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Abstract 
 

Sequence data searching using the Euclidean distance between two 
sequences as the only criterion for similarity suffers from some deficiencies: 
It is sensitive to the vertical positions of the two sequences and so is not a 
good measure of similarity in terms of their shapes.  We propose a new 
definition for similarity that overcomes these deficiencies.  A fast searching 
algorithm based on dynamic hashing, which guarantees that no qualified 
data subsequence similar to the query sequence will be falsely rejected, is also 
proposed. The algorithm can also find data subsequences similar to the query 
sequence with different scaling factors in both amplitude and time 
dimensions. Several experiments were performed to evaluate the proposed 
algorithm using both synthetic and real data (stock price movement). 
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1.0 Introduction 

There is an increasing demand for searching subsequences similar to a given pattern in a time-series 
database. The problem is stated as follows: Given a collection of data sequences D1,D2,..,Dn and a query 
sequence Q, we want to find all the data subsequences of Di (1 ≤ i ≤ n) that are similar to Q. The technique for 
sequence data searching can be used in a wide range of scientific and business applications [1, 2, 3]. We cite an 
example below: 

In a stock market, stock prices are recorded in time series. In technical analysis theory [4, 5], the 
occurrence of a certain pattern in the shape of a sequence such as the one called head and shoulders or double 
tops and bottoms is a signal of the reversal of a stock price. Thus, a stock market analyst may ask “find all the 
companies whose stock prices are similar to a given query sequence in shape” in order to predict the future trend 
of the stock price. Moreover, time-series searching techniques can be used in data mining [6]. Queries such as 
“find all subsequences from the time-series database which are similar to the query sequence in shape” may help 
to discover new knowledge. 
1.1 Problem definition and formulation 

The dissimilarity of sequences is usually measured by the Euclidean distance [1, 2]. Two sequences are 
said to be similar to each other if the Euclidean distance between them is less than or equal to a user-specified 
error bound. However, the problem of Euclidean distance is that it does not measure the dissimilarity of 
sequences by their shape directly. If the error bound is not large enough, two sequences that are exactly the same 
in shape but with different vertical positions may be classified as dissimilar. However, if the error bound is set 
larger, dissimilar sequences will be reported more easily. It is also mentioned in [3, 7, 8, 9] that other distance 
measures are needed for different applications. 

Consider the query sequence Q: (5, 10, 6, 12, 4) and the two data sequences A: (6, 5, 7, 10, 11), B: (15, 
20, 16, 22, 14) in Figure 1.1 and assume that the error bound ε  is set to 15. Note that B is produced by shifting 
Q upward for 10 units. Using Euclidean distance as the distance function, we have Distance (Q, A) = 8.9 and 
Distance (Q, B) = 22.4. Thus, by the similarity definition of Euclidean distance, A is reported as similar 
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to Q, but B is rejected. However, A is not similar to Q in shape. On the other hand, B is definitely similar to Q 
because they are of the same shape. From this example, we notice that Euclidean distance is not a good measure 
of dissimilarity when shape is the principal consideration. The matching results are easily affected by the vertical 
positions of the sequences. 
 

 
Figure 1.1: Deficiency of the similarity definition by Euclidean distance. 

 
In this paper, we suggest the use of the gradient of data sequences as the criterion for similarity. Two 

sequences are said to be similar if the gradient difference for each pair of corresponding segments is bounded by 
a predefined threshold. Since the directional information of sequence data is taken into consideration, the 
dissimilarity between sequences in terms of their shape can be measured. Moreover, the results will not be 
affected by the vertical positions of the data sequences. Thus, this definition is simple yet powerful enough to 
meet the requirements of many applications, where the shape of the data sequences is the main concern of the 
similarity. In addition to the new definition of similarity, a hash-based algorithm for time-series searching is 
proposed in this paper. Given a query, the algorithm can efficiently search for subsequences which are similar to 
the query in shape with any scaling factor. The algorithm also guarantees that no qualified subsequence is falsely 
rejected. 

