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Abstract

A class of single server vacation queues, which have batch arrivals
and single server, is considered in discrete time. Here the server goes on
vacation of random length as soon as the system becomes empty. On return
from vacation, if he finds any customers waiting in the queue, the server
starts serving the customers one by one until the queue size is zero (the queue
discipline is FIFO); otherwise he takes another vacation and so on. The
vacation model we consider hereisthe ungated system i.e. exhaustive system.
It is shown here that the interarrival, service, vacation and server operation
time can be cast with markov based representation then this class of vacation
models can then be studied as matrix-product problem which belongs to a
class of matrix analytic family- thereby allowing us to use result from Alfa
(2003) to solve the resulting matrix product problem. Most importantly it is
shown that using discrete time modelling approach to study some vacation
model is more appropriate and makes the model much more algorithmically
tractable.
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1.0 Introduction

Vacation in queueing context mean the period tineesés not attending to a particular targeted gueu
The server may be under repair, attending to ogjueues or simply forced to stop serving customerthé
particular queue. Vacation model have been useensixely to study various systems, such as pokind
priority systems.

In a polling systemN queues are attended to by one server who attendisly one queue at a time.
The server attends to one queue for a period ¢ tiased on some predefined rules and then protedts
next queue and so on.

Consider an arbitrary queue among thgueues. The customers in this particular queue theveerver
as being away on a vacation because they are img b&ended to. This example of polling systenvasy
common in computer systems where a processor ratetal to several queues of jobs.

Another example is road intersection control byfizasignals. At any given time one section of the
road receives the green signal for service white dther section receives the red signal to stopicgerThe
sections which receive the red signal are not vaugiservice and to them the server is on a vagatio

Priority queues are also sometimes studied asivacgtieues. Consider a single server system with at
least two classes of customers in which there psiaity for service. A low priority group of custeers may
keep receiving service until a higher priority @mer arrives, after which the server may switcipesheing on
the predefined rules, to serving this higher ptyodustomer. While the higher priority customemrégeiving
service the low priority group of customers seesdbrver as having gone on a vacation.
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Several types of method have been used to studgtivacmodel, ranging from embedded Markov
chain to the classical transform approach. It yshope to use the matrix-geometric method, setnugiscrete
time (Alfa 2003 [2]) to investigate the batch aalidiscrete time queue with server vacation. Thidudes
single server vacation queues with batch arrivalyiped that the service, vacation and operatitima@s can be
represented by a Markov based model and the systeet up in discrete time.

Vacation models are classified into two categories:

1.1 Gated systems

In a gated system, as soon as the server retuamsdrvacation it places a gate behind the lastvgait
customer. It then begins to serve only the custsméo are within the gate, based on some rulémwf many
or how long it could serve.

1.2 Ungated systems

In an ungated system the server only applies tleeafuhow many or how long it could serve. Under
each of the classification above, we have furtlatures, such as: single or multiple vacationsedimited
service — preemptive and non-preemptive, randoetrimptions for vacation, and others.

The subject of vacation queues has appeared ierélift literature in the last fifty years. For dleta
study of previous work in vacation models (Alfa 37Q]).

Here we will mention some few papers and booksdtain the direction of this research work.

Choudhury (1997 [3]) uses the compound Poissornarand generalized vacation to analyze Batch
Arrival Poisson queue with vacation.

In another development Shin and Pearce (1998 [i&}t the batch Markovian arrival process whose
vacation schedule and lengths of whose vacatioaestidepend on the queue length of the system aetiianing
of a vacation. Alfa (2003 [2]) provides a genemdi form for a class of discrete time vacation nhodde
provides a unified framework for analyzing vacatimndels in discrete time and present matrix-analytethod
for analyzing them.

Fiemset al (2004) investigate the gated multiple-vacationuguén discrete time. This generalized
multiple vacation queueing model allows the captfrperformance amongst, the multiple-vacation, single-
vacation and the limited multiple-vacation gate@uging systems.

Jau-Chuan (2004 [7]) studies the N policy’'Ms/1 queue with server vacations; startup and
breakdowns, where the arrival form a compound poigsocess and service times are generally diséibu

Ojobor (2006 [10]) study the effect of two queusaipline (FIFO and LIFO) on some measure of
performance of a single server queue system usinglation. The approach is to generate arrival §raed
service for 200 customers and the customer is dehreugh a single server queueing system undér @aeue
discipline.

Other class of vacation model of interest to redear lately is the case of vacation models in aktri
systems. This class is very important when stugipnobile communication and some computer netwofks:
results see Xiaoyong and Xiaowu (2007 [15]).

Modern telecommunication systems have become mgimldsystems than analog these days. It is
therefore more appropriate to develop vacation isogthich are applicable to these systems usingetistime
approach.

