

Journal of the Nigerian Association of Mathematical Physics Volume 13 (November, 2008), 273 - 280

Design of provably secure cryptographic hash functions Tola John Odule J. of NAMP

Journal of the Nigerian Association of Mathematical Physics
Volume 13 (November, 2008), 273 - 280

© J. of NAMP

Design of provably secure cryptographic hash functions

Tola John Odule,
Department of Mathematical Sciences

Olabisi Onabanjo University, Ago-Iwoye, Nigeria

Abstract

It was shown in this paper that the size w of the internal hash
values is a security parameter of its own right, with w ≥ n but otherwise
independent from the final hash size n. Given “good” compression
functions, this paper shows how to compose “good” hashes. Though the
random oracle model is quite useless to define what it means to be a
“good” compression function [6], the given lemmas provide some specific
requirements for the compression functions.

Keywords: Hash function, Adversarial attack, provable security, Ideal model

1.0 Introduction

A hash function H:{0,1}*→{0,1} n is used to compute an n-bit fingerprint from an arbitrarily-sized
input. Informally, cryptographers require a good hash function to behave like a random oracle. More formal
security requirements are, for example, collision resistance and preimage resistance [1]. In practice,
cryptographic hash functions for inputs of (almost) arbitrary input sizes are realised by splitting the message into
m-bit chunks and iterating a compression function H:{0,1} n × {0,1}m

→{0,1} n .
Merkle and Damgard [2, 3] showed in their papers that a collision resistant compression function

implies a collision resistant iterated hash function. On the other hand, if the adversary is powerful enough to find
collisions (this takes time (Ω2n/2) for a random oracle), many interesting attacks against iterated hash functions
become possible, far beyond plain collision-finding.

Using the above-mentioned multi-collision attack as a tool, Joux [4] shows that the (parallel) cascade of
several hash functions is not as secure as expected. Similarly, Kelsey [5] describes additional attacks against
iterated hash functions. All these attacks are generic. In this paper, we propose and analyse modifications of the
Merkle-Damgard design for iterated n-bit hash functions. The core idea is to use more than n-bit for the internal
hash values. We formally prove that these modifications improve security against generic attacks.
1.1 Definitions and abstractions
1.1.1 Iterated hash functions

Cryptographic hash functions take a message M Є{0,1} of any length, to compute an n-bit output H(M).
(In practice, “any length” may be actually be bounded by some huge constant, larger than any message we ever
would want to hash.) For an iterated hash, we split the message M into fixed-sized chunks M1, M2, …,
MLЄ{0,1} m, which gives the expanded message (M1,…,ML). An iterated hash H iterates an
underlying\compression function" C, and the final hash depends on C(C(…C(C(H0,M1),M2)…),ML), where H0, is
some constant “initial value”.

The one or two last chunks of the expanded message are padded, and the last chunk ML may contain
additional information, such as the length |M| of the non-expanded message M. Thus, LЄ{[|M|/m],[|M|/m] + 1}.
In any case, the message expansion is deterministic, and if the first mi bits of two messages M and M' are
identical, then M1 = M'1,…,Mi = Mi'.
1.1.2 Random oracles

A fixed-size random oracle is a function ƒ:{0,1}a
→{0,1} b, chosen uniformly at random from the set

Journal of the Nigerian Association of Mathematical Physics Volume 13 (November, 2008), 273 - 280

Design of provably secure cryptographic hash functions Tola John Odule J. of NAMP

e-mail: tee_johnny@yahoo.com

of all such functions. For interesting sizes a and b, it is infeasible to implement such a function, or to store its
truth table. Thus, we assume a public oracle which, given x Є {0,1} n, computes y = ƒ (x) Є {0,1} b.

A variably-sized random oracle is a random function g:{0,1} a
→{0,1} b, accessible by a public oracle.

Equivalently, it can be viewed as an infinite set of fixed-size random oracles, one oracle ga:{0,1} a
→{0,1} b for

each a Є N0.
We view a fixed-size random oracle as an ideal compression function, and a variably-sized random

oracle as an ideal hash function.
1.1.3 Shannon Cipher (ideal block cipher)

A Shannon cipher is the invertible counterpart of a random oracle. Consider a function E:{0,1} n ×
{0,1} m

→{0,1} n, such that for each M Є{0,1} m, the function E(.,M) = EM(.) is a permutation, i.e., an inverse
function E-1(.,M) exists. A Shannon (block) cipher E is uniformly chosen at random from all such functions.
Again, we can't implement a Shannon cipher, but we assume a “Shannon oracle”: Given x and M, one can ask the
oracle for y = E(x,M), and, given y and M, one can ask the oracle for x = E-1(y,M).
1.1.4 Adversary
 As usual in the context of the Shannon and random oracle models, we consider a computationally
unbounded adversary with access to some Shannon or random oracle. The adversaries “running time” is
determined by her number of oracle queries.

