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Abstract

Eavesdropping is as old as human race. The ever increasing
dependence on the use of computer and the telecommunications technology
(ICT) has heightened the desire to protect and preserve the integrity of
networks. This takes the challenge to the level of security. This paper
attempts to conduct a comparative analysis of the three public key
cryptosystems (RSA, Rabin and El Gamal) that are thought to be secure.
Each of the cryptographic schemes is appraised with a view to exposing their
strengths and weaknesses. A platform is considered in the paper for the
schemes based on some denominators for indepth comparisons.
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1.0 Introduction

The increasing rate of dependence of individuatsparate organizations and governments on
information probably accounts for why there is @gple growth in the demand for computers nowadaks.
interconnections of these computers using telecomirations could be another reason (Olajide, 2006 The
interconnections have evolved tools of differergatalities to enhancing the performance of thesevorks.

However, the revolutionary trend in communicatitvas ushered in open networks, which are enjoyed
world over. People with malicious intents abusertbe-restricted activities to explore the potestiah the given
network systems for their personal aggrandizeniEm. security of open network becomes a hope conéern
effective solution to security communications oegen networks is provided by cryptography (Wemk@)4
[10]).

Cryptography is the field concerned with linguisttmd mathematical techniques for securing
information, particularly in communications. Crygtaphy relies upon two basic components: an alyorifor
Cryptographic methodology) and a key. In moderrptrgraphic system, algorithms are complex mathexlati
formulas and keys are strings of bits. For two iparto communicate, they must use the same algorftr
algorithms that are designed to work together).stime cases, they must also use the same key. Many
cryptographic keys must be kept secret; sometidgesithms are also kept secret (NIST, 1991 [7]).

Eric et al (2005 [3]) described cryptography as a vast andptexnsubject in which a little knowledge
about the field could be very helpful with respecsecurity. Cryptography is said to play an impottrole in an
overall security and a potent tool with securithesme and a potent tool with mathematical prootsatck up the
level of security.

Though, cryptography can be very secure when usagkefdy, the human aspect is very essential. A
good and tested cryptographic algorithm could higneesecurity provided wide through human unprebieta
nature.

In general, cryptography is best understood byHKingait into four main areas or primitives. These
primitives include

. Random number generation
. Symmetric encryption

Journal of the Nigerian Association of Mathematical Physics Volume 13(November, 2008)289 - 296
Comparative analysis M. S. Olajide, O. S. Adewald3. K. Alese and A. O. Adetunmbi J. of NAMP



. Asymmetric encryption
. Hash functions.

Using these primitives, or building blocks, all aseof cryptography are constructed. Infact, sontaef
primitives are used to build other primitives. tiis paper, only symmetric encryptions and asymimetr
encryptions will be considered.

Encryption is similar to encoding in that the pres¢ransforms some original text or object intotheo
formula. Symmetric encryption also known as sed&®y encryption uses a common key to scramble or
unscramble a message. The common key is said todeeret key. An example of this type of encrypii®n
called Caeser Cipher (Cobb, 1996 [2]). In asymroedricryption, two different keys, one of which éserred to
as public and the other private are used to sceand unscramble message(s).

Georgeat al (2003 [4]) remark that in secret key cryptographg, complexity of the assumption that a
common key is distributed securely among the paitieolves is cumbersome. This is seen as a magovihck
to the scheme. This draw back necessitated thednttion of the public key cryptosystems. In pulkiy
encryption, two keys are employed: one is usedntyypt and is known as public key and the otheduse
decrypt and is called private key. The private &agy be published or made available using a prestiicheme
for parties involved.

The concept of public key cryptosystem was investgdVhite field Diffie and Martin Hellman, and
independently by Ralph Merkle. Ralph Merkle and fitaHellmann invented the first known as public key
cryptosystem in 1974. It was based on puzzlesweat easy to solve if you knew the private keyl hard if
you did not. The security of the system was eradigelto some circumstances that part of the eriorygbuld
be reversed in a sequence of results spanning 4&.yA cryptosystem is a suite of protocols ciph&esy
management and user prescribed actions implemégether as a system (Kessler, 2005 [5]).

