Journal of the Nigerian Association of Mathematical Physics
Volume 13 (November, 2008), 273 - 280
© J. of NAMP

Design of provably secure cryptographic hash functions

Tola John Odule,
Department of Mathematical Sciences
Olabisi Onabanjo University, Ago-lwoye, Nigeria

Abstract

It was shown in this paper that the size w of theedrnal hash
values is a security parameter of its own right,tlviwv > n but otherwise
independent from the final hash size n. Given “gdodompression
functions, this paper shows how to compose “goodishes. Though the
random oracle model is quite useless to define witaineans to be a
“good” compression functior{6], the given lemmas provide some specific
requirements for the compression functions

Keywords Hash function, Adversarial attack, provable segyritieal model

1.0 Introduction

A hash function H:{0,1}*»{0,1}" is used to compute ambit fingerprint from an arbitrarily-sized
input. Informally, cryptographers require a goodthdunction to behave like @ndom oracle More formal
security requirements are, for example, collisiesistance and preimage resistance [1]. In practice,
cryptographic hash functions for inputs of (almast)itrary input sizes are realised by splitting thessage into
m-bit chunks and iterating a compression functiofoH}" x {0,1}"—{0,1}".

Merkle and Damgard [2, 3] showed in their papei t collision resistant compression function
implies a collision resistant iterated hash function the other hand, if the adversary is powezfidugh to find
collisions (this takes time2"?) for a random oracle), many interesting attackasirey iterated hash functions
become possible, far beyond plain collision-finding

Using the above-mentioned multi-collision attackaasol, Joux [4] shows that the (parallel) casaafde
several hash functions is not as secure as expeSiedarly, Kelsey [5] describes additional attackgainst
iterated hash functions. All these attacks are genka this paper, we propose and analyse modifina of the
Merkle-Damgard design for iterateebit hash functions. The core idea is to use mioa@m-bit for the internal
hash values. We formally prove that these modificatimprove security against generic attacks.

11 Definitions and abstractions
111 Iterated hash functions

Cryptographic hash functions take a mes3ddg&0,1} of any length, to compute ambit outputH(M).
(In practice, “any length” may be actually be boeddy some huge constant, larger than any messagxaev
would want to hash.) For an iterated hash, we gpkt messagé/ into fixed-sized chunkdM;, M,, ...,
M. €{0,1}", which gives the expanded messag®l;,(.M.). An iterated hashH iterates an
underlying\compression functioi€, and the final hash depends G(C(...C(C(Ho,M1),M>)...),M,), whereH,, is
some constant “initial value”.

The one or two last chunks of the expanded mesa@gpadded, and the last chuvk may contain
additional information, such as the lengtfj pf the non-expanded messade Thus,LE{[| M|/m],[|M|/m] + 1}.
In any case, the message expansion is determjngsiit if the firstm bits of two messagelsl and M' are
identical, therM; = M';,....M; = M;".
1.1.2 Random oracles

A fixed-size random oracle is a function f:{0?4}{0,1}", chosen uniformly at random from the set

Journal of the Nigerian Association of Mathematicdhysics Volumel3(November, 2008)273 - 280
Design of provably secure cryptographic hash functins Tola John Odule J. of NAMP

I
e-mail: tee_johnny@yahoo.com

of all such functions. For interesting sizesndb, it is infeasible to implement such a function,torstore its
truth table. Thus, we assume a public oracle whjkenx € {0,1}", computey = f) € {0,1}".

A variably-sized random oracle is a random functioi®,1}*—{0,1}"°, accessible by a public oracle.
Equivalently, it can be viewed as an infinite séfived-size random oracles, one oraglg0,1}*—{0,1}" for
eacha € N.