The aim of the current contribution is to investeggéhe Batch Arrival discrete time queue with serve
vacation. The goal is to model Batch Arrival Vagatmodels in discrete time and use the matrix ydial
method to analyze the model. Here we restrict dutsehe ungated system-exhaustive case. In futoek we
shall look at the gated system.

2.0 Batch arrival discrete time Queue model with server vacation

In this section we shall consider the extensioi\éé (2003 [2]) model. The aim is to remodel Alfa
model to allow room for batch arrival with servexcation. A rephrase of the model is given as fatlow

e i =the number of items in the system.

» i = number of items inside a gate (when applicable).

» k=the phase of arrival: arrival is phase type wéhpresentatioifa, T). The arrival rate ig. Here

the arrival is in batches i.e. the batch arrivalhsse type with representati@n T).

» j=the phase of service: service is phase type mjihesentatiolys, S).
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» j = the phase of service interruption. This masl phases including phase 0, when there is no
interrupted service.

» | =the phase of vacation: vacation is phase typle rejpresentatio(o,L).

* u=the time clock of a server’s visit (or the numkerved so far by a server during a visit) — the
use depends on the model. This could also reprefentphase of the operational time with
representationu(U).

The following parameters are also define

* N = the limited time of a single visit by a server &time-limited service.

* M = the limited number of customers to be servedmduai server visit for number-limited service.

For some models where services may be interruptedegd to define a matrd which represents the
phase at which an interrupted service begins wheesumed, given the interruption phase. The elésnen

Qiih refer to the probability that a service interrupieghhasg’, resumes in phagewhen the service re-starts.

For example, a preemptive resume servicenad and a preemptive repeat service rule Qas1p.
2.1 Exhaustive

We consider the ungated system i.e. exhaustiversysthe state space for this system is described
below:

. Ay=(0,k,0)k=12,..n
. Ay = (0,k,1) k=12, .nl=12 ..r
. Af=(ik,1),i=12, .. k=12 ... nl=12..r
. A= (i kj)i=12 k=12 .., nj=12 . m.
For A = (0, k, D), the first O refers to an empty system, and thwerse: O refers to no vacation, i.e.

the server is waiting at an empty queue for custsrtearrive, after a vacation. For the chge= (0,k, 1), |
refers to the phase of vacation. In both case$eks¢o phase of arrival.
Let A, = AZUA; andA, = AYUAT, where Al is associated with the vacation states in which

there are | customers in the system a\idis associated with the service states witustomers in the system.

The state space for the single vacation systenvengyA as A = AO |_| Ai . The state space for multiple
i=1

vacation system is given by as A = Aj [1A;. When the system is in stales = 1, the chain makes
i=1

transition to statesi._4 A, .4 or remain in statd.. The transition probabilities are not level depemdexcept

for level i=1. When the system is in staties the chain can only have transitions to stidter remain in states

4. This Markov chain is thus a level-independent QEDQve now label the states in lexicographic orderd

let the first index bia { = 0, the resulting transition matrix for this Markofain can then be represented in

equation 2.1 below. We then apply the matrix gedmegsult to solve it.

The interior block matrices for the system, i.& thatrices,, A;, andA, which represent the transition
fromd, to A4, Ato Ajandd; to Ay, P12 2

Here we shall reblock Alfa model to allow room fbatch arrival. The block matrices for the
system(other than the boundary ones) are givembelo
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term (T ” ) & (L° 8 on the top right corner refers to a transitiomfreacation to service commencement

with batch arrival; and the terjif” '3'(,5} &7 5 on the bottom right corner refers to a transitittming service

with batch arrival. The term on the bottom leftrearis zero because it refers to a transition feoservice with
batch arrival which is not possible since, if thexr@any customer in the system during service #énees will not
go on vacation at all, sind®, refers to a transition with bulk arrival in thesggm. The meaning of the matrix
blocksA; andA, are easily interpreted likewise.

Next we apply the matrix geometric solution by NEL884 [9]).

2.2 Matrix-geometric solutions for P

These are of finite order i.eamr, ands < &=. The markov chain represented pyis positive

recurrent if TA, 1 < ;‘{A: 1, wherem = mA, m1 = 1 andA=Ax+A+A,
For special cases it is possible to obtain simg@ressions for stability condition.

If the stability condition holds, we show how tatain x. There exists a matrix R which is the rmial
non-negative solution to the matrix quadratic eiquatR = A + RA; + RPA,. For a stable system the spectral
radiusR is less than 1. From matrix-geometric theorenka@w thatx,,; = xR = xR, i > 1. If the vectory,,yi]
is obtained as the eigenvector corresponding teitfenvalue of 1 the matrix is given as

C D

E A, +RA,
Furthery = Yo' + Y, (I — R)™, thenx, = Y'y, andx; = Y'y;. We can therefore compute x using the matrix —
geometric theorem, after which the performance oreascan be obtained. In addition we talk abo@itntiatrix
G which is the minimal non-negative solution to thatrix quadratic equation

G=A,+AG+AG.