 
2.0 Sequence similarity 

Our definition of sequence similarity is motivated by the properties of similar triangles. The side-angle-
side similarity theorem states that two triangles are similar if two pairs of corresponding sides are proportional 
and the included angle is equal. This theorem can be applied in sequence data searching if we use the slopes of 
segments to measure the similarity of two sequences. 
A data sequence D of length n is an ordered set of n real numbers. Di denotes the ith data of D.  Di, Di+1,…,Dj, 1 ≤ 
i < j ≤ n, denotes the subsequence of D from data Di  Dj and the index of this subsequence is defined to be i. A 
segment of a sequence is a line joining two consecutive data points in the sequence. The gradient of a segment 
formed by data Di, Di+1, is (Di+1 - Di)/((i + 1) – i) i.e. Di+1 - Di.  An example of data and query sequences is shown 
in Figure 2.1.  

Two segments Di, Di+1 and Qi, Qi+1 are said to be similar if their gradient difference satisfies the 
following equation:    - ε ≤ (Di+1 - Di) – (Qj+1 - Qj) ≤ ε   (2.1) 
where ε is a user-defined threshold. In addition, two sequences with the same number of data points are said to be 
similar if the gradients of their corresponding segments are bounded by ε. It is formally stated in Definition 2.1. 
Definition 2.1 

Two sequences mDDD Κ21  and mQQQ Κ21  are gradient similar if  

 miiQQDD iiii ≤≤∀≤−−−≤− −− 2:)()( 11 εε    (2.2) 

Moreover, two sequences can also be similar with a scaling factor. The definition of scaling similar is formally 
stated in Definition 2.2. 
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Definition 2.2 

Two sequences smDDD Κ21  and mQQQ Κ21  are linear scale similar with a scaling factor s  if 

for all i , smi ≤≤2 , one of the conditions below is satisfied: 

 
 
 

 
Figure 2.1: Example of a database sequence and a query sequence. 

 

   
1,)()( 1//1 ≥≤−−−≤− −− sQQDD sisiii εε  (scale up)   (2.3) 

   
10,)()( 11// <<≤−−−≤− −− sQQDD iisisi εε  0 < s <1 (scale down) (2.4) 

Note that Definition 2.1 is only a special case of Definition 2.2 in which the scaling factor is one. 
 
3.0 Hashing 

When a bucket with I indices is searched, in total I data subsequences need to be retrieved from the disk 
to check whether they are similar to the query sequence. It is expensive to access the disk I times. Thus, we 
present a better method to solve this problem in Section 3.4. 
3.1 Dynamic hashing 

The static hashing algorithm is a good algorithm for databases that are not expanding. However, in 
financial markets and scientific databases, new data are collected day by day. As the amount of data increases, 
the number of indices for each bucket increases. Consequently, the number of false alarms increases and the 
performance is degraded. That is the reason why we extend the static hashing algorithm to an extendable hashing 
algorithm [10, 11]. 

For extendable hashing, buckets are created on demand. As in the static hashing algorithm, a 
subsequence of length k + 1 is mapped to a feature vector of k bits. However, instead of using all k bits initially, 
we use i bits, 0 ≤ i ≤ k, to represent the offset in the bucket address table. Although we are using extendable 
hashing, it is necessary to choose a maximum value for k. In our implementation, we choose k to be 32. Indeed, 
232 buckets means there are over 4 billion buckets, which is already a large number for any database. Using the 
Nigerian Stock Exchange Index as an example, assume each bucket contains one data point only and that the 
system collects one data point daily, so we need 11 million years to fill up all the buckets. 

For insertion, the first i  bits of the 32 bit feature vector are used to locate a bucket. The index is 
inserted if the bucket is not full. Otherwise, we must split the bucket and redistribute the indices. When the 
insertion procedure stops, each entry of the bucket address table is using i  bits as an offset pointing to a bucket. 
For searching, the i  bits determining vector with minimum unknown state bits is used to locate bucket entries in 
the bucket address table. Then the bucket(s) can be identified by following the pointers in the bucket entries. 
Data subsequences represented by the indices in the bucket(s) are retrieved and compared with the query 
sequence. 

In real applications such as the one used to analyse stock data, deletion of data from a sequence is rare. 
However, it is straightforward. A data sequence can be deleted by removing all the indices of its corresponding 
subsequences from the buckets. The buckets that become empty are also removed. 
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Since the hash table only stores the indices which point to the subsequences stored externally in the 
disk, the size of the hash table is O(n), where n is the length of data sequences. It is smaller than that of an R-tree 
which requires O(nk) storage as mentioned before, where k is the dimension of the R -tree. 
3.2 Noise class 
Obviously, the distribution of indices among the buckets will affect the performance of the algorithm. In this 
section, we argue by the concept of noise class that the hashing algorithm will have a good distribution of indices 
such that it is efficient for most of the real applications. 

