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Abstract

In a previous work Dejardin and Olatunji[l], a mathematical
model is derived for the kinetics of the Deoxyhertaizin S (deoxy-HbS). The
analytical function A(t) obtained for the time ewalion of the absorbance
measured in turbidity, satisfactorily fits the expmental data of Poyart et al
[2]. In the present paper, starting with the functioA(t), we used a
phenomenological approach to derive a nonlinear @ynic equation for the
aggregation of deoxy-HbS. Every parameter of thevgming equation can
be assigned a clear physical meaning. Moreover, wireg on the work of
Quemada[3], we introduced in the parameters base a scalar stuwal
parameterA(t, X) which depends on the time t and on a set of coting
factors denoted x Furthermore, the set of contrallj factor x can be limited

to, say, the volume fractionf , a constant shear rate)& the deoxy-HbS
concentration c, the temperature T, and other factowhich influence the
aggregation dynamics. In this paper, we developt@ solution of the
governing equation under steady conditions and apglthe results to some
rheological properties of deoxy-HbS gel.

Keywords:Deoxyhemoglobin S aggregation, Nonlinear dynamitagéiqn, Steady properties of HbS gel.

1.0 Introduction

Sickle cell hemoglobin (HbS) is a genetic variantleé human normal hemoglobin (HbA) in which the
vanyl residue at thp-position replaces the normally occurring glutamedidue. In the deoxygenated state, and
under certain experimental conditions, HbS molexigkn polymerize in solution as well as insideréaeblood
cell. The deformation of erythrocytes is causedhgyformation of liquid crystalline tactoid of dgekbS in the
cell. The formation of liquid deoxy-HbS crystallifiéctoid constitutes the main pathogenic processcile cell
anaemia patients.

Thanks to the extensive research, there is a nobuat of information on the molecular and cellular
properties of deoxy-HbS as well as on its polyna&ion as studied by Poyart et al [2]. To test dwaotetical
model, we use the numerical values of absorbanesuned in turbidity experiments [2]. As some experntal
factors, we indicate that after rapid variationtlod temperature from 0 to 30°C, the turbidity o theoxy-HbS
solution is measured at 700 nm, i.e. at a wavetenfispectrum in the zone of small absorbance fgrtdbA
and deoxy-HbA. Moreover, the absorbance maximunft ghihighly sensitive to deoxy-HbS concentration,
temperature, and ionic strength of the buffer.
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In the present theoretical model, we assumed tiegbolymerization of deoxy-HbS is closely relatettite
time-dependent variation of the absorbance measuaredbidity. This hypothesis is consistent with
spectrophotometric experiments [2] which clearlglicate that in the same conditions, the solutiordedxy-
HbA does not present any molar absorbance modditat

Therefore, the equation governing the molecularadyios of sickle cell hemoglobin polymerization
can be readily derived without considering exdlcithe details of the double nucleation mechanisi®,
described by (Hofrichter et al [4].

More precisely, this double nucleation moleculachamism postulates that there are two pathways for
the polymer formation: polymerization initiation bypmogenous nucleation in the solution phase, i@t by
heterogeneous nucleation on the surface of polyfoemsed via homogeneous process.

Moreover, it is worth noting that this nucleatiorechanism of deoxy-HbS polymerization, leads to a
coupled equations for rate of polymer formationd &lne rate of disappearance of monomer from thetisol
phase into polymer.

Consequently, for mathematical simplicity, we udéeé well known phenomenological approach
successfully applied in polymer dynamics [5, 6];dtain the differential equation governing the ewollar
dynamics of deoxy-HbS aggregation in simple shkav.fMore precisely, the polymer formed during tirae
course of the aggregation process, is consideredvao-elastic material. Then, the time evolutidrstress/or
deformation, can be readily described by a simplestitutive equation.

