

Journal of the Nigerian Association of Mathematical Physics Volume 13 (November, 2008), 281 - 288

Dynamic hashing algorithm Tola John Odule J. of NAMP

Journal of the Nigerian Association of Mathematical Physics
Volume 13 (November, 2008), 281 - 288

© J. of NAMP

Dynamic hashing algorithm for searching time-series databases

Tola John Odule,
Department of Mathematical Sciences

Olabisi Onabanjo University, Ago-Iwoye, Nigeria

Abstract

Sequence data searching using the Euclidean distance between two
sequences as the only criterion for similarity suffers from some deficiencies:
It is sensitive to the vertical positions of the two sequences and so is not a
good measure of similarity in terms of their shapes. We propose a new
definition for similarity that overcomes these deficiencies. A fast searching
algorithm based on dynamic hashing, which guarantees that no qualified
data subsequence similar to the query sequence will be falsely rejected, is also
proposed. The algorithm can also find data subsequences similar to the query
sequence with different scaling factors in both amplitude and time
dimensions. Several experiments were performed to evaluate the proposed
algorithm using both synthetic and real data (stock price movement).

Keywords: Euclidean distance, hashing, time-series, sequence similarity, statistical noise.

1.0 Introduction

There is an increasing demand for searching subsequences similar to a given pattern in a time-series
database. The problem is stated as follows: Given a collection of data sequences D1,D2,..,Dn and a query
sequence Q, we want to find all the data subsequences of Di (1 ≤ i ≤ n) that are similar to Q. The technique for
sequence data searching can be used in a wide range of scientific and business applications [1, 2, 3]. We cite an
example below:

In a stock market, stock prices are recorded in time series. In technical analysis theory [4, 5], the
occurrence of a certain pattern in the shape of a sequence such as the one called head and shoulders or double
tops and bottoms is a signal of the reversal of a stock price. Thus, a stock market analyst may ask “find all the
companies whose stock prices are similar to a given query sequence in shape” in order to predict the future trend
of the stock price. Moreover, time-series searching techniques can be used in data mining [6]. Queries such as
“find all subsequences from the time-series database which are similar to the query sequence in shape” may help
to discover new knowledge.
1.1 Problem definition and formulation

The dissimilarity of sequences is usually measured by the Euclidean distance [1, 2]. Two sequences are
said to be similar to each other if the Euclidean distance between them is less than or equal to a user-specified
error bound. However, the problem of Euclidean distance is that it does not measure the dissimilarity of
sequences by their shape directly. If the error bound is not large enough, two sequences that are exactly the same
in shape but with different vertical positions may be classified as dissimilar. However, if the error bound is set
larger, dissimilar sequences will be reported more easily. It is also mentioned in [3, 7, 8, 9] that other distance
measures are needed for different applications.

Consider the query sequence Q: (5, 10, 6, 12, 4) and the two data sequences A: (6, 5, 7, 10, 11), B: (15,
20, 16, 22, 14) in Figure 1.1 and assume that the error bound ε is set to 15. Note that B is produced by shifting
Q upward for 10 units. Using Euclidean distance as the distance function, we have Distance (Q, A) = 8.9 and
Distance (Q, B) = 22.4. Thus, by the similarity definition of Euclidean distance, A is reported as similar

Journal of the Nigerian Association of Mathematical Physics Volume 13 (November, 2008), 281 - 288

Dynamic hashing algorithm Tola John Odule J. of NAMP

e-mail: tee_johnny@yahoo.com

to Q, but B is rejected. However, A is not similar to Q in shape. On the other hand, B is definitely similar to Q
because they are of the same shape. From this example, we notice that Euclidean distance is not a good measure
of dissimilarity when shape is the principal consideration. The matching results are easily affected by the vertical
positions of the sequences.

Figure 1.1: Deficiency of the similarity definition by Euclidean distance.