Many algorithms have been proposed for public kgptosystem. However, some of them have been
found insecure, and other impractical, becausekélys are too long or the cipher text is much lorthan the
plaintext. Still, others are good only for encrgptj or only for signing. According to Schneier (699]), only
three algorithms that are thought to be securestiped, and good for both signing and encryptioa RSA,
Rabin and El Gamal..

In this paper, comparative analysis of RSA, Rabith Bl Gamal cryptosystem is carried out. A study of
each of the cryptosystems is conducted one afteotiier to enhance in-depth analysis. A reviewacheof the
algorithms is presented in Sections 2, 3 and 4ecisely. Section 5 provides the common platfornadaress
the comparative issues. Experimental results agsemted in section 6 and some conclusions are di@awn
section 7.

2.0 RSA cryptosystem

The RSA scheme was the first secure public keytosystem. The idea of public key cryptosystems
was published a few years earlier by Diffie andlidah. RSA was invented in 1978 by Ron Rivest, 8damir
and Leonard Adleman, and takes its name from thigials.

It is the most widely used public key cryptosystand provides both secrecy and digital signatures.
The scheme gets its security from the difficultyfadtorizing large numbers. This means that thesags to be
coded first must be mapped onto one or more numiie way to do this is to take the bit patternthof
underlying electronic form of the message and prtgrthat bit pattern as more positive integer.

The plaintext form of the message is usually deshddeand the encryption versidi If the encryption
is denoted a&(M), and the decryption function as D(C), the RSArgpition and decryption functions can be
written as

C =E(M) =M°®modn (2.1)
and M = D(C) = C* modn (2.2)
Hence both the encryption and the decryption famcinvolve exponentiation mod. The public key
consists of the pairg] i} and the private key is the paidfn}. The numberse,d and n are all integer. Some
requirements must be met for this system to wotkthese include:
- Applying the decryption function to the encrypteet must reproduce the original message
D(E(M)) =M or M** modn = M (2.3)
This condition places restrictions on the possialeies ofe andd. If at all such values exist.
- The above condition implies thatandd might be mathematically related. Hence, it musinfeasible
to determine the valuggivene andn.
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- Application of encryption and decryption functicstsould be relatively easy.
All these conditions can be met, the first one gelme most mathematically involved. The followingperty,
which follows Euler's theorem, gives a due to cleotse numberg,d andn. If n is the product of two prime
numbersn = pq and 0 <m < nthen for any possible integkr

M@ * L modn = m (2.4)
Here #(n) is the Euler totient function which is the numbépositive integers less than n and relativelynarito
n. It follows thate(n) is an integer such that len) <n.
Equation 2.4 shows a function applied to the nunmbeeturns the same number m again. This mean# thra¢

chooses
ed= I@( r)+1 (2.5)

The encryption and decryption functions (1) anddf) each others inverse, as required. In summary,
the RSA keys are generated as follows:

- Select two prime numbepsandq

- Calculate the modulus=p x q.

- Calculates(n)=(p-1) x (@ -1).

- Select an integer e, such that & < #(n) and gcd¢(n), €) = 1.

- Calculate the modular inversk which is such thaexdmodg(n)= 1 with the extended form of
Euclid’s algorithm (4).

- The public key consists of the pa#,{}.