2.0 Theory
2.1 Phenomenological approach for the governing eqtion

The equation obtained by Dehardin & Olatunji [1} the evolution of the absorbance measured in
turbidity reads:

Alt) = A [1+mexp(- )] @.1)
1/p
where m= (ij (2.2)
A

A,andA,, respectively stand for the valuesAdt) att = 0 andt = o, andp a positive constant.
Starting from (1.1), we obtain after simple algelaasecond order non linear differential equationthe tine

variation of the absorbanégt) vuz:
A
&)+ L&) - (p +1)—A = 2.3)

where the dots denote first and second differeatiatith respect to time.
It is worthy to note that later Dejardin [7] penfieed a new theoretical model giving for the absockan
A(t), a second order non linear differential equatioritemiin the following form

ﬁt)ﬂ\lf&(t)-/\z% =0 (2.9)

Then identifying (2.3) and (2.4) the following cespondences are readily established.
N =1 N,=p+l (2.5)
Now, if Q(t) is the deformation of the deoxy-HbS molecule dyiine aggregation process, this new

variable is closely related to the time-dependésbebance measured in turbidity. More precis@ift) which is
a dimensionlesquantity andA(t) are related by the phenomenological equation dué&/dllace & Thompson
(8]: A(t) = kQ(t) (2.6)
wherek is a positive constant.

Obviously, (2.6) is self-consistent. More preciselgcording to Beer-Lambert's law [9] the absorleanc
A(t) is also a dimensionless quantity defined by thieieng equation :
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Alt)= |og[@} 2.7)

(o]

wherel, is the light intensity at timé = 0 at the surface of the absorbing medium, wiff)eis the intensity at
time t in the medium at a distanakt) from the surface. Consequently, (2.2) can beileaditten in the
following equivalent form:

&) + 1t) - (p +1)% =0 (2.8)

Now, we introduce in (2.8) the efficient of inertiaand we obtain:

&)+ nt) - Q— =0 (2.9)

It is interesting to observe that (2.9) is morevaht for rheological study.

More precisely, iM,L andT denote the units of mass, length, and time res@dgtthe unit of a stress
o varies adL'T? : Hence, the unit gf and q varied aML™ (mass per unit length); that gfvariesML™*T ™",

In rheology 77 is the coefficient of viscosity and we can noweggito (2.9) an important physical
interpretation: Hence, (2.9) stands for the eqdililm condition of the total stress acting on a debbS
molecule during the aggregation process, nameleBgD] :

» the translational inertial stregs, =

+ the rational inertial stresg; ., = 0——

Q

+ the viscous stresg,; . = l7(§‘
Obviously, from physico-biological point of view.® is incomplete for correct description of theyegation
process. The reason for this is simple: Equatio8) (2ot account for the elastic stre€g . = GQwhereG is

the coefficient of elasticity which varies &t "T2

More precisely, this equation is not in agreemeith wxperimental results presented in [11, 12] tyea
indicating that deoxy-HbS gels are visco-elastid atasto-thixotropic. Gabriel et al [13] moreovstablished
the following simple empirical law relating the i@ modulusG to the concentration, viz :

G = y[Hbg]"g/I. (2.10)

wherey is a positive constant determined experimentalyd n = 18, for all concentration. Consequently,
including the elastic stress in (2.9) we wet :

p&t) + nd(t) - q—+GQ 0 (2.11)

2.2 The general equation with a scalar structural arameter A = A (t, X)

Drawing on the works of Quemada [3], we introduneour nonlinear dynamic model, the scalar
structural parameted = /1(t, X) into (2.8). In addition to being time dependenis frarameter depends also on
a set of controlling factorsdenotedX .

Thus, at a given timg the system is assumed to exhibit a structurdfictnt of viscosity/](/]) and

have a structural coefficient of eIastic@(/]).

Furthermore, the set of controllirfgctor x can be limited to, say, the volume fractigha constant
shear rate)& the deoxy-HbS concentratiory the temperaturel, and other factors which influence the
aggregation dynamics. Hence, equation (2.11) bleugeneralized as follows :
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o80) + 1)) - 05+ (i) =0 212)

2.3 Solving the governing equation.
2.3.1 Steady state conditions

Let us assume that the rate equation of the steiatariable A = A(t,X), describingthe dynamic

equilibrium between the structure and unstructstates of the system can formally be written aevi

dA
aa _ 2.13
o (1) (2.13)

: S o dA
where F(/‘)represents an analytical function il . Under steady conditions, we have— =0 when