We view a fixed-size random oracle asidaal compression functiorand a variably-sized random
oracle as aideal hash function
1.1.3 Shannon Cipher (ideal block cipher)

A Shannon cipher is the invertible counterpart afaadom oracle. Consider a functi@y0,1}" x
{0,1}"—{0,1}", such that for eacM €{0,1}", the functionE(.,M) = Ey(.) is a permutation, i.e., an inverse
function E'(.,M) exists. A Shannon (block) ciph& is uniformly chosen at random from all such funcsio
Again, we can't implement a Shannon cipher, buaggime a “Shannon oracle”: GiveandM, one can ask the
oracle fory = E(x,M), and, givery andM, one can ask the oracle for E(y,M).

1.1.4 Adversary

As usual in the context of the Shannon and randeexl® models, we consider a computationally
unbounded adversary with access to some Shannaandom oracle. The adversaries “running time” is
determined by her number of oracle queries.

In this article, adversaries are probabilistic alfpons, and we concentrate on the expected rurtivimgy
(i.e., the expected number of oracle queries). Wé describe the running time asymptotically, bunio
asymptotic notation when possible. In a formal eghtthough, we are using the symboi§‘big-Oh”, for “the
expected running time is asymptotically most) and Q (“big-Omega”, “the expected running time is
asymptoticallynot less that).
1.2 Typical hash functions attacks
Informally, a real hash functiad should behave like an ideal one, a random ordtilis. would not be useful for
a formal definition, though (see [6]). Instead, arensiders somewhat simpler security goals. Létash
functionH:{0,1}* —{0,1}" be given. Some “classical” types of attack are:
1.2.1 Collision attack

Find two messagdd # M' with H(M) # H(M").
1.2.2 Preimage attack

Given a random value ¥ {0,1}", find a messag®! with H(M) =Y.
1.2.3 2nd preimage attack

Given a messagd, find a messagkl # M' with H(M) # H(M").
The following natural extensions have also beedistland added:
K-collision attackfor K >2. FindK different messaged', with HM?) =...= H(M"). .
K-way (2nd) preimage attackor K > 1:: GivenY (or M with H(M) = Y.), find K different messagell', with
H(M") =Y (andM' # M)

The aforementioned attacks are obviously possilitle avsufficiently skilled adversary. To measure th
security of a hash functiohl, one compares the resistancetbfagainst these attacks, with the amount of
resistance a random oracle would provide:

Fact 1

Model H:{0,1}* —{0,1}" as a random oracle. FindingKacollision for H takes timeQ(2*>"), and
finding aK-way preimage or K-way 2nd preimage fad takes timeQ(K2").

A part of our security analysis depends on idedlibailding blocks for iterated hash functions. Tédeove
attacks against hash functions--variably-sized eam@racles--generalise for compression function®dfsize
random oracles. The following two facts describe Hasic security properties of fixed-size randomaclas
against multiple collision and (2nd) preimage d&ta@nd the security of an idealised block cipketh fixed
plaintexts.

Fact 2

Model C:{0,1}"™—{0,1}" as a random oracle. FindingKacollision for C takes timeQ(2“"), and
finding aK-way preimage or K-way 2nd preimage fd€ takes time(K2")..
Fact 3

Journal of the Nigerian Association of Mathematicdhysics Volumel3(November, 2008)273 - 280
Design of provably secure cryptographic hash functins Tola John Odule J. of NAMP

Model E:{0,1}" x {0,1}"—{0,1}" as a Shannon oracle. Consider a fixed random \&l@e{0,1}".
Regarding collision and (2nd) preimage attacks, ftmetion f:{0,1}™ — {0,1}", f(M) = Ey(S) behaves like a
random oracle witlm input andn output bits.