 
 
 
 

It is mentioned in [12] that a lot of real data such as stock movements and exchange rates can be 
modelled by brown noise which has a skewed energy spectrum in the frequency domain. This class of noise has a 
property that after the sequences are transformed by discrete Fourier transform, the first few coefficients will 
contain most of the energy. Therefore, these first few coefficients give a good estimation of the actual Euclidean 
distance between two sequences [2]. 

However, when a sequence is represented by the gradient between two consecutive data, it means that 
we have taken the first derivative on the sequence. By taking the first derivative, the data sequences of brown 
noise will be transformed to sequences of white noise.  Instead of a skewed energy spectrum, white noise has a 
flat energy spectrum in the frequency domain. Under this situation, the energy of the data sequences will not be 
concentrated on first few coefficients. Therefore, good performance will not be expected if the methods in [1, 2] 
are used. 

On the other hand, since the energy spectrum of the white noise is flat, the indices of the hashing 
algorithm will be evenly distributed among the buckets. This means the expected number of data subsequences in 
every bucket is the same. The hashing algorithm in this case will have an optimal performance. Therefore, for 
most real applications, our hashing algorithm will have a better performance because of the favourable noise 
class of the data. 
3.3 Hashing with scaling 

In this section, we describe how to search for linear scale similar subsequences. First, the user specifies 
the range of scaling factors. For each scaling factor S within the range, the feature vector of the query sequence is 
scaled by S and then the k-bit determining vector is extracted from the resulting feature vector with a minimum 
number of bits in the unknown state. The determining vector is used as an offset to the bucket address table. All 
indices in the buckets pointed to by the bucket address table entries are collected but only those data 
subsequences satisfying Definition 2.1 are reported. 

For instance, suppose the window size, k, is 6 and a query sequence Q with its determining vector V = 
1001V is given. If the user wants to find all the similar subsequences with scaling factor 2, V is first scaled up by 
2 and the bit stream 11000011 is produced. Then, 110000 is extracted and the bucket pointed to by the entry 
110000 (48) is searched. 

However, if the range of scaling factors specified by the user is 0 < s ≤ 2, not all scaling factors are 
possible for Q. For instance, Q cannot be matched with a data subsequence with a scaling factor such as 0.5 or 
1.2. Thus, we need a method to calculate the set of possible scaling factors for a query from a range of scaling 
factors. The method is presented in the following. 

Given a determining vector of a query sequence without any unknown state bit, we first construct a list 
containing the length of each consecutive run of 0’s or 1’s. For example, the list of a query sequence with 
determining vector 00111100 is {2; 4; 2}. Then the greatest common divisor (GCD) among the elements of the 

list is calculated. Assume ls  and us  are the lower and upper bound of the scaling factors respectively and C is 

the GCD. The set of possible scaling factors will be 
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For example, the list of a query Q with determining vector 00111100 is {2; 4; 2}. The GCD among the 
elements is 2. Thus, the set of possible scaling factors of Q is {0:5; 1:0; 1:5; 2} for 0 < s ≤ 2.  For those 
determining vectors with some bits in unknown states, all the possible extensions will be searched. For example, 
determining vector 110*110* has four extensions which are 11001100, 11001101, 11011100 and 11011101. 
Thus, 11001100 is searched with the set of scaling factors {0:5; 1:0; 1:5; 2} while the other three are searched 
with the set of scaling factors {1; 2} for 0 < s ≤ 2. 
3.4 Reducing disk accesses 
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When a bucket with I indices is searched, in total I data subsequences need to be retrieved from the disk 
to check whether they are similar to the query sequence. We develop a scheme to minimize the number of disk 
accesses. The scheme consists of Validation Phase and Union Phase, which are separately described below. 
3.4.1 Validation phase 