The matrixG is stochastic if the Markov chain is positive neent. The matrixG is used in studying the busy
period of the system. The relationship betwBeandG is R = Aj(l — A; — A,G)™. Nearly all ungated systems
can be developed as Markov chains with this typ®@BD process.

3.0 Performance measures
We shall look at the performance of the system tstddy. First we definé as a column vectors

whose elements is either 0 or 1. We also deffmleas row vector which is of the same ordexa3he element

of x have a relationship which corresponds to the aitioie fil .
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Let f_ represent the set of all location iiﬁi1 for which there are 1's, hence all the other limrahave

0’s. Example,ﬂ (1= Ii Eé)which implies the values of 1's in all location ek the number in the gate

is between i{ and I'% inclusive. Hence we write the correspondingfi1 vector as
1 _ Fflel 1 T

f; U_:'—f (=1 1)
3.1 Queue length distribution

Based on the result above, the vectdras been obtained. Our interest here is to olgaine key
performance measures related to the queue length.

Let v be the marginal probability of findirigBatch) customers in the system at an arbitrarg titmen
yi = x1. DenoteC, as the mean numbers of customers in the systamatitrary time.

C,=x(@-R)™1

Let v, be the probability that the server is on vacatthanV,, = X, 1+ % (L— R) ™ f,(I = 1r),
Note here that we are assuming multiple vacatictesy.

Define yiv as the conditional probability that there aoeiIstomers waiting, when the server is on vacation.

. 'y i ¥ - Xo 1
That is,‘l".-l = —————,izlandV, =
o Yo i Yo
The conditional expectation of the number of custmwaiting when the server is on vacaipis given as

GU-RZARU=T7)
v v

o
Denote the probability that service is ongoingréatteary time bys,. Then we have, = 1 —v,.

Define _‘l’._5 as the conditional probability that there areustomers waiting, when the server is busy serving
x; (1-f:0=1Tr))
then,_l"f = Ji>1

-
=0

Let csbe the conditional expectation of the number of@ugrs waiting when the server is busy, then
1-f(=1r)

5

c,=x,(I-R) ™~

o
3.2 Distribution of work in the system
To write the equation for the work in the systenthia level-independent case understudy, we need to

define the following s, = s°5,6%0)=1,D, =T
5

D‘_ = T%%x, X; = [‘LL, x; ] where v represent vacation and s service. Netethhat(7 ° (:td) = 0o
w>z1l,0V (w=0w<v
D
The probabilityl’, of the amount of work in the system at the instdreturn from a vacation is ‘a’ is given by
[ i
vy = ¢t [xE(D,EL°) é?(?;"!'l + ZZ x}P ((Dg ;—’;‘-LC);?(Q‘G'-=“~' (a]) 1)]

i=1d=0

a=1

whereC = Y2, [x2((D; @L) 86 )1+ T T x? (:(DG- a1?)&(Q"6%*? (a)) 1]
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The probabilityl F" that the amount of work left behind just afteratimn start ‘a’ is given by

B Z xi,(D,&s°)1 and
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3.3 Waiting time distribution
- 'on " - -1 -5 -5 . .
Letx, , i = 0 be partition ast; = [x],x], ,..., X ,.]. Define the vectorg,i> 0 as the

corresponding vectors 1i;, wherez ;corresponds to the steady state vector of thersyateseen by a (Batch)
arriving customers. Then

=
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—

FTe o 1
L
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e
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zf = 7 [xP((Tea)®L®I(m + 1)) + x5, (T ) ®5®s™)
(P 0)®5057)] (21

z5, = 27 2 (TP ) @(L°® Q)]

z5, = )L"-[_};;’*'Iu_j((T‘ja')@s) + xf*l.,_._l((Tﬂff)@(Soﬁ))]

i=1,2=u<N

We defineZ] = z2 (1 &) [)and fori = ldefinef:: =z/(1®1)

z,=2z,08D

V.0 550 550 w1

et Z7 = [Z,,Z.,,Z,, i[>

Lo ' L1

(=

Finally, letZ% = [f; zZ 28 ] alsoetz"** =z"p, n=0

Z" is partition the same way &
Let W, be the probability that a customer waiting timéeiss than or equal to a unit of time. Then
w, =251 a=0

4.0 Conclusion

We have showed here that the matrices Presentédfdy2003 [2]) can be re-blocked to allow batch
arrival and the method of matrix-product is theadut solve the resulting matrix problem.
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