20 Review of current ierated hashes
2.1.1 Merkle-Damgard hash
Recall that we have a fixed-size compression fonet:{0,1}" x {0,1}™—{0,1}", and our goal is to

implement a hash functidn:{0,1}* —{0,1}". Given a (randomly chosen) fixed initial valug &hd a messadd
€ {0,1}* the Merkle-Damgard (MD) hasH (M) is computed as follows:
. ExpandM to (M,, ...,M,) € {0,1}™.
MD strengthening
The last blockV, takes the lengthV]| in bits

. Foriin 1,...,L: computeH; = C(H;.;, M).
Finally: setH(M) =H,.
C C C
H[0] 4 +H[1]5 +=H[2] = H[L-1 =H[L]
L X N]
M[0] M[2] MIL]

Figure 2.1 The Merkle-Damgard hash
2.1.2 Length extension
This is a well-known weakness of the MD hash (sge[&, Section 6.3.1]):
givenH = H(M), it is straightforward to computd' andH’, such thatH'= H(M||M") - even for unknowrM (but
for known lengthNi|). The attack is based on usid{M) as an internal hash for computiHgM||M").
2.1.3 Joux' Attacks
Antoine Joux described an attack to fintiCllisions for MD hashH in time O(K"?), instead of

k
. Foriin 1,...k find a local collision M # M with =C(Hi M%) =C(Hi; M}).- All the Z messages

(Mf,K , ME): (|\/|10, K,M E—llevK , (Mll,K , M&), hash to the same valtg.

We hereby note that all messages are of the savhé&ymlarge, size df blocks. Joux pointed out that
this technique can be used to attack cascadedflnastions: Let a hasH:{0,1}* —{0,1}" be defined abl(M)=
H(HY(M)||H*M) with two independent-bit hashedH" and H. If both H' andH? are independently defined as
random oracles, then finding collisions fdrtakes time 2 If, however, either is constructed as a MD hash,
finding a collision forH only takes time @(¢2*2"%). W.l.o.g., letH* be the MD hash:

. Find 2"%collisions forH! (in n/2*2" units of time).

Statistically, one such collision also collides f&r(and thus H).

He also demonstrated the applicability of the raediiision attack as a tool to find multiple (2npjeimages
very efficiently. Given a targext € {0,1}", the attack proceeds as follows:

. Generate 2colliding k-block messaged/’,...,M*) with H, = H(MY) =...= H(M®).

. Find a message chuhk,,,, such thaC(H,, My,;) =Y.

This provides a'2-way preimage. The first step takes tiki@("), which is marginal, compared to the second
step. This takes about the time for a single prgevattack, i.e., O(2 For a 2nd preimage message attack with
the target messadé, just sety = H(M).

2.1.4 The Davies-Meyer hash and Kelsey's Attack

The attack described above is applicable for amppression functiorC. Often, compression functions are
designed according to the “Davies-Meyer” princigazen a block cipher lik&, the functionC is defined by

C(HiaMj)=Ey(Hiq)+H -

Journal of the Nigerian Association of Mathematicdhysics Volumel3(November, 2008)273 - 280
Design of provably secure cryptographic hash functins Tola John Odule J. of NAMP

HGi-1]- E -—== HI]
M[i]J

Figure 2.2 The Davies-Meyer construction
Here “+” is any group operation over {0,1}and we write Dfor the neutral elemenk,, is invertible for allV

(like anyn-bit block cipher). This allows the adversary tongpute (random) fixed points f@:
+ Select a messadé and computeH; ; = E,\',,l_ ™.

This is a fixed point, sinceHi = C(Hi—L Mi) =Ey (Hi_l) +H,4 = 0"+ Hi_. Finding such a

fixed point takes one “decryptior®™*. Note that the fixed poirt;.; = H; depends on the choice M, but for any
M; such a fixed point exists.

Let a messag®l be given, and let the expansidv,(...,M,) of M beL chunks long. Using the fixed
point finder as a tool, Kelsey [5] describes aroethm to compute a 2nd preimage fdrin time O(max{2?, 2"
/L}). In an extreme case, i.e., far~ 2" the entire attack asymptotically takes tinf€ o compute a 2nd
preimage--instead of tim€',2as would be expected for a random oracle.

