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Abstract

Sequence data searching using the Euclidean distance between two
sequences as the only criterion for similarity suffers from some deficiencies:
It is sensditive to the vertical positions of the two sequences and so is not a
good measure of similarity in terms of their shapes. We propose a new
definition for similarity that overcomes these deficiencies. A fast searching
algorithm based on dynamic hashing, which guarantees that no qualified
data subsequence similar to the query sequence will be falsely rejected, isalso
proposed. The algorithm can also find data subsequences similar to the query
sequence with different scaling factors in both amplitude and time
dimensions. Several experiments were performed to evaluate the proposed
algorithm using both synthetic and real data (stock price movement).
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1.0 Introduction

There is an increasing demand for searching sulesegs similar to a given pattern in a time-series
database. The problem is stated as follows: Giverolkection of data sequenc&,D,,..D, and a query
sequenc&), we want to find all the data subsequenceB;dfl < i < n) that are similar t®. The technique for
sequence data searching can be used in a wide o&wsgeentific and business applications [1, 2,\8F cite an
example below:

In a stock market, stock prices are recorded ire tsaries. In technical analysis theory [4, 5], the
occurrence of a certain pattern in the shape @gaence such as the one caliedd and shoulders or double
tops and bottoms is a signal of the reversal of a stock price. Traustock market analyst may ask “find all the
companies whose stock prices are similar to a gingry sequence in shape” in order to predict tieré trend
of the stock price. Moreovetime-seriessearching techniques can be used in data minj@jferies such as
“find all subsequences from the time-series dagdsch are similar to the query sequence in shagsy help
to discover new knowledge.

11 Problem definition and formulation

The dissimilarity of sequences is usually measbretheEuclidean distance [1, 2]. Two sequences are
said to be similar to each other if the Euclide#tashice between them is less than or equal to aspeeified
error bound. However, the problem of Euclideanadise is that it does not measure the dissimilasfty
sequences by their shape directly. If the erromblas not large enough, two sequences that ardlgthe same
in shape but with different vertical positions niagy classified as dissimilar. However, if the efbound is set
larger, dissimilar sequences will be reported measily. It is also mentioned in [3, 7, 8, 9] th#her distance
measures are needed for different applications.

Consider the query sequer@e(5, 10, 6, 12, 4) and the two data seque#cds, 5, 7, 10, 11), B: (15,
20, 16, 22, 14) in Figure 1.1 and assume thattoe bound £ is set to 15. Note th& is produced by shifting
Q upward for 10 units. Using Euclidean distancehas distance function, we have Distang &) = 8.9 and
Distance Q, B) = 22.4. Thus, by the similarity definition of Higean distanceA is reported asimilar
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to Q, butB is rejected. Howeve# is not similar toQ in shape. On the other hari®ljs definitely similar toQ
because they are of the same shape. From this éxangnotice that Euclidean distance is not a goedsure
of dissimilarity when shape is the principal corsation. The matching results are easily affectethb vertical
positions of the sequences.

2 T T T T

Query Sequence @ ——
Data Sequence A +
Data Sequence 8 @

m.

o L L L L L
0 1 2 3 4 5 -3

Figure 1.1: Deficiency of the similarity definition by Euclidealistance.

In this paper, we suggest the use of ghedlient of data sequences as the criterion for similafiityo
seguences are said to be similar if the gradidferdnce for each pair of corresponding segment®isided by
a predefined threshold. Since the directional mifation of sequence data is taken into consideratios
dissimilarity between sequences in terms of thbape can be measured. Moreover, the results willbeo
affected by the vertical positions of the data seges. Thus, this definition is simple yet powedaobugh to
meet the requirements of many applications, whieeeshape of the data sequences is the main cootéhne
similarity. In addition to the new definition ofrsilarity, a hash-based algorithm for time-seriearsleing is
proposed in this paper. Given a query, the algoritian efficiently search for subsequences whictsiandar to
the query in shape with any scaling factor. Th@w@tlgm also guarantees that no qualified subsequentalsely
rejected.

