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Abstract 
 

Noting that the effect of outliers in model order determination 
could be serious, this paper is concerned with the problem of examining the 
performance of inverse autocorrelation function in model order 
determination especially with outliers.  Tsay (1986) iterative procedure was 
used to identify the outliers, remove their effects and then specify a tentative 
model using the inverse autocorrelation function. An example is also 
presented. 
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1.0 Introduction 

The autocovariance function of a stationary time series { }tX of zero mean is defined by 

( )kttk XXE −= ,γ  and the autocorrelation function by 
0γ

γρ k
k =  

The autocovariance generating function of { }tX  is defined by 

( ) ∑
∞

∞−

=
k

k
k zz γγ     (1.1) 

The inverse autocovariances of { }tX  are defined in such a way that their generating function is the 

reciprocal of equation (1).  Thus the inverse autocovariance generating function ( )ziγ  is defined by 

( ) ( ) ( )kzz i i and 1 γγγ =  is the inverse autocovariance function at lag k which is the coefficient of Zk in the 

expansion of ( )ziγ  in positive and negative powers of Z. 

The inverse autocorrelation function ( )kiρ  is then defined by  

    ( ) ( )
( )0i

i
i

k
k

γ
γρ =       (1.2) 

Cleveland (1972) introduced the concept of the inverse autocorrelation function (IACF).  He defined inverse 
autocovariances as the autocovariances associated with the inverse of the spectral density of the series which 

Pazen (1974) called the inverse spectral density.  That is, let for the discrete stationary process{ }tX , 

( ) ( ){ } 1−= ωω ffi  be integrable on the interval (0, 1).  The inverse autocovariances of { }tX  are defined by 

( ) ( ) ωωγ
π

π
ω dfek i

jk
i ∫−= and ( ) ( ) Λ ,kk ii −= γγ , k = 0, 1, 2, … . 
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Let us consider the following ARMA (p,q)  
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=

−−
=

+=−
q

l
ltljt

p

j
jt BXX

1
t

1

  εεα    (1.3) 

where { }tε  is a white wise process with variance .2
εσ  Neglecting the term ∧22

εσ  in the definition of 

ARMA process, the spectral density of equation (1.3) is  
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Denoting the autocorrelations and inverse autocorrelations of equation (1.3) by ( ) ( ),,: and ,: i βαρβαρ kk  
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Hence, the IACF of an ARMA (p,q) is the autocorrelation function of the inverse ARMA (q,p) (that is, with the 
AR and MA operators interchanged).  Therefore, for an AR (p) process, the IACF is identical to the 
autocorrelation function of the MA(p) with the same parameters in the same order.  That is, for a pth order MA 

process,  0=kρ  for pk > while for a qth order autoregressive process ( ) 0 =kiρ  where q.k >  

In practice, the autocorrelations and inverse autocorrelations of an observed time series will not be 
known exactly but must be estimated from the data.  For AR(p) models, the IACF cuts off at lag p.  This property 
makes it complete with ACF as a tool for determination of autoregression order. 
 
2.0 Estimates of inverse autocorrelations 

As suggested by Cleveland (1972), the two methods of estimating IACF Sten from either the 
autoregressive method or the window method.  The first method of estimating the spectral density function is to 
fit autoregressive model using a high enough order to give a good fit.  The problem with this method is that we 
have to impose a model on the series.  The second method which involves the window estimate involves 
smoothing the periodogram, I(w) given by  
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where c(k) denotes the sample estimate of the autocovariance of lag k.  Although the periodogram, I(ω) is 
asymptotically unbiased for the spectral density function f(ω), its variance does not decrease as N increases.  
There is need to smooth the periodogram I(ω) by applying some weighting function to I(ω).  There are a number 
of weight functions usually referred to as windows that are commonly used. 
Using the Daniell weight function we estimate the inverse autocorrelations as follows: 
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obtaining an estimate of the spectral density by ( ) ( )∑
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positive integer. Inverse autocovariances are then estimated by ( )
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inverse autocorrelations are then obtained by ( ) ( )
)0(
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The problem with this method is that there is no accurate way of choosing p.  The choice of p has been 
purely a subjective process most commonly done by plotting the smoothed periodogram for different values of p 
and choosing that p which gives the smoothest picture, without losing any characteristic feature of the spectrum.  
The subjectivity introduced in choosing p poses problems.  Hipel et al (1977) have suggested trying four values 

of p between 10 and 40 ( )4  where np ≤  and choosing the value p which gives the most representative graph 

of the resultant inverse autocorrelation estimate )(kri against lag k. Chatfield (1979) advices against the use of 

automatic criteria like the AIC, BIC, etc in the determination of p as interest is not in optimal parametric 
parsimony.  He however warns that p must not be so low not to show the form of the sample IACF, nor so large 
as to make the variance of the estimates too high; the choice of p must be such that for high lags the estimates of 
the inverse autocorrelations approach zero.  He suggests some form of trial and error until the foregoing criteria 
are met.  Hosking (1980) suggests that p should vary with the sample size n. 
 