A reaches its equilibrium valudeq = Aeq(x). Then,only the introduction of the controller factwallows the

determination of thestructural steady coefficient of viscosity(/])and thestructural steady coefficient of

stabilityG(A). Equation (2.12) consequently reads as follomgeu steady conditions

p@%t)w(x)é(t)—q%+e(x)o.(t)=o -

G
Now, if we put : w%:—; S=

IS
D e

we obtained for (2.14) the suitable form :
&) + L)) - s% + (24l =0 219
Let defines a new dynamic varialf(® as :

f(t) = % (2.16)

As we can see, results obtained in this work alleao give to the functiof(t), a physical interpretation as a
time-dependent aggregation frequency which govémasnolecular dynamics.
Using equation (2.16) in equation (2.15) yields :

2 —
£t |1- )12 + p(x)f +a(x)]=0 2.17)
which is obviously a Riccati type of ordinary diféatial equation. For the aggregation frequefity Such an

equation can be solved analytically. Using a $&letadynamic boundary conditions we in fact obtdie t
following explicit analytic expression for the aggation frequencit) :

-G

where (a,l ,V) are the coupling parameters of the dynamical coefit /J(X) and a% (X) here,

4pa% %

2

U

a=uo ; o=|1+ (2.19)

Journal of the Nigerian Association of Mathematicdhysics Volumel3(November, 2008)377 - 386
Equation for deoxyhemoglobins aggregation L. OlptarMoussiliou and O. Hounsounou J.
of NAMP



_2po ., _ f

V= = (2.20)
1+0 (@/v)- 1,
p = s — ldesignates a positive constant dgithe value of(t) att = 0.
It follows from (2.14) that
d
Q. (t)dt (2.21)
Q
Integration yields for the dynamic varialigt) the following functional form :
Qlt) = Q.1+ exd-at)| ™" (2.22)
Hence, from (2.4) we readily obtain the time demericabsorbancaA(t), viz :
Alt) = A [L+1exd-at)] ™" (2.23)
AO 14
where | = (—j -1 (2.24)
A

Ag and A, respectively stand for the value Aft) att = 0 andt = «.
It is useful putting the governing equations in anf which directly accounts for the coupling

parameters(a’,l ,V). Start from (2.22), it takes little algebra to aibtthe following three governing equations :

(@) a nonlinear second order differential equation:
2

&+ ad- (¥ -0 229)
(b) a first order deterministic differential equoati

G_al,_ (&J (2.26)

Q v Q..
(c) a Riccati type of ordinary differential equatifor f(t) :

fv fi+af=0 2.27)

3.0 Validity of the theoretical model

Several theoretical studies have been devotedetonibdeling of cooperative phenomena in biology.
Various deterministic equations are used in pomuiatiynamics to describe the well known Verhulgidtic
curve [13], a man characteristic of all cooperatpleenomena. For an excellent review of the subjibet,
interested reader is referred to the reent arbiglelallam, [14].

To describe the growth dynamics in a populatioraafingle species, most deterministic differential
models based attempt use some appropriately pvesainit growth

& _w (Q] (3.1)
Q 7
rate as in [11], WherQ(t) measures the size or density of a single spesiasfanction of timeW(Q/H) is
anarbitrary saturation inducing functiosuch that:

W(Q/6) - 1asQ - 6

As can be seen, model (2.28) depends on two pagesikedndd respectively termeahtrinsic growth
rate and carrying capacitylhe classical logistic equation derived by (Verh{dg] is an example of a saturation

inducing function. It is given by
(5)-5)
0 0
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Other examples of population saturation functiomstein the literature; Hallam [14]. A simple
example can be constructed with» 0 and by choosing the density teM{(Q/H), to be function of the ratio

(Q/H) as in the case of the classical logistic curvédne Verhulst generalized saturation inducing functio

provides a simple example of a function meeting¢hequirements. This function can be put in thienfof a
deterministic differential equation as follows

Yn
g =k|1- (gj (3.3)
Q (2]

n denotes a positive constant withk= 1 corresponding to the Verhulst case [12]. Intgliesting to observe that

the aggregation frequency expressidh=Q/Q of (2.26) has exactly the same functional formtlas

generalized type of Verhulst deterministic diffarahequation given in (3.3). Hence, as we havédntb
indicated, this important result clearly attests walidity of the functiorf(t) (2.16) as the aggregation frequency
which governs the molecular dynamics. Moreover, fiesent nonlinear dynamic model is suitable for
describing the cooperative phenomenon of deoxy-ibcules aggregation.