- The private key consists of the pait,f}

Calculation ofd, the modular inverse of e modulgn), is very difficult because only is publicly known, not
#(n). The calculation o#n) is easy with the aid of the prime fact@randq but these are not publicly known.
This actually is the core of the RSA method, thiewdations ofe(n) is very difficult without the prime factors of
the argumenh. The reason is that, without knowing the primedex ofn, the only way to calculat#n) is to
use methods that are computationally as demandirf@csoringn.
2.1 Selection of encryption exponent e and decrypth d m RSA

The encryption exponert= 3 commonly used in practice; in this case, itésessary that neithpr-1
norq - 1 be divisible by 3. This result in a very fast gmtion. However, another encryption exponent used
practice ise = 2'® + 1 = 65537. This number has an advantage @ve8 in that it resists copper smith attacks.
Copper smith attack showed how n can be factor@adlynomial time if the high ordéd4 bits ofp are known.

It may be desirable to select a small decryptiopoeent d in order to improve the efficiency of
decryption
2.2 Attacks on RSA.

These are various attacks on RSA, which are ingeedmount to performance of the scheme. These

include
- Forward Search Attack - If the message space idlemnmedictable an adversary can decrypt such
cipher text after encrypting all possible messa@adting such message is a simple method to prevent
such attacks.
- Small Encryption Exponent: If e = 3 is used inrgption of say three entitles whose modulo arapn
and n, then A would send ¢ = m mod n, for i = 1,2,3. The eavesdroper can easily attidek
ciphertext using some mathematical assumptionssedgorandomly generated bitstring of appropriate
length could be appended to the plaintext mesgag@sto encryption.
- Common modulus attack: if distinct encryption/ggtion exponent pair (ed) is distributed by a
central authorities to each entries in the netwarly; entity in the network, any entity with knowtgd
of any pair can determine the decryption exponeh#dl entities in the network. An eavesdroppery(a
entity within the network) could recover any messagthin the network with high probability.
- Message concealing- It is possible in RSA to haweeasage sent without concealing. Such message
are easily attacked. There exist in RSA other k$taach as cycling, multiplication and factoring.
2.3 The RSA Problem

Against Chosen plaintext attack, the security oARi8s on the difficulty of computing the root of a
ciphertext ¢ modulo a composite integer n. Thith&s so-called RSA problem. This problem can béndedfas
this:
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gede.Cp-@-1)=1 .oz
gcdEe,Cp-1)(g- 1)= 1 N
(modN)
(modN)

InputN = pgwith p,q prime numbersg: an integer such th

OUTPUT the unique integem[] ZN satisfying me® = ¢

2.4 The Integer factorization problem

The difficulty of the RSA problem depends, in twion the difficulty of the integer factorization
problem. The definition of Integer FactorizatioroBlem (IF Problem) is as this. If INPUN: odd composite
integer with at least two distinct prime factors
OUTPUT prime p such thatN

In both problems, it is assumed that they arediffiunder properly chosen parameters.
3.0 Rabin cryptography

Rabin developed a public-key cryptosystem basethemlifficulty of computing a square root modulo
composite integer. Rabin’s work has a theoretjgartance. It provided the first provable securdy public-key
cryptosystems. The security of the Rabin cryptsysis exactly the intractability of the integectiarization
problem (just as in RSA) (Wembo, 2004)
The Rabin cryptosystem is specified in the alganithelow:
Key Generation

- choose two random prime numbers p and q sucﬂ M&F |q|
- computeN = pq
- pick a random integeb [, ¢

- publicize (,b) as public key and (p,q) as private key.
Encryption

To send a messag# [ ¢*N to a recipient in form of ciphertext. It is repeated thus

C « m(m+ P(mod N) form < N.