3.0 Order determination 

Stationary Autoregressive (AR) processes have theoretical autocorrelation functions that decay toward 
zero rather than cut off to zero.  The autocorrelation coefficients may alternate in sign frequently, or show a 
wavelike pattern, but in all cases they tail off toward zero.  By contrast AR processes have theoretical partial 
autocorrelation functions that cut off to zero after lag p, the AR order of the process. 

The IACF of a time series are useful at the identification stage of model building.  In practice, this 
quantity must be estimated from the data.  The IACF of an AR process cuts off at lag p.  It turns out that it has 
similar properties to the Partial Autocorrelation function (PACF) in that it cuts off at lag p.  The theoretical ACF 
of a MA(q) process has a very simple form in that it cuts off at lag q and so the analysts  should look for the lag 
beyond which the values of rk are close to zero.  However, their PACF’s tail off toward zero and hence the IACF. 

Mixed processes have theoretical autocorrelation functions with both AR and MA characteristics.  The 
ACF tails off towards zero after the first q-p lags with either exponential decay or a damped Sine wave.  The 
PACF and hence the IACF tails off to zero after the first p – q lags.  In practice, p and q are usually not larger 
than two in a mixed model for nonseasonal data. 
 
4.0 Model estimation 

After identifying a tentative model, the next step is to estimate the parameters in the model.  For an AR 

(p), with p estimated, the unknown parameters, ρφφφµ ,...,,, 21  can be estimated.  The classical approach to 

the problem of estimation for the linear regression case is by the least square method in which the residual sum 
of squares is minimized with respect to the parameters to be estimated.  An approximate least squares method is 
the Yule-Walker method which involves the recursive Levinson – Durbin Algorithm. The algorithm gives an 
iterative method of obtaining AR coefficients without going through the inversion routine. 

ρ=φφ−φ=φ −+++ ,...,2,1i;ˆˆˆˆ
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where ik ,φ̂  is the estimate of i,kφ , the ith coefficient of an AR model and { }kc  is the sample autocovariance 

function.  Parameter estimation for MA and ARMA models is a complex procedure.  Estimation problems are 
more difficult for an MA process than an AR process, because efficient explicit estimators cannot be found.  
Instead, some form of numerical iteration must be performed.  The estimation problems for an ARMA model are 
similar to those for a MA model in that an iterative procedure has to be used.  The residual sum of squares can be 
calculated at every point in a suitable grid of the parameter values and the values which give the minimum sum 
of squares may then be assessed.  Alternatively, some sort of optimization procedure may be used. 
 
 
 
 
 
5.0 The effects of outliers 

Time series data often contain outliers which have an effect on parameter estimates and more 
importantly lead to inaccurate forecasts.  Outliers in time series depending on their nature may have a moderate 
to significant impact on the effectiveness of the standard methodology for time series analysis with respect to 
model identification, estimation and forecasting and also have drastic effects on estimates for such quantities as 
correlation coefficients, regression coefficients and spectral density estimates. 

Outliers can take several forms in time series.  Fox (1972) proposed the formal definitions and a 
classification of time series outliers to two types – additive and innovational outliers.  For a properly deduced 
stationary process, let Xt be the observed series and Zt be the outlier–free (OF) series.  Consider a familiar time 
series model 

( ) tt azB =Π  

     ( ) ,1 2
21 ΛBBB Π−Π−=Π  

{ }ta  is a sequence of identically, independently distributed random variables with zero mean and variance 
2σ .   

The function Π(B) is often expressed as a ratio of ( ) ( )BB θφ  where ( ) p
pBBB φφφ −−−= ...1 1  and 

( ) q
qBBB θθθ −−−= ...1 1  are stationary and invertible operators sharing no common factors. 