The remarkable aspect of (2.26) resides in the iphlysnterpretation that can be assigned to its
parameters as regarded the description of bothhiaogical properties and the aggregation kinetfcdeoxy-
HbS.

Finally, direct comparison of (2.26) yields theldéaling correspondence

a 2po
= Q:Qw;]/nzvz—p 3.4
\ 1+0

We close this section with our remark on (2.9).
Referring to (2.9) and lettings = @ , we get immediately from equations (2.19) and@p.2

f
o=L a=u,v=p,l=m=—32— (3.5)
(,U/V) —fo
Then, our previous results, (2.1) and (2.3) ardihgabtained.

4.0 Analytical solution of the dynamic equation
4.1 Solving the Riccati equation (2.15) fof(t)

The Riccati ordinary differential equation obtairfedthe aggregation frequenty) reads:

%:—[(1—s)f2+,uf+w% (A1)

This equation can be readily solved using suithblendary conditions. For this purpose, one obstiratat the
initial time t = 6, all the deoxy-HbS molecules are in the solutidtage disaggregated state)and the
aggregation frequency or tipeobability of polymer formatiohas a maximum valug0) = f,.

During the time course of the kinetic process, theoxu-HbS molecules aggregate and the
intermolecular space reduced progressively givisg to a steric effect. At the last stage of theelt process
for t - oo, all the deoxy-HbS molecules are in the polymersolid phase gggregated staje and the

aggregation frequency has a minimum value.
Consequently, so solve (Al), we process as follows:
4.1.1  2- Equilibrium solution ¢; andc,
From the steady state conditidfidt = O, we obtain a second order equatiofi:in

2 2 _
Q-s)f2+uf+wg=0 (A2)
The discriminant of (A2) is given by A= /J2 - 4(1— S) a)g (A3)
Provided thatA = O, we can writa/A = + MO
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4(1 s) w? v
where o=11- —20 (A4)
U
As can be seen from (A4), the necessary and sificionditionrA > 0 comes to
41-s)w?
520 - (72)0 <1
7%
Under these conditions, we obtain the two equiliorisolutions
Zl = 2(1fls)(1_ 5)
(A5, AB)
e
=2 (1-0
¢2 =35y (L-2)
4.1.2  2- Dynamic solutionf(t)
From (Al), we obtain after simple sequence of fiamsations
1 1
- daf = -({, - 1-s)dt (A7)
ke (R RO D
where Zl and Zz are the equilibrium solutions given by (A5) andJA Integrating (A7) yields:
f —
$oc exf-at) (A8)
f-¢,
where @ = 140 andC is an arbitrary constant. From the initial cormlitf(0) = f, we obtain:
c=to=6 (A9)
fo=¢,
Hence, using. (A9), (A8) reads:
f-¢ _ f,-¢
L=_0 Sleyd-at) (AL0)
f-¢ 2 1:o x4 2

Obviously, the equilibrium solutiong1 and Zz have the dimension of a frequency. More precisblyy must

be real and positive quantities. Consequentlybtisc compatibility condition in (A5) and (A6) comt®:s = p
+ 1 with p a real positive constant

+
¢, = 2,U(1_ )
p
(Al11 and A12)
+ U
=—1
{o=5 (+9)

Now with the well defined expression for the partene viz.
2
4p w
o= [1+ M] >1 (A13)
,UZ

However, as we can be seen from (A11), the negeasalrsufficient condition (A13P >1

comes to {,=0 (A14)

Consequently, the analytical solutif{tj which satisfies the suitable boundary conditiandefined by
the following reduced form of (A10)
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f f,
exp+at Al5
f~¢, f-¢, o+ at) (A15)
Solving forf(t) in (A15) yields
f(t) = ¢l exp(- at)