2.0 Sequence similarity

Our definition of sequence similarity is motivatey the properties of similar triangles. The sidglan
side similarity theorem states that two triangles similar if two pairs of corresponding sides preportional
and the included angle is equal. This theorem @applied in sequence data searching if we ussldpes of
segments to measure the similarity of two sequences
A data sequend® of length n is an ordered setrofeal numbersD; denotes théh data oD. D;, Diyy,...,.D;, 1<
i <j <n, denotes the subsequenceDofrom dataDi D; and the index of this subsequence is defined to Ae
segment of a sequence is a line joining two cortsecdata points in the sequence. The gradient sggment
formed by datd;, D;.1, is Di+1 - D)/((i + 1) —i) i.e.Di+1 - D;. An example of data and query sequences is shown

in Figure 2.1.
Two segmentd;, D;,; and Q,, Q..; are said to be similar if their gradient differensatisfies the
following equation: -e<(Dit1-D) - (Qu-Q) e (2.1)

whereg is a user-defined threshold. In addition, two ssmes with the same number of data points aretc#id
similar if the gradients of their correspondingreegts are bounded hylt is formally stated in Definition 2.1.
Definition 2.1

Two sequences D,D,K D,, and QQ,K Q,, aregradient similar if
-£<(D;-D_)-(Q-Q)<¢ Li:2<ism (2.2)

Moreover, two sequences can also be similar wikhaing factor. The definition of scaling similar formally
stated in Definition 2.2.
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Definition 2.2
Two sequences D,D,K D, and QQ,K Q,,, arelinear scale similar with a scaling factor € if
forall i, 2<1 < Sm, oneof the conditions below is satisfied:

Dl Sequietice

L W Cuery Sequeice
."-_i.'

T

L 105

Figure 2.1: Example of a database sequence and a query sequence.

-¢<(D -D,)- (Q'i/s-| _Qi/sh) <&, S=1 (scale up) (2.3)
=€ < (D)= Drijs) = (Q-QL) < &, 0<s<10<s<l (scale down) (2.4)
Note thatDefinition 2.1 is only a special case Dé&finition 2.2 in which the scaling factor is one.

3.0 Hashing

When a bucket with indices is searched, in tofatlata subsequences need to be retrieved fromghke di
to check whether they are similar to the query sage. It is expensive to access the disknes. Thus, we
present a better method to solve this problem &ii&@e 3.4.

3.1 Dynamic hashing

The static hashing algorithm is a good algorithm databases that are not expanding. However, in
financial markets and scientific databases, new deat collected day by day. As the amount of dateeases,
the number of indices for each bucket increasesis€guently, the number of false alarms increasdsttam
performance is degraded. That is the reason whentend the static hashing algorithm to an exterelabthing
algorithm [10, 11].

For extendable hashing, buckets are created on rdkm@&s in the static hashing algorithm, a
subsequence of lengkht 1 is mapped to a feature vectorkdbits. However, instead of using &lbits initially,
we usei bits, 0< i <k, to represent the offset in the bucket addrede.t#ithough we are using extendable
hashing, it is necessary to choose a maximum value In our implementation, we chookeo be 32. Indeed,
2% buckets means there are over 4 billion bucketschwis already a large number for any databasendJsie
Nigerian Stock Exchange Index as an example, assatie bucket contains one data point only and ttieat
system collects one data point daily, so we neeghillibn years to fill up all the buckets.

For insertion, the firsti bits of the 32 bit feature vector are used to e bucket. The index is
inserted if the bucket is not full. Otherwise, weishsplit the bucket and redistribute the indidaéhen the
insertion procedure stops, each entry of the buatidtess table is usinigbits as an offset pointing to a bucket.
For searching, thé bits determining vector with minimum unknown sthits is used to locate bucket entries in
the bucket address table. Then the bucket(s) caddmified by following the pointers in the buckettries.
Data subsequences represented by the indices imubket(s) are retrieved and compared with the yquer
sequence.

In real applications such as the one used to amalyggk data, deletion of data from a sequencarés r
However, it is straightforward. A data sequence loardeleted by removing all the indices of its esponding
subsequences from the buckets. The buckets thaigeempty are also removed.
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Since the hash table only stores the indices whaht to the subsequences stored externally in the
disk, the size of the hash tabled&), wheren is the length of data sequences. It is smallar that of arR-tree
which requireO(nk) storage as mentioned before, whiere the dimension of the -tree.

