof

Applying theorem 1.2, we expand $\frac{5}{23}$. First we note that 12 is practical and thus,

$$
\frac{5}{23}=\frac{5(12)}{23(12)}
$$

Since $23<2(12)$ and 12 is practical, we know that $23(12)$ is also practical by theorem 1.2. So $5(12)$ can be written as the sum of distinct divisors of 23(12).

$$
\begin{equation*}
\frac{5(12)}{23(12)}=\frac{60}{276}=\frac{46+12+2}{276}=\frac{46}{276}+\frac{12}{276}+\frac{2}{276}=\frac{1}{6}+\frac{1}{23}+\frac{1}{138} \tag{i}
\end{equation*}
$$

(ii) \quad Expand $\frac{7}{31} \Rightarrow \frac{7}{31}=\frac{7(16)}{31(16)}$

Since $31<2(16)$ and 6 is practical, then $31(16)$ is practical. So we can write $7(6)$ as the sum of distinct divisors of $31(16)$. Thus

$$
\begin{aligned}
\frac{7}{31} & =\frac{7(16)}{31(16)}=\frac{62+31+16+2+1}{31(16)}=\frac{62}{31(16)}+\frac{31}{31(16)}+\frac{16}{31(16)}+\frac{2}{31(16)}+\frac{1}{31(16)} \\
& =\frac{1}{8}+\frac{1}{16}+\frac{1}{31}+\frac{2}{248}+\frac{1}{496}
\end{aligned}
$$

2.0 Properties of practical numbers

Properties of practical numbers relating to Egyptian fractions are summarized below.
(i) If n has divisors $1=d_{1}<d_{2}<\Lambda<d_{c}=n$, then n is practical if and only if

$$
\sum_{i=1}^{r} d_{r} \geq d_{r+1}-1 \text { for all } r<c-1
$$

(ii) If n has a subset of divisors $1=d_{1}<d_{2}<\Lambda<d_{c}=n$ in which each is at most twice the previous divisor; then n is practical.
(iii) If n is practical and m is a natural number $\leq n$ then $m n$ is practical. [3]
(iv) If n is practical and the sum of the divisors of n is at least $n+k$ where k is a non-negative integer, then $n(2 n+k+1)$ is practical. [3].

3.0 The practical number algorithm for Egyptian fractions

Step 1: Given $\frac{p}{q}$ in lowest terms
Step 2: set $m=1$
Step 3: If $q m$ is not practical, let $m=m+1$ and repeat step 3; otherwise
Step 4: Write $\frac{p}{q}=\frac{p m}{q m}$ and find the expansion.
Express $\frac{3}{7}$ in Egyptian form. Now $\frac{p}{q}=\frac{3}{7}$

By step 2, let $m=1$ and by step 3 test if $q m$ is practical so

$$
\begin{aligned}
& \frac{3(1)}{7(1)}, 7 \text { is not practical, so we let } m=m+1=1+1=2 . \\
& \frac{3(2)}{7(2)}, \quad \text { again } 21 \text { is not practical } m=m+1=3+1=4 \\
& \frac{3(4)}{7(4)}
\end{aligned}
$$

Note that $7<24$ and 4 is practical, so we write 3(4) as the sum of distinct divisors of 7(4) i.e.

$$
\frac{3(4)}{7(4)}=\frac{7+4+1}{7(4)}=\frac{1}{4}+\frac{1}{7}+\frac{1}{28}
$$

Note that in step 3, we can instead Test to see if $p m$ can be written as the sum of distinct divisors of $q m \cdot$ however, in finding asymptotic results, we will have to take the worst case for $p-$ thus, testing for practically is more general.

Clearly, this algorithm will terminate because, if nothing else, we can increment m until we reach $2^{k} \geq q$ (the binary algorithm) [4].

Also, if we let $M(N)=$ smallest m such that $m N$ is practical then we can say $D(N) \leq N \cdot M(N)$, so if we can find a bound for $M(N)$, we can also find an upper bound for $D(N)$. The calculation of $M(p)$ in the procedure above is based on the following theorem.

Theorem 3.1

$$
M\left(p_{i}\right) \leq M\left(p_{j}\right) \text { for } i<j
$$

Proof

Suppose

$$
\begin{equation*}
M\left(p_{j}\right)=m \tag{3.1}
\end{equation*}
$$

In the general ease, take a number $n<m p_{i}<m p_{j}$. Find r, s such that $n=S p_{i}+r$ with $0 \leq r<p_{i}<$ p_{j}. Since $r<p_{j}$, we can write r as the sum of distinct divisors of m.

$$
\begin{equation*}
S<\frac{(n-r)}{p_{i}}<\frac{n}{p_{i}}<m \tag{3.2}
\end{equation*}
$$

We assume $m<p_{j}$ (this is clearly true for large enough j). So we can write S as the sum of distinct divisors of m. Thus, since m and p_{i} are relatively prime we can write n as the sum of distinct divisors of $m p_{i}$ therefore,

$$
\begin{equation*}
M\left(p_{i}\right) \leq m=M\left(p_{j}\right) \tag{3.3}
\end{equation*}
$$

which imply

$$
\begin{equation*}
M\left(p_{i}\right) \leq M\left(p_{j}\right) \tag{3.4}
\end{equation*}
$$

4.0 Conclusion

Just as we have the real number system R, we introduce the practical number system (P) where $P \subseteq R$. It is easily seen that if P can be written as the sum of distinct divisors of q, then $\frac{p}{q}$ can be expanded with no denominator grater than q itself. This and other properties of practical numbers, stated hare makes it easy for fractions such as $\frac{p}{q}$ to be expressed in Egyptian fraction form.

References

[1] Izevbizua, O. and Osemwenkhae, J. Three Algorithms for Egyptian Fractions. Journal of the Nigeria Association of Mathematical Physics Vol. 42006
[2] I. Niven and H. S. Zuckerman. An Introduction to the Theory of Numbers. $4^{\text {th }}$ Edition, Wiley, pp. 200-210, 1980.
[3] Greg Martins. Construction Algorithms for Egyptian Fractions. Journal of Number Theory. Volume 24, pp. 10-19. 1991.
[4] B. M. Stewart. Sums of Distinct Divisor. Americal Journal of Math. Volume 76, pp. 779 -785, 1954.
[5] S. Wagon. Mathematics in Action. Journal of Number Theory. Volume 35, pp. 271-277, 1991.
[6] R. Breusch. A Special case of Egyptian Fractions, Solution to Advanced Problem America Math. Volume 61, pp. 200-201, 1997.
[7] V. Klee and S. Wagon. Old and New Unsolved Problems in Plane Geometry and Number Theory. Math Assoc. of America, Volume 40, pp. 157-177 \& 200-206, 1001.