2.1 Security against Generic Attacks

The above attacks are generically applicable againside class of hash functions. Joux' attack is
applicable against all MD hashes, and the compredsinctionC can be realised by a random oracle. Further,
the attack can be made to work even if the advermally has oracle access to the hash funddphut not to the
compression functio®. So Joux' attack is generic in a very strong sense

Kelsey's attack requires the compression functghl,M) + EM(H) + H to be a Davies-Meyer
compression function. In contrast to Joux' attdtsey's would not work with oracle accessHmnly--the
adversary needs oracle acces€to But Kelsey's attack is still generic, since iedaot assume any specific
weakness foE - Ecan be as strong as a Shannon cipher.

In consequence of the weaknesses of iterated hastidns noted above, can we design iterated hashes
and prove their security without making the assuompthat some internal building block is much sggenthan
the hash function itself?

The focus of this article is to propose a modifi¢d design for hash functions, provably secure again
all generic attacks, including, but not limitedJmux' and Kelsey's.

3.0 Two twined-pipes hash with Davies-Meyer (DM)

In technical discussions, the compression funasaneated like a random oracle with fixed inputesi
However, for most practical hash functions, the pmasion function is, by itself, based on somelblkpher-
like building block, often according to the DM caémgtion. This provides the adversary with someitéatthl
handles. If we use such a compression functioth®Two Twined-Pipe Hash, we must re-examine tlcargg
of the double-pipe hash.

In this section, we consider the double-pipe Hadshsing a DM-based compression function
C{0,1}"x {0.1}">{0,1}", C(H; y M{) = Ey (Hiy) + Hi_y
For each Me {0,1}", the functiorEy is a permutation over {0,1}
3.1 Notations
For our formal treatment, we consider an adversanjth access to a Shannon oracleEaandE™. Similarly to
[1], we assume:
* The adversary never asks a query in which the response is airkadwn. Namely, ifA asks forE,(x) and
receivesy, she neither asks f&"(y), nor forE(x) again. Similarly, if she has asked Bt (y) and received.
* Recall that for the type of attacks we consideuecessful adversary always outputs one or moreages
M', which either collide or constitute some (2nd)im@ges. Before finishing, the adversary makeshalldracle
calls to compute all hash valudgM').
» We define asimulator, to respond té\'s oracle queries:

= Initially:

Journal of the Nigerian Association of Mathematicdhysics Volumel3(November, 2008)273 - 280
Design of provably secure cryptographic hash functins Tola John Odule J. of NAMP

* seti = 0; clear the logbook;
* for all (k,X): markE,(x) as undefined;
= Responding to an oracle quedgyx):
* osetiti+1l
* randomly choosg from RANGE (Ex)
* appendX, k, ¥) = (x, k, y to the logbook;
* respondy;
» Responding to an oracle quéEy(y):
* oseti+i+1l
randomly choosex from DOMAIN (Ex)
* appendX, k, ¥) = (x, k, yto the logbook;
* respond;

Here, DOMAIN (Ey) is the set of points x wheig(x) is still undefined. Similarly,RANGE (Ex) is the set of
points y whereE\(y) is still undefined. For our proofs, we will diss the logbook entries;(k, y). This is
without loss of generality: (w.l.o.g) any adversargt following the first two conventions can eashyg
transformed into an equivalent one following the¥nd an adversary following the first two convensocan't
distinguish the simulator from a “true” random deac

3.2 Internal collisions
Lemma 3.2.1
Consider the double-pipe iterated hash H:
(). Any internal collision either reduces to aistror to a cross collision.

(ii). Finding a K-collision requires tim@(min(Ts, Ty, T(K)).