The decryption computation involves computing squaots moduldN. From the study of the square
rooting problem, the difficulty of this problem isomputationally equivalent to that of factoring N.
Predominnatly, there are four square roots gert:faden above. One of these square roots mizdthe original
plaintextm.
3.1 Security of Rabin public key cryptosystem

The task faced by a passive adversary is to reqoeémtext m from the corresponding ciphertext c.
This is precisely the square root problem assatiaith Rabin algorithm. Hence, assuming that fastpn is
computationally intractable, the Rabin public-kexey/ption is provably secure against a passive radvg

Moreover, even though Rabin Scheme is provably reeagainst a passive adversary, the scheme
succumbs to a chosen-ciphertext attack. It is slszeptible to the following attacks: small entiom exponent
e, forward search, multiplicative properties.
3.2 Redundancy

A drawback of Rabin’s public key scheme is that theeiver is faced with the task of selecting the
correct plaintext from among possibilities. Thiskaguity in decryption can easily be overcome iagbice by
adding pre-specified redundancy to the originainpét prior to encryption. For instance, the I&4tbits of the
message may be replicated. Then, with high prdibglexactly one of the four square roots, m,, m; and m
of a legitimate ciphertext ¢ will possess this medlancy. The receiver will select this as the pé&aihand if none
of the square roots of c possesses this redunddhey, the receiver should reject ¢ as fraudlemusT
redundancy is used to eliminate chosen-ciphertéatla

4.0 El Gamal cryptosystem

The ElI Gamal cryptosystem is an asymmetric keyygrizm, which is based on Diffie-Hellman key
agreement scheme. The scheme was invented by wrtidty cryptographer/Taher ElGamal in 1984. The
security of El Ganal lies in the computational idiffty of discrete logarithm problems (Mrezetsal, 1996).
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The ElGamal cryptosystem is specified in the athanibelow:
Key Generation
* choose a random prime number p’

e compute a random multiplicative generator elemeuit E,: ;
«  pick a random numbeix[], ¢ o188 private key;

«  compute the public-key by — g*(mod p);
* publicize (p,g,y) as the public-key, and keep the&sprivate key.

(* similar to the case of the Differ-Hellman keyolange protocol, a system-wide users may shareotmenon
public parameters (p,q).*)
Encryption

To send a plaintext message m < p to a receiverseéhder pickk Du ¢ -1 and computes ciphertext

pair (G, C,) as follows:
¢, — g‘(mod p)
c, « y“mmod p)

Decryption
To decrypt ciphertext (¢ c,), the receiver computefl « (‘2/ Cf (mod p). The decryption calculation does
restore the plaintexh. Since

¢ =(9)*=(g"" = y“= ¢/ n(mod p.

The division in the decryption step needs to udersded Euclid algorithm which is generally more
costly than multiplication. However, the receiveay avoid the division by computing

m < ¢, G (mod p).

One may verify that this decryption method workg, totice that —x here means p-1-x. all entriey ma
elect to use the same p and generator y, in whask p and y need not be published as part of thkcgey.
This results in public keys of smaller sizes. Addiional advantage of having a fixed base y ist tha
exponentiation can be expedited via pre-computatiord potential disadvantage of common system-wide
parameters is that large moduli p may be warranted.

4.1 Efficiency of EI Gamal

The encryption process requires two modular exptiatén, namelyg(modp) and ¢)* modp. These
exponentiations can be speed up by selecting ramponentk having some additional structure; for example,
exponents having low hamming weights. Howevere caust be taken that the number of exponents ge lar
enough to preclude a search via a baby-step gigmiadgorithm.

One shortcoming of EIGamal encryption is that thisrenessage expansion by a factor of 2. That is
ciphertext is twice as long as the correspondiragnxt. Randomization of encryption process in &t@l.
ElGamal encryption is one of many encryption schemkich utilizes randomization in the encryptiowgess.
Others include McEliece encryption and Goldwass#ld\l encryption, and Blum-Goldwassel probabilistic
encryption. Deterministic encryption scheme sushRSA may also employ randomization in order to
circumvent some attacks.