3.2 Noise class

Obviously, the distribution of indices among theckets will affect the performance of the algorithim.this
section, we argue by the concept of noise clagghikehashing algorithm will have a good distribatof indices
such that it is efficient for most of the real apations.

It is mentioned in [12] that a lot of real data Isums stock movements and exchange rates can be
modelled by brown noise which has a skewed engyggtaum in the frequency domain. This class ofebigs a
property that after the sequences are transforryediderete Fourier transform, the first few coatfitts will
contain most of the energy. Therefore, these finst coefficients give a good estimation of the attauclidean
distance between two sequences [2].

However, when a sequence is represented by théegtduketween two consecutive data, it means that
we have taken the first derivative on the sequeBgetaking the first derivative, the data sequenaebrown
noise will be transformed to sequences of whites&oilnstead of a skewed energy spectrum, whitgerttas a
flat energy spectrum in the frequency domain. Unber situation, the energy of the data sequendkésot be
concentrated on first few coefficients. Therefaeod performance will not be expected if the methiod[1, 2]
are used.

On the other hand, since the energy spectrum ofshige noise is flat, the indices of the hashing
algorithm will be evenly distributed among the beisk This means the expected number of data subisegsiin
every bucket is the same. The hashing algorithithig case will have an optimal performance. Theesféor
most real applications, our hashing algorithm \élve a better performance because of the favouraii$e
class of the data.

3.3 Hashing with scaling

In this section, we describe how to search fordirecale similar subsequences. First, the useifigsec
the range of scaling factors. For each scalingf&tithin the range, the feature vector of the qusaguence is
scaled byS and then thé-bit determining vector is extracted from the régsgl feature vector with a minimum
number of bits in the unknown state. The deternginiactor is used as an offset to the bucket addadxds. All
indices in the buckets pointed to by the bucketreskl table entries are collected but only thosex dat
subsequences satisfyilgfinition 2.1 are reported.

For instance, suppose the window sizes 6 and a query sequen@ewith its determining vectoy =
1001V is given. If the user wants to find all the simidubsequences with scaling factolds first scaled up by
2 and the bit stream 11000011 is produced. The®Qdd is extracted and the bucket pointed to byethtey
110000 (48) is searched.

However, if the range of scaling factors specifigdthe user is 0 < s 2, not all scaling factors are
possible forQ. For instanceQ) cannot be matched with a data subsequence withlag factor such as 0.5 or
1.2. Thus, we need a method to calculate the spbsdible scaling factors for a query from a raafyscaling
factors. The method is presented in the following.

Given a determining vector of a query sequenceowitlany unknown state bit, we first construct & lis
containing the length of each consecutive run af & 1's. For example, the list of a query sequenith
determining vector 00111100 is {2; 4; 2}. Then treatest common divisor (GCD) among the elementheof

list is calculated. Assum& and S, are the lower and upper bound of the scaling faatespectively an@ is
the GCD. The set of possible scaling factors wéll b

{'E:smsis%c,iDN}-

For example, the list of a que@/with determining vector 00111100 is {2; 4; 2}. TB&D among the
elements is 2. Thus, the set of possible scaligpfa of Q is {0:5; 1:0; 1:5; 2} for 0 < < 2. For those
determining vectors with some bits in unknown staédl the possible extensions will be searched ekample,
determining vector 110*110* has four extensionschhare 11001100, 11001101, 11011100 and 11011101.
Thus, 11001100 is searched with the set of scdtinprs {0:5; 1:0; 1:5; 2} while the other threeeagearched
with the set of scaling factors {1; 2} for 0 <.

3.4 Reducing disk accesses
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When a bucket with indices is searched, in tofatlata subsequences need to be retrieved fromghke di
to check whether they are similar to the query sega. We develop a scheme to minimize the numbdrs&f
accesses. The scheme consistgabidation Phase andUnion Phase, which are separately described below.