In this paper, we suggest the use of the gradient of data sequences as the criterion for similarity. Two

sequences are said to be similar if the gradient difference for each pair of corresponding segments is bounded by
a predefined threshold. Since the directional information of sequence data is taken into consideration, the
dissimilarity between sequences in terms of their shape can be measured. Moreover, the results will not be
affected by the vertical positions of the data sequences. Thus, this definition is simple yet powerful enough to
meet the requirements of many applications, where the shape of the data sequences is the main concern of the
similarity. In addition to the new definition of similarity, a hash-based algorithm for time-series searching is
proposed in this paper. Given a query, the algorithm can efficiently search for subsequences which are similar to
the query in shape with any scaling factor. The algorithm also guarantees that no qualified subsequence is falsely
rejected.

2.0 Sequence similarity

Our definition of sequence similarity is motivated by the properties of similar triangles. The side-angle-
side similarity theorem states that two triangles are similar if two pairs of corresponding sides are proportional
and the included angle is equal. This theorem can be applied in sequence data searching if we use the slopes of
segments to measure the similarity of two sequences.
A data sequence D of length n is an ordered set of n real numbers. Di denotes the ith data of D. Di, Di+1,…,Dj, 1 ≤
i < j ≤ n, denotes the subsequence of D from data Di Dj and the index of this subsequence is defined to be i. A
segment of a sequence is a line joining two consecutive data points in the sequence. The gradient of a segment
formed by data Di, Di+1, is (Di+1 - Di)/((i + 1) – i) i.e. Di+1 - Di. An example of data and query sequences is shown
in Figure 2.1.

Two segments Di, Di+1 and Qi, Qi+1 are said to be similar if their gradient difference satisfies the
following equation: - ε ≤ (Di+1 - Di) – (Qj+1 - Qj) ≤ ε (2.1)
where ε is a user-defined threshold. In addition, two sequences with the same number of data points are said to be
similar if the gradients of their corresponding segments are bounded by ε. It is formally stated in Definition 2.1.
Definition 2.1

Two sequences mDDD Κ21 and mQQQ Κ21 are gradient similar if

 miiQQDD iiii ≤≤∀≤−−−≤− −− 2:)()(11 εε (2.2)

Moreover, two sequences can also be similar with a scaling factor. The definition of scaling similar is formally
stated in Definition 2.2.

Journal of the Nigerian Association of Mathematical Physics Volume 13 (November, 2008), 281 - 288

Dynamic hashing algorithm Tola John Odule J. of NAMP

Definition 2.2

Two sequences smDDD Κ21 and mQQQ Κ21 are linear scale similar with a scaling factor s if

for all i , smi ≤≤2 , one of the conditions below is satisfied:

Figure 2.1: Example of a database sequence and a query sequence.

   
1,)()(1//1 ≥≤−−−≤− −− sQQDD sisiii εε (scale up) (2.3)

   
10,)()(11// <<≤−−−≤− −− sQQDD iisisi εε 0 < s <1 (scale down) (2.4)

Note that Definition 2.1 is only a special case of Definition 2.2 in which the scaling factor is one.

3.0 Hashing

When a bucket with I indices is searched, in total I data subsequences need to be retrieved from the disk
to check whether they are similar to the query sequence. It is expensive to access the disk I times. Thus, we
present a better method to solve this problem in Section 3.4.
3.1 Dynamic hashing

The static hashing algorithm is a good algorithm for databases that are not expanding. However, in
financial markets and scientific databases, new data are collected day by day. As the amount of data increases,
the number of indices for each bucket increases. Consequently, the number of false alarms increases and the
performance is degraded. That is the reason why we extend the static hashing algorithm to an extendable hashing
algorithm [10, 11].

For extendable hashing, buckets are created on demand. As in the static hashing algorithm, a
subsequence of length k + 1 is mapped to a feature vector of k bits. However, instead of using all k bits initially,
we use i bits, 0 ≤ i ≤ k, to represent the offset in the bucket address table. Although we are using extendable
hashing, it is necessary to choose a maximum value for k. In our implementation, we choose k to be 32. Indeed,
232 buckets means there are over 4 billion buckets, which is already a large number for any database. Using the
Nigerian Stock Exchange Index as an example, assume each bucket contains one data point only and that the
system collects one data point daily, so we need 11 million years to fill up all the buckets.