(Ale)
1+1 exp(-at)
f
wherel is apositive constantlefined by [ =—2% (A17)
Zz - f0
More precisely, solving fdf in .(A17) we obtain the following relationship:
Z)
=22 < Al18
0T 14 ¢, (A18)
2po
For all values of the parameter V= (A19)
1+0
Now, letting (2.26). Then from (A12) we get théueof Zz in terms of the model parameters.
a
Zz -2 (A20)
\
a andv viz :
Finally, using (A16) and (A20), the analytical stdun f(t) reads
al/v)exp— at

1+1exp(- at)

Thus establishing the result of the main text.
4.2 Transformation of the dynamic equation (2.15) fosecond order as a two systems of differential
equations of first order

LetXe= Q and Xy = C§‘ Then we have:

K=y
2
(B1)
ﬁ: —W + Sy_ — afx
X
where the dot stands for differentiation with retfe time.
F tions (B1) t als ud (B2)
rom equations we get: — =
dy sy — ixy—-a’x®

The equation (B2) suppresses the singularity ferin equation (B1). However, from (B2) it would

dx
be understand thatd—t = %= Xywhich is not exact. Hence, if we take a new indejeat variabler defined

dt
r=|—
X

such that (B3)

0
&r) = xy
Rr) =~y + sy - i

df _ xdy — ydx

respect tol . Now we consider the transformatitéx, y) - (X, f= y/x). We get—

dx x2dx
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dx xX,. (%, y)

dt = Y(xy )= X, (xy)

where{x(x’ =XKL f). With the following definitions:Xm(l f) =f andy, (1, f)=-sf? - 4f -
Y y) =Y (11)

which leads to the following equation (B4)

f
Now, if we write (B4) asg—;( = XZ(f ) We obtain:Log[X(f )] = J'Z(u)du +cste. Let
0

f f u f a, a, }
| =|Z(u)du= = + du BS
'([ ( ) opuz_”u_G -([|:(U_Z1) (U_Zz) s
wherep = s — 1lis a real and positive constant. We obtain for plaeametersa; and a, the following
ationshipsg, =0 +=1 o 20t 1 7= and 2, =2, The integral i
relationshipsgy 2p3 g( a, 2p3 v e have f and ¢, v e integral in
equation (B5) can be easily calculated, and weirnbla = LoglC(f - Zl)]/ <((f - Zz)]/ V].

As | = Log[x(f )] , the solution desired reads in the following pagtio form, viz:

e
y(f)= fx(f)

These results indicate that only the solution whikHinite for O =1. Have physical significance. This

correspond to the frequency,: For t — oo, wehavef = f_ and X(fw) =K =Xx,. Hence
equation (B6) reduces to:

f 1 v
x(f)= Xw(l_fj (B7)

y(f)= x(f)

Finally, equation (B7) can be resolves ffand we obtain the desired result:
v
(F_a 1{&} (B8)
Q v Q.
5.0 Conclusion

In a previous work Dejardin and Olatunji [1] dexdven mathematical model for the kinetics of
deoxyhemoglobin S (doxy-HbS) aggregation. The ﬁonctA(t) for the time evolution of the absorbance
satisfactoryily fit the experimental data:

In the present work, starting with the functidh(t) we used a new phenomenological approach to
derive a general non linear dynamic for the aggvassf deoxy-HbS. More precisely, we introducedtlire
parameters base, a scalar structural amméter A (t, X) :

We develop the solution of the non linear goverriggiation under steady state conditions. For this
purpose, we used two different mathematical methddsh lead to two equivalent analytical functid‘r(t) for

the aggression frequency governing the moleculaaghcs.

The present work opens interesting perspectiveskifmetic and rheological studies on sickle cell
heamoglobin. More precisely, the pioneering work#lofrichter et al [4], Gabriel et al [12], harrit al [16],
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and Damish et al [9] have emphasized the effectstiudrs factors such as the volume fractgpna constant

shear rate)& the initial deoxy-HbS concentratian the temperaturé&, and other factors which influence the

aggregation dynamics. The major advantage of theegpit non linear governing equation, resides wlditake
into account these controlling factors.
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