3.4.1  Validation phase

We observe that when more than one determiningwean be extracted from a query, the number of
disk accesses can be reduced by comparing theegdiith their possible positions at the query. &ample, if
the query with bit stream **110*001** is searcheddek = 3, two determining vectors 110 and 001 can be
extracted. Then, two lists of indices in bucket® 18) and 001 (1) are collected. Suppose thewg#ts addresses
6 and 1 are {1; 5} and {9; 13} respectively, sint®0 and 001 are at positions 3 and 7 in the oridittastream,
their position difference is 4. Thus, if an indexdne list cannot match with another index in aapiist with
difference equal to 4, it is invalid and can be ogad. In this example, index 1 in the first

list and index 13 in the second list can be remaxed only those pages containing subsequenceglioemn5
and 9 are retrieved. The steps for Watidation Phase to remove invalid indices is as follows.

Q) Given a quenQ, it is converted to a bit stream with three stdded or *. Then, according to the
window sizek, the set of all the possible determining vecturss extracted.
2) For eachy, € V, a list of indiced; is collected from the corresponding bucket. Let L |;: v € V} and

assume that eadhis sorted in ascending order. Then the invalidcesl from each; are removed. This can be
done by comparing the indices in the lists in adzenorder similar to merge sort. The worst casamexity of

this operation i©(N), whereN is the total number of indices in all the lists.

Union Phase. After the invalid indices are removed, we maguee more disk accesses by the following
observations.

Q) Some subsequences pointed to by the indick®isame bucket may be located in the same pagg. Th
can be retrieved by just one disk access whenubkedb is searched.

2) When a determining vector with unknown bitssmarched, more than one bucket will need to be
accessed. Some subsequences pointed to by thedndidifferent buckets may be located in the spage.
According to the two observations above, the stepthe Union Phase to further reduce the disk accesses are as
follows.

Q) For eachl; from Validation Phase, find out the set of pagdg at which the subsequences of the
corresponding indices inare located.

2) The final set of pages which needs to be aeceist);P;.

4.0 Experiments
4.1 Similarity definition

In this section, we will show the difference betwethe traditional similarity definition based on
Euclidean distance and the slope (gradient) siitylaefinition we proposed. Stock data of the NigerStock
Exchange Index from January 2, 1986 to Decembe2@U5 inclusive are used.
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Query »— |

Query -+
Angwer -+ Answer (shifled down 20 unig) —+-

a0r i 1 30k

2

o
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(@) Original Sequence (b) The answer sequence is shifted down byria8 u
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Supposee is 15. In Figure 4.1a, a query sequence and alsaaiphe answer sequences by slope

Figure 4.1: A sample result.

similarity are shown. If Euclidean distance is ysbeé answer sequence shown will not be reportkd.réason
is they have different vertical positions and theslilean distance between them is greater thatl@®ever, it
is easier to observe in Figure 4.1b that they ateadly similar in shape when the answer sequesahifted

down 20 units. The other example is shown in Figuge

SupposeX andY are sequences of the same length. It is saicath@ss happens X is slope similar to
Y butX is not Euclidean similar t¥. Then, Figure 4.3 shows the number of misses whesis varied from 10
to 20. In each experiment, 100 queries are sea@h@dhe average number of misses is recorded.

] 5 i 15 o

(a) Original Sequence
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Angwit (shilted up 70 nits) -+

N

b
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§ 10 15 20 2

(b) The answer sequence is shifted down by
units

Figure 4.2 A sample result.
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Figure 4.3: The number of misses that is slope similar to lotit 1f
Euclidean similar to the queries (real data).

4.2 Performance evaluation

We perform several experiments to evaluate ourihgsstheme. We compare our hashing scheme to
the scheme of sequential search d@uttee. The experiments are performed on a Sun SRAREr2000
workstation running Solaris 2.5.1 with 512 Mbytdésr@ain memory.

Since the extendable hashing scheme is more gemeradxclude the static hashing scheme from the
performance study. The lengths of all the quersdware between 10 and 50 and the dimension d*-thee is
set to 50 in order to avoid false alarms and edis& access. The page size for data and directageis 4
Kbytes.