For insertion, the first i bits of the 32 bit feature vector are used to locate a bucket. The index is
inserted if the bucket is not full. Otherwise, we must split the bucket and redistribute the indices. When the
insertion procedure stops, each entry of the bucket address table is using i bits as an offset pointing to a bucket.
For searching, the i bits determining vector with minimum unknown state bits is used to locate bucket entries in
the bucket address table. Then the bucket(s) can be identified by following the pointers in the bucket entries.
Data subsequences represented by the indices in the bucket(s) are retrieved and compared with the query
sequence.

In real applications such as the one used to analyse stock data, deletion of data from a sequence is rare.
However, it is straightforward. A data sequence can be deleted by removing all the indices of its corresponding
subsequences from the buckets. The buckets that become empty are also removed.

Journal of the Nigerian Association of Mathematical Physics Volume 13 (November, 2008), 281 - 288

Dynamic hashing algorithm Tola John Odule J. of NAMP

Since the hash table only stores the indices which point to the subsequences stored externally in the
disk, the size of the hash table is O(n), where n is the length of data sequences. It is smaller than that of an R-tree
which requires O(nk) storage as mentioned before, where k is the dimension of the R -tree.
3.2 Noise class
Obviously, the distribution of indices among the buckets will affect the performance of the algorithm. In this
section, we argue by the concept of noise class that the hashing algorithm will have a good distribution of indices
such that it is efficient for most of the real applications.

It is mentioned in [12] that a lot of real data such as stock movements and exchange rates can be
modelled by brown noise which has a skewed energy spectrum in the frequency domain. This class of noise has a
property that after the sequences are transformed by discrete Fourier transform, the first few coefficients will
contain most of the energy. Therefore, these first few coefficients give a good estimation of the actual Euclidean
distance between two sequences [2].

However, when a sequence is represented by the gradient between two consecutive data, it means that
we have taken the first derivative on the sequence. By taking the first derivative, the data sequences of brown
noise will be transformed to sequences of white noise. Instead of a skewed energy spectrum, white noise has a
flat energy spectrum in the frequency domain. Under this situation, the energy of the data sequences will not be
concentrated on first few coefficients. Therefore, good performance will not be expected if the methods in [1, 2]
are used.

On the other hand, since the energy spectrum of the white noise is flat, the indices of the hashing
algorithm will be evenly distributed among the buckets. This means the expected number of data subsequences in
every bucket is the same. The hashing algorithm in this case will have an optimal performance. Therefore, for
most real applications, our hashing algorithm will have a better performance because of the favourable noise
class of the data.
3.3 Hashing with scaling

In this section, we describe how to search for linear scale similar subsequences. First, the user specifies
the range of scaling factors. For each scaling factor S within the range, the feature vector of the query sequence is
scaled by S and then the k-bit determining vector is extracted from the resulting feature vector with a minimum
number of bits in the unknown state. The determining vector is used as an offset to the bucket address table. All
indices in the buckets pointed to by the bucket address table entries are collected but only those data
subsequences satisfying Definition 2.1 are reported.

For instance, suppose the window size, k, is 6 and a query sequence Q with its determining vector V =
1001V is given. If the user wants to find all the similar subsequences with scaling factor 2, V is first scaled up by
2 and the bit stream 11000011 is produced. Then, 110000 is extracted and the bucket pointed to by the entry
110000 (48) is searched.

However, if the range of scaling factors specified by the user is 0 < s ≤ 2, not all scaling factors are
possible for Q. For instance, Q cannot be matched with a data subsequence with a scaling factor such as 0.5 or
1.2. Thus, we need a method to calculate the set of possible scaling factors for a query from a range of scaling
factors. The method is presented in the following.

Given a determining vector of a query sequence without any unknown state bit, we first construct a list
containing the length of each consecutive run of 0’s or 1’s. For example, the list of a query sequence with
determining vector 00111100 is {2; 4; 2}. Then the greatest common divisor (GCD) among the elements of the

list is calculated. Assume ls and us are the lower and upper bound of the scaling factors respectively and C is

the GCD. The set of possible scaling factors will be







 ∈≤≤ Νicsics

c

i
ul ,: .

