Journal of the Nigerian Association of Mathematical Physics
Volume 13 (November, 2008), 357 - 362
© J. of NAMP

Calculations of total energy in the density functional theory using HI98MD code

L. S. Taura and Babaji Garba
Department of Physics, Bayero University, Kano, Nigria.

Abstract

We have computed total energy for Al, Si, Ga, and As in the
framework of density-function theory within LDA approximation by using
the Williams-Solar minimization scheme to iterate the wave functions.
Different values for the electronic time step, delt, an energy cutoff, Ecut and
damping parameter, gamma are used. The Monkhorst-Pack k-point mesh
was taken as 4x4x4 with the initial k-point (0.5,0.5,0.5) . E, is the well-
converged value of the total energy approached. Each computation gives an
optimal convergence for all the four elements.

1.0 Introduction

Total- energy calculation and molecular dynamicausations employing density functional theory
represent a reliable tool in condensed matter physnaterial science, chemical physics and phystoamistry.

A large variety of applications in system as défdras molecules, bulk materials and surfaces peoxen the
power of these methods in analyzing as well asrédipting equilibrium and non — equilibrium profies. Ab
initio molecular dynamics simulations enable the analgdighe atomic motion and allow the accurate
calculation of thermodynamic properties such asftbe energy, diffusion constant and melting terapees of
materials.

The packagéhi98md is designed to investigate the material propedielarge systems. The package
fhi98md is based on a previous versiftiO6md [1]. The new version, however, is based on FORTRAIENd
allows dynamic memory allocation. The package aissif the prograrthi98md and a start utilityhi98start.
The progranthi98md can be used to perform static total energy cdicueor ab initio molecular dynamics
simulations. The utilitythi98start assists in generating the input file requireduo fhi98md, thereby ensuring
the lowest possible memory demand for each indalidun. Thus no recompilations are required; a full
calculation can be performed by calling the twoabynexecutablegi98start andfhi98md in sequence.

2.0 Total energy calculation:
The key variable in density functional theory (DT§ the electron density n(r), given as statedhiy

fundamental theorem of Hohenberg and Kohn [2] treeigd state energye, ({ R})  of the system for given
positions of the nucle{ RJ} is the minimum of the Kohn-Sham total-energy fiomal with respect to the
electron density n. The total-energy functiora|,n is given by

E[N=T[d+E[ h+ E™+ Ef In+ B ™ (2.1)
Where T® is the kinetic energy of non-interacting eIectr,orEH is the Hartree energy, anE”® is the

exchange-correlation energy.
The energy of the electron-nuclei and nuclei-nivinkeraction E*” "™ and E™ "™ are

1 ZZ
ES™ [ =|d’rve™ and E™ "M== — (2.2)
[ =] LU 2.J§J|R—Fg|
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where ZI and % are the charges of the corresponding nuclei. plsaximations to the exchange-correlation
energy functionaIEXC[ N we employ the local-density approximation (LDA),

EDA Ej'sxc(n(r))n(r)dr, 2.3)
where £, . (n) is the exchange — correlation energy of a unifetectron gas of density. The exchange part is
elementary and given, in atomic units, by Dirac [3]

. (n)=- : (2.4)

wherer is the radius of a sphere containing one electr@hgiven by(47T/ 3) rj’ =n"". The correlation part
was first estimated by Wigner [4]

0.44
(n)=—-—7"—, (2.5)
r,+7.8
and more recently with a high precision of abdutl% by Ceperly [5] using Monte Carlo methods.
The pseudopotentials are represented in the delharable from as proposed by Kleiman and Bylander
[6].

je-nuc —\J & ‘Avl"!l ¢’lp7m><‘/’|plsm AV
\/ & nue — + s s s S 20
Is I's! 1oc :i m:z—l < |Ej m ‘A\/I :: (,[/I F:lsm >

where A\/,jl(r) =V, (N-V, m(r)' and V, |(r)are the radial components of the semi-local

pesudopotential anqlll‘:j m(r)= R ()Y, "(8,¢) are the node-free atomic pseudo wave functionghis

ps, local

form the pseudopotential is split into a local pé/p and a nonlocal but separable Mﬁs’n'.