We observe that when more than one determining vector can be extracted from a query, the number of 
disk accesses can be reduced by comparing the indices with their possible positions at the query. For example, if 
the query with bit stream **110*001** is searched and k = 3, two determining vectors 110 and 001 can be 
extracted. Then, two lists of indices in buckets 110 (6) and 001 (1) are collected. Suppose the lists with addresses 
6 and 1 are {1; 5} and {9; 13} respectively, since 110 and 001 are at positions 3 and 7 in the original bit stream, 
their position difference is 4. Thus, if an index in one list cannot match with another index in another list with 
difference equal to 4, it is invalid and can be removed. In this example, index 1 in the first  

 
 

list and index 13 in the second list can be removed and only those pages containing subsequences of indices 5 
and 9 are retrieved. The steps for the Validation Phase to remove invalid indices is as follows. 
(1) Given a query Q, it is converted to a bit stream with three states 0, 1 or *. Then, according to the 
window size k, the set of all the possible determining vectors, V, is extracted. 
(2) For each vi Є V, a list of indices li is collected from the corresponding bucket. Let L = {  li: vi Є V} and 
assume that each li is sorted in ascending order. Then the invalid indices from each li are removed. This can be 
done by comparing the indices in the lists in ascending order similar to merge sort. The worst case complexity of 
this operation is O(N), where N is the total number of indices in all the lists. 
Union Phase.  After the invalid indices are removed, we may reduce more disk accesses by the following 
observations. 
(1) Some subsequences pointed to by the indices in the same bucket may be located in the same page. They 
can be retrieved by just one disk access when the bucket is searched. 
(2) When a determining vector with unknown bits is searched, more than one bucket will need to be 
accessed. Some subsequences pointed to by the indices in different buckets may be located in the same page. 
According to the two observations above, the steps for the Union Phase to further reduce the disk accesses are as 
follows. 
(1) For each li from Validation Phase, find out the set of pages Pi at which the subsequences of the 
corresponding indices in li are located. 
(2) The final set of pages which needs to be accessed is UiPi. 
 
4.0 Experiments 
4.1 Similarity definition  

In this section, we will show the difference between the traditional similarity definition based on 
Euclidean distance and the slope (gradient) similarity definition we proposed. Stock data of the Nigerian Stock 
Exchange Index from January 2, 1986 to December 30, 2005 inclusive are used. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

(a) Original Sequence 
 

 
(b)     The answer sequence is shifted down by 20 units 
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Figure 4.1: A sample result. 
 
 Suppose ε is 15. In Figure 4.1a, a query sequence and a sample of the answer sequences by slope 
similarity are shown. If Euclidean distance is used, the answer sequence shown will not be reported. The reason 
is they have different vertical positions and the Euclidean distance between them is greater than 15. However, it 
is easier to observe in Figure 4.1b that they are actually similar in shape when the answer sequence is shifted 
down 20 units. The other example is shown in Figure 4.2. 

Suppose X and Y are sequences of the same length. It is said that a miss happens if X is slope similar to 
Y but X is not Euclidean similar to Y. Then, Figure 4.3 shows the number of misses when the ε is varied from 10 
to 20. In each experiment, 100 queries are searched and the average number of misses is recorded. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.2 A sample result. 

 
(b) The answer sequence is shifted down by 20 

units 
 

 
 

(a) Original Sequence 
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4.2 Performance evaluation 

We perform several experiments to evaluate our hashing scheme. We compare our hashing scheme to 
the scheme of sequential search and R-tree. The experiments are performed on a Sun SPARCcenter2000 
workstation running Solaris 2.5.1 with 512 Mbytes of main memory. 

Since the extendable hashing scheme is more general, we exclude the static hashing scheme from the 
performance study. The lengths of all the queries used are between 10 and 50 and the dimension of the R-tree is 
set to 50 in order to avoid false alarms and extra disk access. The page size for data and directory pages is 4 
Kbytes. 

Experiments are performed on both synthetic and real data. For the experiments on real data, the 
Nigerian Stock Exchange Index from January 2, 1986 to December 30, 2005 is used. Synthetic data are 
generated using a random walk which is widely used to model stock data [12, 13]. The first data point, x0, of the 
random walk is chosen randomly. Then each subsequent data point, xi +1, is generated by adding ∆x to the 
previous one, xi, where ∆x is a random variable distributed uniformly in the range between -500 and +500, i.e.  