Proof

For the first claim, observe that the initial vaud', and H"y are different. Any non-strict internal
collision implies a triple(H;_;, H{_;, M;) with H;_; = H/_;. This implies the existence of a cross-colliding
triple (H'j, |—|J |v|j+1), with j<i-2, H'j % HJ and Hi,y = C(Hj, HjIM;,q) = C(H], Hi M) = HY,g-
For the second claim, we observe th&t-eollision forH [Ireduces to either a fin#l-collision (which takes time
T(K), or to an internal collision. Due to the firsaich, an internal collision is either strict (ancede timeTg), or
is a cross collision (timey).
Here we writeTs for the time to find a strict internal collisiofy for an internal cross collision, adg¢K) for the
time to find a finaK-collision.
Theorem3.2.2

Consider the DM-based double-pipe hash H. If weeh&dby a Shannon oracle, th&p =Q(2") and
Ts.: Q(Zn)

Proof

For the proof, we assume that the adversary doesmaéie more tham < 2*' queries. This is
technically correct, sincé"2=Q(2").
3.21 Time T to find internal cross collisions

A cross collision is described b {_; # H{;, M; with

C(Hi_y, Hi4|M;) =H{ =H{ = (H{_y, Hi4|M;) (3.1)

In time g, we can check at mogt2 such triples(H;_1, Hi_;, M;) for cross collisions. Now we argue that épr
2™, for each such triple the probabilify to satisfy Equation (3.1) is at most T/2 This implies that the
expected number of oracle queries we need to mat@eowe get the first cross collisionTg = Q(2"), as
claimed.

We still have to showp, < 2™*. Observe that if the adversary's answer involvesoss collision, then,

by the above conventions, the simulator's loghankains two triplesx, k., y2) and & ko, yo) with 2 Z b,

Journal of the Nigerian Association of Mathematicdhysics Volumel3(November, 2008)273 - 280
Design of provably secure cryptographic hash functins Tola John Odule J. of NAMP

Xa = Hi'—ll ka = (Hi"—1||Mi)'ya = Eka(xa)v

Xy = Hizg, K, = (Hi'—1||Mi) and Y, = B, (%) -
Thus, we can rewrite Equation 1 by

6l 78 &l 7B

E. (X)) +%, =E (%) + X, which corresponds to

YatX=%tX% (3.2)

If (w.l.o.g.) a<b, then eithery, or X, is a uniformly distributed random value from a augubset of
{o, 13"

. Ifthe b™ oracle query has beel, (X,) , then Yy, is a random value frorWNGE(Ekb) :

+ Else X, is arandom value frolDOMAIN (Ekb) .

Since [RANGE (E,,)|= [DOMAIN (E,)|= 2"-b+122"-q, and due tay < 2" we getp, < 2", as

claimed.
3.2.2 Time Tg to find strict internal collisions
(G', G", M) with H' # H", we consider paird. H") € {0,1}*, where
H'=C@G', G"||[M) andH" = C(G", G'||M) (3.3)
A strict internal collision are two different trgs, where the correspondiryandH" values both collide. When
making q oracle queries, there af¥qg’) such pairs. We claim that fay < 2™, the probabilityps to satisfy
equation (3.3) ig, < 1/2"". Hence, the expected number of oracle queriestta gtrict collision iFs= Q(2").

It remains to provep, < 1/2*. Consider a triplex, ky, ya) with X3 = G, k, = (G"| M) and
Ya = Ey, (Xa) from the simulator's logfile. We only have a chafior a strict collision, if the logfile contains

another triple, ky, y») with X, = G", kp = (G'|| M), and yp, = Ey, (Xp) . Note thatx, andk;, are
uniquely determined by, and ka, and vice versa. Equation 3 can then be rewréten

H' =B (6)+%X = YatXaand H" = B (%) +% = Yp +X%.
A strict collision implies the adversary to handleolliding triple (F', F”, N), that is, H" = C(F', F"" N)

and H" = C(F", F'|| N) . This information corresponds to two more trip{gs k., Yo) and &g, kg, Ys) on the
server's logfile with
H'= ya X3 = Yo * X (3.4)

H'" = Yo + Xy = Vg t X4 (3.5)

