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Abstract

Noting that the effect of outliers in model order determination
could be serious, this paper is concerned with the problem of examining the
performance of inverse autocorrelation function in model order
determination especially with outliers. Tsay (1986 iterative procedure was
used to identify the outliers, remove their effects and then specify a tentative
model using the inverse autocorrelation function. An example is also
presented.
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1.0 Introduction
The autocovariance function of a stationary timariese{Xt}of zero mean is defined by

Vi = E(Xt , Xt_k) and the autocorrelation function b9, = %
0

The autocovariance generating functior{é(t} is defined by

V(Z) = z %4 (1.1)
k—o0

The inverse autocovariances {)Xt} are defined in such a way that their generatingction is the
reciprocal of equation (1). Thus the inverse amwadance generating functiory; (Z) is defined by
y(z)yi (Z) = 1andyi (k) is the inverse autocovariance function at lag kctvhis the coefficient oZ* in the
expansion of) (Z) in positive and negative powers of Z.

The inverse autocorrelation functigf (k) is then defined by

(K
o) (k) = M (1.2)
y(0)
Cleveland (1972) introduced the concept of the sweautocorrelation function (IACF). He definedarse
autocovariances as the autocovariances associdtiedhe inverse of the spectral density of theesemvhich

Pazen (1974) called the inverse spectral densifjhat is, let for the discrete stationary pr0({69§§},

fi (a)) :{f (a))}_l be integrable on the interval (0, 1). The inveastocovariances oﬁXt} are defined by
v (k) :j_’;e"k“’fi ()dwand y; (k) = y; (-k),A k=01, 2, ....
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Let us consider the following ARMAp(0)
p q
X, =Dla; X, =&+ Bg, (1.3)
j:l 1=1

where {é‘t} is a white wise process with varianafﬁf. Neglecting the terme/ZD in the definition of
ARMA process, the spectral density of equation)(lt3
Y2
ple)
flw)=

= ‘a(e—J(U) ‘2
where B(z) =1+ B2+ B,2° +..+ B,2°, a(z) =1+ a,z+a,2* + ..+ a, 2"
Denoting the autocorrelations and inverse autolaiio@s of equation (1.3) b)O(k: a, ,8) ando (k: a, ,B),

[Tere ‘”(e_jw) i
o ‘,B(e_j“’)‘z
n ‘a(e“'"’)‘z

J-_”‘,[J’(e"j‘")‘z

Hence, the IACF of an ARMAp(Q) is the autocorrelation function of the inverseMMR (q,p) (that is, with the
AR and MA operators interchanged). Therefore, &mr AR (p) process, the IACF is identical to the
autocorrelation function of the MA(p) with the sap&rameters in the same order. That is, for sopder MA

process,0, =0 for K > pwhile for agth order autoregressive procegs (k) =0 wherek >qQ.

In practice, the autocorrelations and inverse artetations of an observed time series will not be
known exactly but must be estimated from the d&@. AR({p) models, the IACF cuts off at lag p. This propert
makes it complete with ACF as a tool for deterniorabf autoregression order.

. dw
J'_ne’k“’ f (w)dw

j_’; f, (cw)dew

respectively we have 0, (k ‘a, ,3) =p (k : B, a).

dw

2.0 Estimates of inverse autocorrelations

As suggested by Cleveland (1972), the two methddestimating IACF Sten from either the
autoregressive method or the window method. Tis¢ finethod of estimating the spectral density fiomcis to
fit autoregressive model using a high enough omeive a good fit. The problem with this methedhat we
have to impose a model on the series. The secattooh which involves the window estimate involves
smoothing the periodogrart{w) given by

Zzi{c(oﬁzgc(k)Cosak}

where c(k) denotes the sample estimate of the autocovariahdag k. Although the periodogram(w) is
asymptotically unbiased for the spectral densitycfion f(w), its variance does not decreaseNaBicreases.
There is need to smooth the periodogtéw) by applying some weighting function ltw). There are a number
of weight functions usually referred to as winddiwat are commonly used.