For example, the list of a query Q with determining vector 00111100 is {2; 4; 2}. The GCD among the
elements is 2. Thus, the set of possible scaling factors of Q is {0:5; 1:0; 1:5; 2} for 0 < s ≤ 2. For those
determining vectors with some bits in unknown states, all the possible extensions will be searched. For example,
determining vector 110*110* has four extensions which are 11001100, 11001101, 11011100 and 11011101.
Thus, 11001100 is searched with the set of scaling factors {0:5; 1:0; 1:5; 2} while the other three are searched
with the set of scaling factors {1; 2} for 0 < s ≤ 2.
3.4 Reducing disk accesses

Journal of the Nigerian Association of Mathematical Physics Volume 13 (November, 2008), 281 - 288

Dynamic hashing algorithm Tola John Odule J. of NAMP

When a bucket with I indices is searched, in total I data subsequences need to be retrieved from the disk
to check whether they are similar to the query sequence. We develop a scheme to minimize the number of disk
accesses. The scheme consists of Validation Phase and Union Phase, which are separately described below.
3.4.1 Validation phase

We observe that when more than one determining vector can be extracted from a query, the number of
disk accesses can be reduced by comparing the indices with their possible positions at the query. For example, if
the query with bit stream **110*001** is searched and k = 3, two determining vectors 110 and 001 can be
extracted. Then, two lists of indices in buckets 110 (6) and 001 (1) are collected. Suppose the lists with addresses
6 and 1 are {1; 5} and {9; 13} respectively, since 110 and 001 are at positions 3 and 7 in the original bit stream,
their position difference is 4. Thus, if an index in one list cannot match with another index in another list with
difference equal to 4, it is invalid and can be removed. In this example, index 1 in the first

list and index 13 in the second list can be removed and only those pages containing subsequences of indices 5
and 9 are retrieved. The steps for the Validation Phase to remove invalid indices is as follows.
(1) Given a query Q, it is converted to a bit stream with three states 0, 1 or *. Then, according to the
window size k, the set of all the possible determining vectors, V, is extracted.
(2) For each vi Є V, a list of indices li is collected from the corresponding bucket. Let L = { li: vi Є V} and
assume that each li is sorted in ascending order. Then the invalid indices from each li are removed. This can be
done by comparing the indices in the lists in ascending order similar to merge sort. The worst case complexity of
this operation is O(N), where N is the total number of indices in all the lists.
Union Phase. After the invalid indices are removed, we may reduce more disk accesses by the following
observations.
(1) Some subsequences pointed to by the indices in the same bucket may be located in the same page. They
can be retrieved by just one disk access when the bucket is searched.
(2) When a determining vector with unknown bits is searched, more than one bucket will need to be
accessed. Some subsequences pointed to by the indices in different buckets may be located in the same page.
According to the two observations above, the steps for the Union Phase to further reduce the disk accesses are as
follows.
(1) For each li from Validation Phase, find out the set of pages Pi at which the subsequences of the
corresponding indices in li are located.
(2) The final set of pages which needs to be accessed is UiPi.

4.0 Experiments
4.1 Similarity definition

In this section, we will show the difference between the traditional similarity definition based on
Euclidean distance and the slope (gradient) similarity definition we proposed. Stock data of the Nigerian Stock
Exchange Index from January 2, 1986 to December 30, 2005 inclusive are used.

(a) Original Sequence

(b) The answer sequence is shifted down by 20 units

Journal of the Nigerian Association of Mathematical Physics Volume 13 (November, 2008), 281 - 288

Dynamic hashing algorithm Tola John Odule J. of NAMP

Figure 4.1: A sample result.

 Suppose ε is 15. In Figure 4.1a, a query sequence and a sample of the answer sequences by slope
similarity are shown. If Euclidean distance is used, the answer sequence shown will not be reported. The reason
is they have different vertical positions and the Euclidean distance between them is greater than 15. However, it
is easier to observe in Figure 4.1b that they are actually similar in shape when the answer sequence is shifted
down 20 units. The other example is shown in Figure 4.2.

Suppose X and Y are sequences of the same length. It is said that a miss happens if X is slope similar to
Y but X is not Euclidean similar to Y. Then, Figure 4.3 shows the number of misses when the ε is varied from 10
to 20. In each experiment, 100 queries are searched and the average number of misses is recorded.

Figure 4.2 A sample result.