Each of these two equations is of the same tyfiggastion 3.2. As in that context, we argue that wup< 2™
the probability for (3.4) to hold is no more that2"t; similarly for (3.5). More importantly, the conitinal
probability to satisfy (3.5), assuming (3.4) isvast 1/2*. Thus, the joint probabilitps for both (3.4) and (3.5)
is Py < 1/2Y
3.3 K-Collisions
Theorem3.3.1

Consider the DM-based double-pipe hash H. If we eh@dby a Shannon oracle, then finding K-
collisions for H takes tim@(2"“ V%),

Proof
Due to the first claim okemma3.2.1 andTheorenB.2.2, we know that an internal collision woulddak
time Q(2"). Thus, in time(2"“YX). we don't find any such collision. In order todiaK-collision faster than in

Journal of the Nigerian Association of Mathematicdhysics Volumel3(November, 2008)273 - 280
Design of provably secure cryptographic hash functins Tola John Odule J. of NAMP

time Q(2"), we must find a finaK-collision. In the remainder of this proof, we wshow that finding a finaK-
collision takes time (2"«
A final K-collision consists oK different pairs G, H;) € ({0,1}")* with ¢ (H "Gt H H! H om-”)

=A :C(H*,GKHHKH 0‘”‘). Hence, after a possible permutation of tripless have to findK triples
(H*,kl, y1).K ,(H*,kk,yk) in the simulator's logbook with differektbut

64 7B 64 7«48
E.(H)+H =A = E,_(H") +H",
64 7148 64 748
or equivalently Ekl(H*) =N\ = B (H*)

By fixing the inputH* for E, we turn the Shannon-oracle into an ordinary ramdoacle, see Fact 2.
According to Fact 2, finding i-collision takes time(2"®).
3.4 K-Way (2nd) preimages
Theorem3.4.1

Consider the DM-based double-pipe hash H. If weeh&dby a Shannon oracle, then finding a single
or K-way preimage or a single or K-way 2nd preimaaies time(2").

Proof

Finding K-way (2nd) preimages isn't faster than finding En@nd) preimages. Thus, we concentrate
on single ones. Due tioemma3.2.2, (see appendix) finding a single preimagekfdakes timeQ(P(1)).P(1) =
Q(2") follows from Facts 3 and 2.

Now assume an algorithm exists to find 2nd preiradgeH. Consider we are givex € {0,1}"", and
searching for some 2nd preimage key X with Ey(H*) = Ex(H*) for E. The proof is as follows:

We choose some messddeand compute the internal hashgshy k , H! K , H;' - Assume

X O{(H[H/M,), (H!H/ M) |1=i< 1}

HY

. EIX(DJ: EHL([)]
E:{0.1}" {01} - {0.1}": [er, (3= (0
E, = E,(Qffor ZO{X, H,}

Now we run the adversary, replacing the (Shannoragle forE andE™ by an oracle foE' and its inverse. Both
E andE™ are random permutations over {0,"1}if the adversary succeeds in finding a 2nd pagienforM, she
either has found an internal collision (which wotidke timeQ(2"), or Y:=H, # X is a solution to the 2nd
preimage problem fdE. By Facts 2 and 3, this would take ti2€2"),. In any case, finding a 2nd preimage Nbr
reduces to solving a problem we know to take &(2"),.

(this holds with overwhelming probability). Sg,tL = (H'L

0“"”‘)- We define the function

4.0 Discussion

4.1 Main contributions

The major inference from [4, 5, 9] and in this tigais that the sizev of the internal hash values is a security
parameter of its own right, with> n, but otherwise independent from the final hask $1z

Any cryptographer, choosing a cryptographic hasloukl choose botiV and N according to her
specific security requirements and also considendfigcourse, efficiency concerns, compatibilityuiss, etc.).
For some applications, the Merkle-Damgard settiith w > n. may be appropriate, while others may require
>n.