Using the Daniell weight function we estimate theerse autocorrelations as follows:

~ ZN:(Xt - Y)e‘“

Journal of the Nigerian Association of Mathematical Physics Volume 13(November, 2008)309- 314
Performance of inverse autocorrelation function NP. Olewuezi J. of NAMP



27,

N-1
Let &g =—+,1=0LA ,N-1. Calculating | (cq):i{c(o)+220(k)00$qk} and

m k=0
1 p
2p+1k=—p

_ ik
N-1 eltq

obtaining an estimate of the spectral density chq ) = | (Cu]+k) wherep is a suitably chosen

positive integer. Inverse autocovariances are éistimated byC; (k) = and estimates of

M

inverse autocorrelations are then obtainedit(k) = G (k% (0) .
i

The problem with this method is that there is nouaate way of choosing p. The choice of p has been
purely a subjective process most commonly doneldiyinpg the smoothed periodogram for different \eswf p
and choosing that p which gives the smoothest mEctuithout losing any characteristic feature @& #pectrum.
The subjectivity introduced in choosing p posedfams. Hipel et al (1977) have suggested trying f@lues

of p between 10 and 4(where p< %) and choosing the value p which gives the mosempntative graph

of the resultant inverse autocorrelation estin‘lﬁt@k) against lagk. Chatfield (1979) advices against the use of

automatic criteria like the AIC, BIC, etc in theteemination of p as interest is not in optimal paetric

parsimony. He however warns that p must not bewmot to show the form of the sample IACF, nolage

as to make the variance of the estimates too ltighchoice of p must be such that for high lagsetftenates of
the inverse autocorrelations approach zero. Hgestg some form of trial and error until the foriegocriteria

are met. Hosking (1980) suggests that p shouldwdh the sample size n.

3.0 Order determination

Stationary Autoregressive (AR) processes have étieal autocorrelation functions that decay toward
zero rather than cut off to zero. The autocon@fatoefficients may alternate in sign frequenty,show a
wavelike pattern, but in all cases they tail offvéwmd zero. By contrast AR processes have theatgbiartial
autocorrelation functions that cut off to zero afag p, the AR order of the process.

The IACF of a time series are useful at the idadifon stage of model building. In practice, this
guantity must be estimated from the data. The IACEn AR process cuts off at lag p. It turns that it has
similar properties to the Partial Autocorrelatiemétion (PACF) in that it cuts off at lag p. Theoretical ACF
of a MA(Q) process has a very simple form in that it cutsadvfag q and so the analysts should look forage
beyond which the values gfare close to zero. However, their PACF's tailtoffiard zero and hence the IACF.

Mixed processes have theoretical autocorrelatimetians with both AR and MA characteristics. The
ACF tails off towards zero after the first g-p lagih either exponential decay or a damped SineewaVhe
PACF and hence the IACF tails off to zero after fing& p — gqlags. In practice, p and g are usually not larger
than two in a mixed model for nonseasonal data.

4.0 Model estimation
After identifying a tentative model, the next stefio estimate the parameters in the model. Fd@kRn

(p), with p estimated, the unknown parametds Py, @,,..., P, can be estimated. The classical approach to

the problem of estimation for the linear regressiase is by the least square method in which thidual sum
of squares is minimized with respect to the paramseb be estimated. An approximate least squaetsod is
the Yule-Walker method which involves the recursivavinson — Durbin Algorithm. The algorithm gives a
iterative method of obtaining AR coefficients witligoing through the inversion routine.

Qesri = Epk,i - Epk+1€pk,k+l—i;i =12,...,p
~ ~ 1 k .
Oy = (ﬂ<+1, k+1 ? |:Ck+1 - Z (n<,iCk+1—i:|

k i=1
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2 2 2
and Os1 = Oy (1_ (pk+1)
where @ ; is the estimate ofp, ;, the ith coefficient of an AR model ar{d:k} is the sample autocovariance

function. Parameter estimation for MA and ARMA retglis a complex procedure. Estimation problemss ar
more difficult for an MA process than an AR procelsscause efficient explicit estimators cannot dent.
Instead, some form of numerical iteration must ééggmed. The estimation problems for an ARMA miaate
similar to those for a MA model in that an iteratiprocedure has to be used. The residual sunmuafes|can be
calculated at every point in a suitable grid of plegameter values and the values which give thémmim sum

of squares may then be assessed. Alternativatye sort of optimization procedure may be used.

5.0 The effects of outliers

Time series data often contain outliers which have effect on parameter estimates and more
importantly lead to inaccurate forecasts. Outliarime series depending on their nature may leas@derate
to significant impact on the effectiveness of thendard methodology for time series analysis wéspect to
model identification, estimation and forecastingl @afso have drastic effects on estimates for sueimtities as
correlation coefficients, regression coefficiems apectral density estimates.

Outliers can take several forms in time series.x E®72) proposed the formal definitions and a
classification of time series outliers to two typesdditive and innovational outliers. For a prbpeeduced
stationary process, & be the observed series afidoe the outlier—free (OF) series. Consider a famifime

series model
n(B)z =2,
n(s)=1-n,8-n,B%A,
{a[} is a sequence of identically, independently diste¢d random variables with zero mean and varianée
The function/7(B) is often expressed as a ratio ¢(B)/9(B) wheregdB) =1-gB-..-¢,B” and

H(B) =1-6B-...- Hq B are stationary and invertible operators sharingaramon factors.