Correspondingly the potenti¥ ©” "“and the energyE® "““are expressed as
\7e—nuc - \7 ps local \7 ps nl and E®™s EPS loca) E Ps! 2.7)

Also,the effect of the core electron density ongkehange-correlation energy is described by aduseare
density¥"°(r) , which is the superposition of the smoothed cmdiesﬁﬁfre(‘ r=r,, - R‘) constructed
together with the pseudopotentials . The exchaogelation functional& n] and\V*[n] are then replaced by
E*°[n+ B8 and V] n+ %°T.

In the past few years iterative techniques haveinecthe method of choice to solve the Kohn-Sham
equations and enable first-principles studies dgetarge systems. The key idea is to minimizettital energy

with respect to the wave functio|d/ilk> starting with a trial wave functi4wi°k> . The energy minimization

scheme is formulated in terms of an equation ofianoEOM) for the wave functio‘lﬁyw in the fictitious time

variablet.
The simplest scheme to iterate the wave functisitisd steepest descent approach [11]. It can be
derived from a first-order equation of motion,

% l//i(,’:()> = ([%,)k ~-H KS) ‘lﬂftﬁ>l (2.:8)
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where H4is the Kohn-Sham Hamiltonian and

imposing the ortho-normality constra(m//(t)‘[//(t)> i

Qi’ok are the Lagrange parameters introduced to acdountthe ortho-normality constraint. In the simples

possible discretization of this differential eqoati only information from the last step is used,

t-1 t t t
(G+Kul?) = (G+ Ky + B G+ Myl )~ < k Holy ! )> (2.9)
where 3 = 8{9(5'[ and/] = Ot . However, it turns out that this discretizatiohesme is not very efficient.
A more efficient scheme based on a second ordetieq of motion might also be used

dtz‘wm> 2y—‘¢/<t>> (%K HKS)“/’“)> (2.10)

where ) is a damping parameter. The equation of motiorintegrated for a step lengtdT by the
Joannopoulos approach [7], which iteratively imm®vhe initial wave functions. In this algorithne thew wave

functions‘d/i(L'l)> is constructed from the wave functions of the tast iteration steps t and (t-1),

(o) =( ko) 0 ) e & A7) & Kt

where the coefficients are

%, (hs(5t)—1)—<G+ K Fies| G+ k> -

G %, —<G+ k‘ |:|KS|G+ k> ’ (2.11)
Vo = e,
. = (hs (o) — e -1 (2.12)
¢ E}’,qk—<G+k‘l—A|KS\G+ k>'
with (%9 = <(,[/it’k HAKS ‘(/lfk> . The functionh(At) is defined by

4

2e 2" cos @,dt) if wf>0

26 2% cosh(\/@dt) it af< (

with & :<G + k‘ Hes|G+ k>—!yigK—§.
Although the damped Jaonnopoulos algorithm is neffieient than the first order scheme, additiortatage for

the wave function‘(//i(;l)) is needed. Therefore the William-Soler algorith®) s recommended whenever

he (oY) =

storage requirements do not permit to employ thepdal Joannopoulos algorithm. The coefficients @ th
scheme are

U, ~(G+k|H K)ot
) %k [e( by ~(G+K Fies|G+ k) tl]
(c ~ ’
%, ~G +K|Hys| G+ K
B e@(gk—<e+k\HKs\G+ Kol
e =

%, ~(G+k|H|G+ K
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with i = O Thus, damped Joannopoulos schme contains theaW#kSolar schme as a limiting case, when

y — . On the other hand, the Williams-Solar scheméfisggroaches the steepest descent schendd, i
sufficiently small.

3.0 Program structure:

The program uses two input files as an input fergtart utility. The file inp.mod contains the aaht
parameters for the run, like e.g. the time stepstli@ electronic and atomic minimizations schentes t
convergence criteria and maximum number of steps.file start.inp describes the geometry of theesupll,

the configuration of the nuclei and parametersvegie for the structure optimization, and the caltioh of the
electron ground state.

The input file inp.ini is usually generated autoitety by the start utilityfhi98start from the files
inp.mod, start.inp and constraints.ini. Howeveeg, fiiogranthi98md also runs individually without the help of
the start utility. This requires to provide theefihp.ini in addition to inp.mod, the pseudopotaistand possible
restart file.

Finally, the program terminates when all the oufjjes are written.