Experiments are performed on both synthetic andl data. For the experiments on real data, the
Nigerian Stock Exchange Index from January 2, 188@ecember 30, 2005 is used. Synthetic data are
generated using a random walk which is widely useshodel stock data [12, 13]. The first data pokgtof the
random walk is chosen randomly. Then each subseéglaa pointx .;, iS generated by addingx to the
previous oney;, whereAx is a random variable distributed uniformly in tla@ge between -500 and +500, i.e.

X +1= X% + AX. In each of the experiments discussed below,dL@Jies are searched and the average result is
used to evaluate the searching schemes.

First, we evaluate the CPU time of the three sclseorereal data by varying The range of the
gradient of the real data is from -100 to +100.weswant to limit the error bound to 20% of the plolesrange,
theg is varied from O to 20. The real data set contdB®9 points which is small enough for the thrdeegtes to
run on the main memory without disk access. Thaltrés shown in Figure 4.4. We can see that thénings
scheme is faster than the other two schemes. Whe® (exact match), it runs about 100 and 23 tifasger
than the sequential ariRitree schemes, respectively. TRdree searching scheme consumes more CPU time
than the hashing scheme because the overlap diréory ofR-tree is very high even when the dimension is
larger than 10 [14]. For each internal node visitedny rectangles intersect with the query receagd a lot of
branches need to be traversed. This meanR-thee scheme performs more calculations and becslnegr.
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Figure 4.5: Number of page accesses against epsilon|
Figure 4.4CPU-time against epsilon (real data). (synthetic data).

In real applications, the system usually storeargel amount of time sequences. It is impossiblehfer
applications to load all their data to the main memThus, we carry out an experiment to studyphging
behaviour of the schemes. Since the real datssseitilarge enough, a set of synthetic data (018°points)
generated using a random walk is used. Again,iteeZ0% of the possible error range is used. Tdlaevofe is
varied from 0 to 100. For the sequential search,tbmber of page accesses is constantly equal.3M (8
4)/4Kbytes € 293) pages because it has to access all the fagesery query. Figure 4.5 shows the number of
page accesses of the hashing Britee searching schemes. The number of page ascefsdeR-tree scheme is
proportional to the value afand is consistently larger than that of the hagktheme.

The hashing scheme has only 65.71 and 129.91 magsses at = 0 ande = 100 respectively. This
result can also be explained by the high overlagiraictories inR-tree. We plot the percentage of node accesses
to the total number of nodes of the wh&éree in Figure 4.6. When= 0 (exact match), it still requires 1.8%
node access. This high node access percentage ts the fact that too many rectangles intersettt thie query
rectangle during the searching and many branchestbéabe traversed.

In another experiment, we want to study the eftddhe length of queries on the hashing &atlee
schemes. We vary the length of the queries and &eep0. The number of page accesses of the hashthB-a
tree schemes on real data are compared. The igshibwn in Figure 4.7.

The numbers of page accesses of the hashing scli@nless than that of tHe -tree scheme in all
lengths examined. Moreover, for both schemes, thmber of page accesses decreases when the lentth of
queries increases. This can be explained as folléws the hashing scheme, when the query is lorter,
probability of constructing a determining vectorttwia lower number of unknown bits increases. Thes t
number of bucket accesses decreases. FoRtheee scheme, when the length of queries apprsatte
dimension of theR-tree (it is 50 here), a greater number of dimemsiof the rectangle in each internal node
visited are compared. Therefore, more branchebearuned out and the number of page accessesadesre
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total number of nodes (synthetic data). query sequence (real data).

5.0 Conclusion

Sequence data searching algorithms are in high ménEhe Euclidean distance is sensitive to the
vertical positions of the two sequences. It is aleba good measure of similarity in terms of tlekiapes. Thus,
we propose a new definition for similarity. The pegs of comparing the gradients is insensitivénéoviertical
positions of the sequences and all similar sequefueend are similar in shape. In addition to thes mkefinition,
we also propose a fast searching algorithm basetymamic hashing. The algorithm guarantees thajuadified
data subsequence similar to the query sequencéevifalsely rejected. The proposed algorithm can &hd
data subsequences similar to the query sequenbedifferent scaling factors. Several experimentsewadso
performed to evaluate the proposed algorithm ubity synthetic and real data. The advantage oh#éshing
algorithm is simple, yet efficient enough to sedahtime-series sequences.
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