The models commonly employed on the OF time series Zt are the Additive Outlier (AO) and 
innovational outlier (IO) which are defined respectively of a single outlier for a simple case as  

     
( )T
ttt DZX ξ+=     (5.1) 

and    
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where Xt is the observed series, D is the magnitude of the outlier and 
( ) ,1=T
tDξ  

If t = T and O otherwise, which is the time indicator signifying the time occurrence of the outlier. 
The AO affects the level of the Tth observation whereas an IO affects all observations XT, XT+1,…, beyond time 

through the memory of the system described by 
( )
( )B

B

φ
θ

. 

The AO can be regarded as a gross error model.  In general, the presence of more than one outlier of 
various types in a model, is specified by  

    ( ) ( )
t

T
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n

k
kt ZDBWX +=∑

=
ξ

1

 

where     ( ) ( ) tt aBBZ 1−= φθ  

( ) 1=BWk  

 for AO model 
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( )B

BBWk φ
θ=   

for IO model at time t = Tk and n is the number of outliers. 
Outliers affect the autocorrelation structure of a time series and may also bias the autocorrelation 

function (ACF), PACF and the IACF.  These biases can be severe and they depend on, besides the obvious 
attributes like the number, type, magnitude and position of the outliers, also the underlying model and its 
autocorrelation.  Deutsch et al (1990), have some results on the effects of outliers on ARMA model 
identification.  They observed that in series of short to moderate length, often the presence of a single outlier will 
result in a true AR model being falsely identified as an MA or an ARMA model, and the identified lengths (p and 
q) will also be wrong. 

Masarotto (1987) presents a method for robust estimation of the ACF and the PACF.   
Research on the effects of outliers has been the most thorough in regression models.  The effects of outliers on 
estimation are well known, and there also exist several methods of detecting these effects.  Cook and Weisberg 
(1982), Barnett and Lewis (1994) examined these effects. 
 

 
 
 

A common approach to deal with outliers in a time series is to identify the locations and the types of 
outliers and then use intervention models discussed in Box and Tiao (1975) to accommodate the outlier effects.  
This approach requires iterations between stages of outlier detection and estimation of an intervention model. 
 
6.0 Empirical illustration 

Following Tsay (1986), the proposed method uses only the least squares method, that is, the linear 
regression techniques, to obtain parameter estimates.  To examine the usefulness of IACF in model order 
determination especially with outliers, an illustration was carried out.  The data considered was the first word – 
Gessel adaptive score [Mickey et al (1967)]. Olewuezi (2007) proposed an algorithm which was used for the 
computation of inverse autocovariance function (IACVF).  An outlier input series was assumed and to observe 
the timings of the outliers, Tsay (1986) detection technique was followed.  The fitted model estimates for the 
series was shown in Table I which gives the corresponding summary statistics for the series. 
The models fitted were 

( ) ( ) ( ) ttt aBXBBY  552.017211.013199.01 1 ++−−= −
 

with 19.152 =atσ  for the outlier free series 

and   ( ) ( ) ( ) ttt aBXBBY  3211.018901.011694.01 1 ++−−= −
  

with 62.232 =atσ  for the outlier contaminated series. 

The model residual variance with the outlier contaminated is about 35.69% multiple of that with the 
outlier free series.  The test criterion fails to suggest any model discrepancy. 
 

Table 6.1: Model estimate of the series 
 

  
X 

 
Y 

Error model  
(at) 

Diagnostic  
Checking 

AR estimate 0.8901 0.1694 -0.3211  

Standard Error 0.2621 0.0112 0.0225  

Model Residual Variance 102.6 261.52 23.62 0.000013 
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Timing of Outliers 1,2,4,5,&20 1,2,3,5,19,21   
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AR estimate 0.7211 0.3199 0.552  

Standard Error 0.1816 0.0024 0.0170  

Model Residual Variance 64.36 103.25 15.19 0.000001 

 
7.0 Summary and conclusion 
The performance of inverse autocorrelation function in model order determination especially with outliers was 
discussed. The presence of outlying observations or structural changes raises the question of efficiency and 
adequacy in fitting models to time series data. 
From the results, it was clear that the model residual variance was further reduced to 35.69%.  Thus, the model 
selection based on the empirical inverse autocorrelation function can be misleading in the presence of outliers 
and tends to underestimate model order, thereby resulting in an inappropriate model.  Even if the model is 
appropriately specified, outliers may still produce bias in parameter estimates and hence may seriously affect the 
efficiency of outlier detection.   
 
 
 
 
 

Finally, as a suggestion, a comparison is to be made between autocorrelation function and inverse 
autocorrelation function in model order determination.  The types and locations of outliers at different iterations 
of model estimation may also be considered. 
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