The fundamental idea behind randomized encryg#ohniques is to use randomization to increase the
cryptographic security of an encryption proceseulgh one or more of the following methods:

* Increasing the effective size of the plaintext ragesspace;
» Precluding or decreasing the effectiveness of ahp@intext attacks by virtue of a one-to-many
mapping of plaintext to ciphertext; and
* Precluding or decreasing the effectiveness ofsttzal attacks by leveling the a priori probability
distribution of inputs.
5.0 Comparative analysis
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Having considered the three cryptosystems in se@imne after the other, it becomes expedient to
carry out their comparative analysis. The analgsigploys some features that can be evaluated lmasdide
functionality and strength of each of the cryptdsgss. Thus, a platform is therefore created.

5.1.1 Comparative elements of public-key cryptosystems
There are some common denominators in public-kgytosystems which can conveniently be used for
comparisons. These include
* Mathematical Background
» Key Generation
e Encryption
» Decryption
e Implementation factors

=  Bandwidth
= Speed
= Size

. Security

*  Modification of plaintext

5.1.2 Mathematical background

The RSA cryptosystem derives its strength and #gaom the intractability of the integer factorizat
problem. The difficulty has made the scheme strengugh to withstand decades of cryptanalysis. irRab
cryptosystem has the advantage that the problemhach it is based is provably as hard as integetof&zation
problem. Thus, the security of Rabin Scheme reldieshe intractability of integer factorization ptem. The
ElGamal public key has its strength and securityhenintractability of the discrete logarithm preiu.
5.1.3 Key generation

All asymmetric cryptosystems use both public-keg @nivate key. The public key is necessary for
encoding plaintext (message), which can be pulidistwile only the recipient of the message mussesshe
private key. In Rabin cryptosystem, the public ke private key are (N,b) and (p,q) respectivétyRSA, the
public key and private key are (e,N) and (d,N) eetpely. The public key and private key in EIGama
cryptosystem are p,g,y and x respectively.
5.1.4  Encryption

For the encryption of Rabin cryptosystem, the pukky is used to produce a ciphertext out of the
plaintext. The ciphertext ¢ is determined by c=mod n. To encrypt message m in ElGamal cryptesysit is
required to invent some random number k and setigifeertext ¢ to be a pair, the ciphertext is repréed thus:

c= (g", m )}() Notice that you can encrypt the same messageaiy mifferent ways by choosing different
K's.

In case of RSA, to encrypt a message m to a ciktethe resulting equation@s= n* mod(n).
5.1.4 Decryption

To decode the ciphertext, the private key is neggssRabin cryptosystem decryption is represehied
the quadratic equatiam® + bm— ¢= 0(mod N). This involves computing square roots modulo Four
square roots are generated. In RSA, the decryjptiocess is represented by D(E(M)) = M ofMhod n = m.
In EIGamal, to decrypt ciphertext(c) translate tom — G,/ ¢ Xmod p).

5.1.5 Implementation patterns

The message expansion by factor of 2 in EIGamaitosystem is responsible for the consumption of
larger bandwidth. Thus, more memory space waizedilby the ciphertext. The implementation timesv@a
seconds. Also, in Rabin cryptosystem, sizeabl@Wwaith is consumed due to the elongation of thesags by
the addition of redundancy and the generation of Bguare roots. The implementation time for Rabif.9
second while that of RSA is 1.5 seconds. The R§Atosystem makes use of fast modular multiplicgtiast
modular exponentiation and Chinese remainder anduroes very moderate memory space.
5.1.6 Security
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The security of the RSA cryptosystem is based oo tmathematical problems namely the problem of
factoring very large number and the RSA problenme RSA problem is defined as the task of takingratis

modulo a composite n; recovering a value in suet t° = cmod n. RSA cryptosystem is faced with the
following attacks:

* Forward search attack

» Cyclic attacks

+  Common modulus attack

»  Attacks resulting from small encryption exponent e

»  Attacks resulting from small decryption exponent d

* Adaptive chosen-ciphertext attack

The great advantage of the Rabin cryptosystemaisttte code can only be broken if the code bre&ker
capable of efficiently factoring the public keyt Has been proven that decoding the Rabin cryptesyss
equivalent to the factorization problem, unlike RBA and will remain so until a general solution foe
factorization problem is discovered. An eavesdiogpvould have no chance today of break the code.
Rabin cryptosystem is susceptible to attacks sinuldhose on RSA and they include