 
 

 
xi +1 = xi + ∆x.  In each of the experiments discussed below, 100 queries are searched and the average result is 
used to evaluate the searching schemes. 

First, we evaluate the CPU time of the three schemes on real data by varying ε. The range of the 
gradient of the real data is from -100 to +100. As we want to limit the error bound to 20% of the possible range, 
the ε is varied from 0 to 20. The real data set contains 4939 points which is small enough for the three schemes to 
run on the main memory without disk access. The result is shown in Figure 4.4. We can see that the hashing 
scheme is faster than the other two schemes. When ε is 0 (exact match), it runs about 100 and 23 times faster 
than the sequential and R-tree schemes, respectively. The R-tree searching scheme consumes more CPU time 
than the hashing scheme because the overlap of the directory of R-tree is very high even when the dimension is 
larger than 10 [14]. For each internal node visited, many rectangles intersect with the query rectangle and a lot of 
branches need to be traversed. This means the R-tree scheme performs more calculations and becomes slower. 

 
Figure 4.3: The number of misses that is slope similar to but not 

Euclidean similar to the queries (real data). 
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In real applications, the system usually stores a large amount of time sequences. It is impossible for the 
applications to load all their data to the main memory. Thus, we carry out an experiment to study the paging 
behaviour of the schemes. Since the real data set is not large enough, a set of synthetic data (0.3 × 106 points) 
generated using a random walk is used. Again, the first 20% of the possible error range is used. The value of ε is 
varied from 0 to 100. For the sequential search, the number of page accesses is constantly equal to (0.3M × 
4)/4Kbytes (≈ 293) pages because it has to access all the pages for every query. Figure 4.5 shows the number of 
page accesses of the hashing and R-tree searching schemes. The number of page accesses of the R-tree scheme is 
proportional to the value of ε and is consistently larger than that of the hashing scheme. 

The hashing scheme has only 65.71 and 129.91 page accesses at ε = 0 and ε = 100 respectively. This 
result can also be explained by the high overlap of directories in R-tree. We plot the percentage of node accesses 
to the total number of nodes of the whole R-tree in Figure 4.6. When ε = 0 (exact match), it still requires 1.8% 
node access. This high node access percentage is due to the fact that too many rectangles intersect with the query 
rectangle during the searching and many branches have to be traversed. 

In another experiment, we want to study the effect of the length of queries on the hashing and R-tree 
schemes. We vary the length of the queries and keep ε = 20. The number of page accesses of the hashing and R-
tree schemes on real data are compared. The result is shown in Figure 4.7. 

The numbers of page accesses of the hashing scheme are less than that of the R -tree scheme in all 
lengths examined. Moreover, for both schemes, the number of page accesses decreases when the length of the 
queries increases. This can be explained as follows. For the hashing scheme, when the query is longer, the 
probability of constructing a determining vector with a lower number of unknown bits increases. Thus the 
number of bucket accesses decreases. For the R -tree scheme, when the length of queries approaches the 
dimension of the R-tree (it is 50 here), a greater number of dimensions of the rectangle in each internal node 
visited are compared. Therefore, more branches can be pruned out and the number of page accesses decreases 
 
 

 
 

Figure 4.4 CPU-time against epsilon (real data). 
 

 
Figure 4.5: Number of page accesses against epsilon 

(synthetic data). 
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5.0 Conclusion 

Sequence data searching algorithms are in high demand. The Euclidean distance is sensitive to the 
vertical positions of the two sequences. It is also not a good measure of similarity in terms of their shapes. Thus, 
we propose a new definition for similarity. The process of comparing the gradients is insensitive to the vertical 
positions of the sequences and all similar sequences found are similar in shape. In addition to the new definition, 
we also propose a fast searching algorithm based on dynamic hashing. The algorithm guarantees that no qualified 
data subsequence similar to the query sequence will be falsely rejected. The proposed algorithm can also find 
data subsequences similar to the query sequence with different scaling factors. Several experiments were also 
performed to evaluate the proposed algorithm using both synthetic and real data. The advantage of the hashing 
algorithm is simple, yet efficient enough to search for time-series sequences. 
 

 
Figure 4.7: Number of page accesses against the length of 

query sequence (real data). 

 
Figure 4.6: Percentage of node accesses with respect to the 

total number of nodes (synthetic data). 
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