The design of hash functions is not only about appate choices of the security parametgrandn,
though. Ifn is sufficiently large to prohibit all attacks wii”” running time, thetw = n, as in the plaitMD
design, appears to be fine. But assume a feasilisien attack. This implies a cryptanalytic weaks in the
compression function, namely a feasible attackgainst the underlying compression function. Assthere is
no variant ofa to feasibly find multi-collisions. NeverthelesnuX' attack allows one to feasibly find large

Journal of the Nigerian Association of Mathematicdhysics Volumel3(November, 2008)273 - 280
Design of provably secure cryptographic hash functins Tola John Odule J. of NAMP

multi-collisions for the plaitMD hash. Thus, finding“2ollisions takes time k*timex). Observe that the speed-
up over attacking an ideal hash quickly grows wittf we use the same compression for a doublepgsh, the
failure of the compression function would be leatastrophic. The speed-up for findir§ -collisions for the
two twine-pipe hash, compared to an ideal hashJdvoe 2"4time (2). This does not depend &nat all.

Note that the hash functions proposed here do uféérsfrom the straightforward length extension
attack, in contrast to the plain MD hash.

5.0 Conclusion

As suggested in [10], it may be time for the crgpéphic community to design new and more secure
hash algorithms. In this treatise, we took a ra#iiEstract and proof-centric look at the designasthfunctions.
Similarly to others, we consider this style a “fbées and useful step for understanding the secufity] of
iterated hash functions, thereby complementingatteck-centric approach [4, 5], though not replgdin

Given “good” compression functions, this paper shidww to compose “good” hashes. Though the
random oracle model is quite useless to define waeans to be a “good” compression function {6§ given
lemmas provide some specific requirements for trepression functions.

Appendix

Lemma3.2.2 Consider the double-pipe halsh

1. Finding a single preimage fbir [Jtakes timeQ(P(1))

2. FindingK-way preimages fol [itakes timeQ(min{Ts, Tx,P(K)}).

Proof

First claim: Consider the wide-pipe hash
First bound:observe that finding a preimage tari1(someM [Jwith H(M) =) implies finding a preimagkl_
[Ifor C", since C'l,) = Y.
Second boundinding K [idifferent preimageM”, ...,M*[Ifor H [leither implies finding at least one collision
for ', or implies findingK Cdifferent inputsH E A, HfK with C”(Hil) =A :CH(H:}): Y, i.e., aK-way

preimage for C. Second claim: Follows froriaim 1of Lemma3.2.1.

References

[1] Odule, T.J. "Incremental Cryptography and Séguof Public Hash Functions." Journal of Nigerian
Association of Mathematical Physics, vol. 11 pp-4G4; 2007.

[2] R. Merkle. One-way hash functions and DES. @\§0, LNCS 435, pp. 428{446.

[3] I. Damgard. A design principle for hash functio Crypto 89, LNCS 435, pp. 416-427.

[4] A. Joux. Multicollisions in iterated hash fumans, application to cascaded constructions. CrgtoLNCS
3152, pp. 306{316.

[5] J. Kelsey. A long-message attack on SHAx, MDiger, N-Hash, Whirlpool, and Snefru. Draft. Unpished
Manuscript.

[6] R. Canetti, O. Goldreich, S. Halevi. The randamacle methodology, revisited. B(BTOC 1998, pp.
209{218.

[7] N. Ferguson, B. Schneier. Practical CryptogsajWiley Publishing, 2003.

[8] National Institute of Standards and Technol{@giST). Secure hash standard. FIPS 180-2. Augu32.20

[9] B. Preneel. Analysis and design of cryptogragtash functions. PhD thesis, Katholieke Univeitsiteuven,
1993.

[10] B. Schneier. Cryptanalysis of MD5 and SHA. @wrGram Newsletter, September 2004.
http://www.schneier.com/crypto-gram-0409.html#3

[11] Black, Rogaway, Shrimpton. Black-box analysfsthe block-cipher based hash function constracfrom
PGV. Crypto 02.

Journal of the Nigerian Association of Mathematicdhysics Volumel3(November, 2008)273 - 280
Design of provably secure cryptographic hash functins Tola John Odule J. of NAMP