(b) The answer sequence is shifted down by 20

units

(a) Original Sequence

Journal of the Nigerian Association of Mathematical Physics Volume 13 (November, 2008), 281 - 288

Dynamic hashing algorithm Tola John Odule J. of NAMP

4.2 Performance evaluation

We perform several experiments to evaluate our hashing scheme. We compare our hashing scheme to
the scheme of sequential search and R-tree. The experiments are performed on a Sun SPARCcenter2000
workstation running Solaris 2.5.1 with 512 Mbytes of main memory.

Since the extendable hashing scheme is more general, we exclude the static hashing scheme from the
performance study. The lengths of all the queries used are between 10 and 50 and the dimension of the R-tree is
set to 50 in order to avoid false alarms and extra disk access. The page size for data and directory pages is 4
Kbytes.

Experiments are performed on both synthetic and real data. For the experiments on real data, the
Nigerian Stock Exchange Index from January 2, 1986 to December 30, 2005 is used. Synthetic data are
generated using a random walk which is widely used to model stock data [12, 13]. The first data point, x0, of the
random walk is chosen randomly. Then each subsequent data point, xi +1, is generated by adding ∆x to the
previous one, xi, where ∆x is a random variable distributed uniformly in the range between -500 and +500, i.e.

xi +1 = xi + ∆x. In each of the experiments discussed below, 100 queries are searched and the average result is
used to evaluate the searching schemes.

First, we evaluate the CPU time of the three schemes on real data by varying ε. The range of the
gradient of the real data is from -100 to +100. As we want to limit the error bound to 20% of the possible range,
the ε is varied from 0 to 20. The real data set contains 4939 points which is small enough for the three schemes to
run on the main memory without disk access. The result is shown in Figure 4.4. We can see that the hashing
scheme is faster than the other two schemes. When ε is 0 (exact match), it runs about 100 and 23 times faster
than the sequential and R-tree schemes, respectively. The R-tree searching scheme consumes more CPU time
than the hashing scheme because the overlap of the directory of R-tree is very high even when the dimension is
larger than 10 [14]. For each internal node visited, many rectangles intersect with the query rectangle and a lot of
branches need to be traversed. This means the R-tree scheme performs more calculations and becomes slower.

Figure 4.3: The number of misses that is slope similar to but not

Euclidean similar to the queries (real data).

Journal of the Nigerian Association of Mathematical Physics Volume 13 (November, 2008), 281 - 288

Dynamic hashing algorithm Tola John Odule J. of NAMP

In real applications, the system usually stores a large amount of time sequences. It is impossible for the
applications to load all their data to the main memory. Thus, we carry out an experiment to study the paging
behaviour of the schemes. Since the real data set is not large enough, a set of synthetic data (0.3 × 106 points)
generated using a random walk is used. Again, the first 20% of the possible error range is used. The value of ε is
varied from 0 to 100. For the sequential search, the number of page accesses is constantly equal to (0.3M ×
4)/4Kbytes (≈ 293) pages because it has to access all the pages for every query. Figure 4.5 shows the number of
page accesses of the hashing and R-tree searching schemes. The number of page accesses of the R-tree scheme is
proportional to the value of ε and is consistently larger than that of the hashing scheme.

The hashing scheme has only 65.71 and 129.91 page accesses at ε = 0 and ε = 100 respectively. This
result can also be explained by the high overlap of directories in R-tree. We plot the percentage of node accesses
to the total number of nodes of the whole R-tree in Figure 4.6. When ε = 0 (exact match), it still requires 1.8%
node access. This high node access percentage is due to the fact that too many rectangles intersect with the query
rectangle during the searching and many branches have to be traversed.

In another experiment, we want to study the effect of the length of queries on the hashing and R-tree
schemes. We vary the length of the queries and keep ε = 20. The number of page accesses of the hashing and R-
tree schemes on real data are compared. The result is shown in Figure 4.7.

The numbers of page accesses of the hashing scheme are less than that of the R -tree scheme in all
lengths examined. Moreover, for both schemes, the number of page accesses decreases when the length of the
queries increases. This can be explained as follows. For the hashing scheme, when the query is longer, the
probability of constructing a determining vector with a lower number of unknown bits increases. Thus the
number of bucket accesses decreases. For the R -tree scheme, when the length of queries approaches the
dimension of the R-tree (it is 50 here), a greater number of dimensions of the rectangle in each internal node
visited are compared. Therefore, more branches can be pruned out and the number of page accesses decreases

Figure 4.4 CPU-time against epsilon (real data).