The models commonly employed on the OF time sediesre the Additive Outlier (AO) and
innovational outlier (I0) which are defined respesly of a single outlier for a simple case as

X, =Z, +D&M (5.1)
and X, =Z, +(%]Dﬁm (5.2)

whereX; is the observed serid3,is the magnitude of the outlier ariaft(T) =1

If t =T andO otherwise, which is the time indicator signifyirtgettime occurrence of the outlier.
The AO affects the level of the Tth observation whereatQaaffects all observationsXXr.4,..., beyond time

B
through the memory of the system describe ) .

The AO can be regarded as a gross error model. In detleeapresence of more than one outlier of
various types in a model, is specified by

X, = ZWk (B)Dkft(T) +Z,
(

k=1
where Z =0

-

for AO model
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w,(8)=C) )

for IO model at timé = T, andn is the number of outliers.

Outliers affect the autocorrelation structure ofirae series and may also bias the autocorrelation
function (ACF), PACF and the IACF. These biases ba severe and they depend on, besides the obvious
attributes like the number, type, magnitude anditiposof the outliers, also the underlying modeldaits
autocorrelation. Deutsch et al (1990), have soemults on the effects of outliers on ARMA model
identification. They observed that in series ajrsto moderate length, often the presence of glesioutlier will
result in a true AR model being falsely identifieslan MA or an ARMA model, and the identified ldrgfp and
q) will also be wrong.

Masarotto (1987) presents a method for robust esithm of the ACF and the PACF.

Research on the effects of outliers has been the thorough in regression models. The effectsutlieys on
estimation are well known, and there also exisesdvmethods of detecting these effects. Cook\&eisberg
(1982), Barnett and Lewis (1994) examined thesecesf

A common approach to deal with outliers in a tiredies is to identify the locations and the types of
outliers and then use intervention models discugs@&bx and Tiao (1975) to accommodate the oudféects.
This approach requires iterations between stagesatbér detection and estimation of an intervemtioodel.

6.0 Empirical illustration

Following Tsay (1986), the proposed method usey tre least squares method, that is, the linear
regression techniques, to obtain parameter esttmafBo examine the usefulness of IACF in model orde
determination especially with outliers, an illugiva was carried out. The data considered waditsieword —
Gessel adaptive score [Mickey et al (1967)]. Olew{2007) proposed an algorithm which was usedttier
computation of inverse autocovariance function VA&g. An outlier input series was assumed and teeoke
the timings of the outliers, Tsay (1986) detectieohnique was followed. The fitted model estimdtesthe
series was shown in Table | which gives the comedng summary statistics for the series.
The models fitted were

Y, =(1-0.3198B)*(1- 0.721B)X, +(1+0.552B)a,
with Uazt =15.19 for the outlier free series
and Y, =(1- 0.1694B)*(1- 0.890B)X, +(1+0.3211B)a,

with g = 2362 for the outlier contaminated series.

The model residual variance with the outlier coriteated is about 35.69% multiple of that with the
outlier free series. The test criterion fails tggest any model discrepancy.

Table 6.1:Model estimate of the series

7]

2 Error model Diagnostic
A X Y (a) Checking
B AR estimate 0.8901 0.1694 -0.3211

©

E Standard Error 0.2621 0.0112 0.0225

<

<

8 Model Residual Variance 102.6 261.52 23.62 0.000013
I

% Timing of Outliers 1,2,4,5,&20 1,2,3,5,19,21

=}

@]

=0 & Number of Outliers 5 6

SR
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AR estimate 0.7211 0.3199 0.552

Standard Error 0.1816 0.0024 0.0170

Model Residual Variance 64.36 103.25 15.19 0.000001
7.0 Summary and conclusion

The performance of inverse autocorrelation functiromodel order determination especially with cri was
discussed. The presence of outlying observationstroctural changes raises the question of effagiesnd
adequacy in fitting models to time series data.

From the results, it was clear that the model tedigariance was further reduced to 35.69%. Tthesmodel
selection based on the empirical inverse autoadiogl function can be misleading in the presenceutlfiers
and tends to underestimate model order, therehyjtirgs in an inappropriate model. Even if the miode
appropriately specified, outliers may still produsias in parameter estimates and hence may seyriafistt the
efficiency of outlier detection.

Finally, as a suggestion, a comparison is to beentastween autocorrelation function and inverse
autocorrelation function in model order determioati The types and locations of outliers at diffiérigerations
of model estimation may also be considered.
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