4.0 Procedure:

First, we compute theelldm parameters for each element which depends oribthe parameter of
each structure in the start.inp files. Aluminiumaigace centred cubic structure wiltihav = 2, lattice parameter
ax = (7.5,0.0,0.0) otelldm(1..3) and scaling of the super cellcglldm (4..6) = (0,0,0) . Silicon is a diamond
structure withibrav = 2, lattice parameter,a= (10.26,0.0,0.0) and scaling of the super celtelfdm (4..6) =
(0,0,0). Gallium is a base centred orthorhombiaucitmre with ibrav = 12, lattice parametera=
(8.25,8.21,13.96) otelldm (1..3) and scaling of super cell etlldm (4..6) = (1.0,1.0,1.0). Arsenic is a
rhombohedral structure witbrav = 10, lattice parametef,@a= (7.1,2.67,0.227) ofelldm (1..3) and scaling of
super cell otcelldm(4..6) = (1.0,1.0,1.0). These values are put ihgostart.inp files with the atoms per unit cell
and valence electron of each structure.

Secondly, in inp.mod files the most important paeters which are individually optimized are the
electronic time steplelt damping parametegamma The electronic time steplelt has a recommended value

ranging from 1 to 40. The damping parame@mmaalso has a recommended value ranging fld@ )/ p 1.

Thirdly, the inp.mod and start.inp are compile and the start utilityfhi98start to generate the input
and parameters files fdhi98md and finally compile and run the prograim98md. Pseudopotentials files
ga_aa.cpifor Gallium,as_aa.cpifor Arsenic,al_aa.cpifor Alminium andsi_aa.cpifor Silicon are provided in
the directory pseudo for the runs.

Finally, the outputs fildort.6 are compile and the program terminate on reacthiedCPU time. Then,
the outputs were analyzed and graphs are plotiad osgin.

5.0 Results and discussion

Figures 5.1. 5.2, 5.3, and 5.4 are the total gneajculation for Al, Si, Ga, and As bulk in
different structures within LDA approximation bying the Williams-Solar minimization scheme to iterghe
wave functions. Different values for the electrotibe stepdelt with an energy Cutoff of 8 Ry and damping
parameter of 0.2 are used. The figures 5.5, 56,a6d 5.8 are the different values of damping patars
gammawith the electronic time stegelt in the range 1 to 40 and an energy cutoff of 8 /g0, the figures 5.9,
5.10, 5.11, and 5.12 are the different values oémergy cutoffEcut with the damping parameteggammaand
electronic time stegelt

The total energy calculations for GaAs bulk in tkzéc-blende structure within LDA
approximation by using the Williams-Solar minimipait scheme to iterate the wave functions agreet wuir
results 10].
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Figure 5.1: A total energy calculation for Al bulk in the fc
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Figure 5.2: A total energy calculation for Si bulk in the
diamond structure for different values of the elaeic time
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Figure 5.3A total energy calculation for Ga bulk in the
base centered orthorhombic structure
for different values of the electronic time stigit .
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Figure 5.4: A total energy calculation for As bulk in the
rhombohedral structure for
different values of the electronic time stigit.
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Figure 5.5 A total energy calculation for Al bulk in the fc
structure for different values of the damping pagten
gamma
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Figure 5.6 A total energy calculation for Si bulk in the
diamond structure for different values of the damgpi
parametegamma
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Figure 5.7: A total energy calculation for Ga bulk in th
base centered orthorhombic structure for diffevaities
of the damping parametgamma
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Figure 5.8: A total energy calculation for As bulk in the|
rhombohedral structure for different values of the
damping parametgamma
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Figure 5.9 A total energy calculation for Al bulk in the
fcc structure for different values of an energyofiut
Ecut
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Figure 5.10:A total energy calculation for Si bulk in the
diamond structure for different values of an energtpff
Ecut
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Figure 5.11: A total energy calculation for Ga bulk in Figure 5.12: A total energy calculation for As bulk in the
the base centered orthorhombic structure for differ rhombohedral structure for different values of aargy
values of an energy cutdifcut cutoff Ecut
6.0 Conclusion

In conclusion, we have optimized some input patamsewithin the Local density approximation
(LDA) along the k-point of Monkhorst-Pack scheme ddferent values of electronic time step, an gyerutoff
and damping parameters. We observe that, a stablerence of all the elements were achieved. Als®,
corresponding parameters in the inp.mod input €ild{2 andgammaZzhad to be smaller then that ones deit
andgamma so as to have a stable convergence.
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