Figure 4.5: Number of page accesses against epsilon

(synthetic data).

Journal of the Nigerian Association of Mathematical Physics Volume 13 (November, 2008), 281 - 288

Dynamic hashing algorithm Tola John Odule J. of NAMP

5.0 Conclusion

Sequence data searching algorithms are in high demand. The Euclidean distance is sensitive to the
vertical positions of the two sequences. It is also not a good measure of similarity in terms of their shapes. Thus,
we propose a new definition for similarity. The process of comparing the gradients is insensitive to the vertical
positions of the sequences and all similar sequences found are similar in shape. In addition to the new definition,
we also propose a fast searching algorithm based on dynamic hashing. The algorithm guarantees that no qualified
data subsequence similar to the query sequence will be falsely rejected. The proposed algorithm can also find
data subsequences similar to the query sequence with different scaling factors. Several experiments were also
performed to evaluate the proposed algorithm using both synthetic and real data. The advantage of the hashing
algorithm is simple, yet efficient enough to search for time-series sequences.

Figure 4.7: Number of page accesses against the length of

query sequence (real data).

Figure 4.6: Percentage of node accesses with respect to the

total number of nodes (synthetic data).

Journal of the Nigerian Association of Mathematical Physics Volume 13 (November, 2008), 281 - 288

Dynamic hashing algorithm Tola John Odule J. of NAMP

References
[1] Agrawal, R., Faloutsos, C. and Swami, A. (1993) Efficient similarity search in sequence databases. In Proc.

4th Int. Conf. on Foundations of Data Organization and Algorithms, pp. 69–84.
[2] Faloutsos, C., Ranganathan., M. andManolopoulos, Y. (1994) Fast subsequence matching in time-series

databases. In Proc. ACM SIGMOD Conf. on Management of Data, pp. 419–429.
[3] Agrawal, R., Lin, K. I., Sawhney, H. S. and Shim, K. (1995) Fast similarity search in the presence of noise,

scaling, and translation in time-series databases. In Proc. 21st VLDB Conf., pp. 490–501.
[4] Pring, M. J. (1991) Technical Analysis Explained. McGraw- Hill.
[5] DeMark, T. R. (1994) The New Science of Technical Analysis. John Wiley & Sons.
[6] Berndt, D. J. and Clifford, J. (1995) Finding patterns in time series: a dynamic programming approach. In

Fayyad, U. M., Piatetsky-Shapiro, G., Smyth, P. and Uthurusamy, R. (eds), Advances in Knowledge
Discovery and Data Mining. AAAI/MIT Press.

[7] Goldin, D. Q. and Kanellakis, P. C. (1995) On similarity queries for time-series data: constraint specification
and implementation. In 1st Int. Conf. on the Principles and Practice of Constraint Programming, September,
976, 137-153.. (1997)

[8] Bollobas, B., Das, G., Gunopulos, D. and Mannila, H. (1997) Time-series similarity problems and well-
separated geometric sets. In 13th Annual ACMSymp. on Computational Geometry, pp. 454–456.

[9] Das, G., Gunopulos, D. and Mannila, H. (1997) Finding similar time series. In 1st Eur. Symp. on Principles
of Data Mining and Knowledge Discovery, pp. 88–100.

[10] Fagin, R., Nievergelt, J., Pippenger, N. and Strong, H. R. (1979) Extendible hashing—a fast access method
for dynamic files. ACM Trans. Database Syst., 4, 315–344.

[11] Silberschatz, K. (1991) Database System Concepts. McGraw- Hill.
[12] Chatfield, C. (1991) The Analysis of Time Series: An Introduction. McGraw-Hill.
[13] Mandelbrot, B. (1977) Fractal Geometry of Nature. W. H. Freeman.
[14] Berchtold, S., Keim, D. A. and Kriegel, H.-P. (1996) The Xtree: An index structure for high-dimensional

data. In Proc. 22nd VLDB Conf., pp. 28–39.