» attack resulting from small encryption exponent e

» forward search attack

» adaptive chosen-ciphertext attack

The problem of breaking the ElGamal cryptosysteragaivalent to solving the Diffie-Hellman problem.
The security of EIGamal cryptosystem is based endikscrete logarithm problem. The ElGamal crypstsm,
utilizes randomization in the encryption proce$se idea behind randomization is to increase tiiptographic
security of an encryption process through one aenod the following methods.

* Increasing the effective size of the plaintext ragesspace;

» Precluding or decreasing the effectiveness of ahpsintext attacks by virtue of a one-to-many

mapping of plaintext to ciphertext;

» Precluding or decreasing the effectiveness ofstteal attacks by leveling the a priori probability

distribution of inputs.
RSA may also employ randomization in order to aimgant some attacks mentioned above.
5.1.7 Modification of plaintext message

The concept of salting of message is a vital phesmmm in RSA. Salting is simply a procedure, which
involves appending a generated pseudorandom foiigstf appropriate length to a plaintext to avetaek.
Small encryption exponent sometimes necessitategal Also, if a message space is small, salteglso
paramount. Salting the plaintext message in RabthRSA cryptosystems circumvent various attacks.

However, aside from salting, the addition of redamcl prior to encryption is another means of
averting attacks in Rabin encryption. Redundarscy iprocess which involves replicating a portionttod
original message longer before encryption. ElGantiites randomization in the encryption process.

6.0 Experimental setup and results

C++ programming language was used for the impleatiemt of the three algorithms on Pentium IV
1.5GHz processor. The three algorithms were stdigjeto the same plaintext message “Naation is
approaching and | look forward to traveling homeste my relations. | received a call two days froyndad to
come home for my holiday. Seeing you then. Haweetime. ...”

From our experiment, Rabin codes took 0.9 secongetterate ciphertext while RSA and ElGamal
consume the largest memory space and bandwidthugedhe ciphertext size is twice the plaintext.siRabin
consumes a little more memory space than RSA. i$has a result of the four different ciphertexhemted by
Rabin. ElGamal algorithm implementation was muabrencomplex than RSA and Rabin because of the pre-
computation required for generating the public &ag the complexity of discrete logarithm problems.

Rabin encryption is an extremely fast operatioritamly involves a single modular squaring. By
comparison, RSA encryption with e =3 takes one rfardigquaring. Rabin decryption is slower than gpiton,
but comparable in speed to RSA decryption. FinaliGamal required two modular exponentiations for
encryption.

Journal of the Nigerian Association of Mathematical Physics Volume 13(November, 2008)289 - 296
Comparative analysis M. S. Olajide, O. S. Adewald3. K. Alese and A. O. Adetunmbi J. of NAMP



7.0 Conclusion

The need for effective security on global netwocksinot be over-emphasised particularly now that
many security solutions come both in hardware aftivare modes. The choice of the right cryptosysteith
outstanding features will assist the security desig to enhance their activities. Rabin cryptasyshas features
that could stimulate the security designers to bechk its direction.

However, the evaluation of the three cryptosystéias yielded significant results. From the study,
some inherent features of the three schemes haguattly been exposed side by side. It is a knfasnthat
there are different users of the global networksach user has its own interest. The security desighould
consider the different interests to designing tiheitwork security solution tools. It may be ddslieato design
tools which employ ElGamal for the use of the railit and diplomatic corps to enhance the concealmint
message to ultimate level. Rabin could be depldgedesign tools, which have the propensity fovisg e-
commerce problems. Dairist, lovers and academiy sadtle for devices that employed RSA. In ounfat
research work, we intend to look at cryptanaly$ithe three cryptosystems in details.
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