In this article, adversaries are probabilistic algorithms, and we concentrate on the expected running time
(i.e., the expected number of oracle queries). We will describe the running time asymptotically, but omit
asymptotic notation when possible. In a formal context, though, we are using the symbols O (“big-Oh”, for “the
expected running time is asymptotically at most”) and Ω (“big-Omega”, “the expected running time is
asymptotically not less than”).
1.2 Typical hash functions attacks
Informally, a real hash function H should behave like an ideal one, a random oracle. This would not be useful for
a formal definition, though (see [6]). Instead, one considers somewhat simpler security goals. Let a hash
function H:{0,1}*→{0,1} n be given. Some “classical” types of attack are:
1.2.1 Collision attack

Find two messages M ≠ M' with H(M) ≠ H(M').
1.2.2 Preimage attack

Given a random value Y Є {0,1} n, find a message M with H(M) = Y.
1.2.3 2nd preimage attack

Given a message M, find a message M ≠ M' with H(M) ≠ H(M').
The following natural extensions have also been studied and added:
K-collision attack: for K ≥ 2. Find K different messages Mi, with H(M1) =…= H(MK).
K-way (2nd) preimage attack, for K ≥ 1:: Given Y (or M with H(M) = Y.), find K different messages Mi, with
H(Mi) = Y (and Mi ≠ M)

The aforementioned attacks are obviously possible with a sufficiently skilled adversary. To measure the
security of a hash function H, one compares the resistance of H against these attacks, with the amount of
resistance a random oracle would provide:
Fact 1

Model H:{0,1}*→{0,1} n as a random oracle. Finding a K-collision for H takes time Ω(2(K-1)n/K), and
finding a K-way preimage or a K-way 2nd preimage for H takes time Ω(K2n).
A part of our security analysis depends on idealised building blocks for iterated hash functions. The above
attacks against hash functions--variably-sized random oracles--generalise for compression functions--fixed-size
random oracles. The following two facts describe the basic security properties of fixed-size random oracles
against multiple collision and (2nd) preimage attacks, and the security of an idealised block cipher, with fixed
plaintexts.
Fact 2

Model C:{0,1} n+m
→{0,1} n as a random oracle. Finding a K-collision for C takes time Ω(2(K-1)n/K), and

finding a K-way preimage or a K-way 2nd preimage for C takes time Ω(K2n)..
Fact 3

Journal of the Nigerian Association of Mathematical Physics Volume 13 (November, 2008), 273 - 280

Design of provably secure cryptographic hash functions Tola John Odule J. of NAMP

Model E:{0,1} n × {0,1}m
→{0,1} n as a Shannon oracle. Consider a fixed random value S Є {0,1} n.

Regarding collision and (2nd) preimage attacks, the function f:{0,1} m
→ {0,1} n, f(M) = EM(S) behaves like a

random oracle with m input and n output bits.

2.0 Review of current ierated hashes
2.1.1 Merkle-Damgard hash

Recall that we have a fixed-size compression function C:{0,1} n × {0,1}m
→{0,1} n, and our goal is to

implement a hash function H:{0,1}*→{0,1} n. Given a (randomly chosen) fixed initial value H0 and a message M
Є {0,1}* the Merkle-Damgard (MD) hash H(M) is computed as follows:

• Expand M to (M1, …,ML) Є {0,1} mL.
MD strengthening
The last block ML takes the length |M| in bits

• For i in 1,…,L: compute Hi = C(Hi-1, Mi).
Finally: set H(M) = HL.

Figure 2.1: The Merkle-Damgard hash

2.1.2 Length extension
This is a well-known weakness of the MD hash (see e.g. [7, Section 6.3.1]):

given H = H(M), it is straightforward to compute M' and H', such that H'= H(M||M') - even for unknown M (but
for known length |M|). The attack is based on using H(M) as an internal hash for computing H(M||M').
2.1.3 Joux' Attacks

Antoine Joux described an attack to find 2k-Collisions for MD hash H in time O(k2n/2), instead of

)2(2/)1(knkn −Ω .

• For i in 1,…,k find a local collision M0
i ≠ M1

i with)()(1
,1

0
,1 iiiii MHCMHCH −− == .. All the 2k messages

),,,(,),,,,(),,,(11
1

10
1

0
1

00
1 kkkk MMMMMMM ΚΚΚΚ − hash to the same value Hk.

We hereby note that all messages are of the same, not too large, size of k blocks. Joux pointed out that
this technique can be used to attack cascaded hash functions: Let a hash H:{0,1}*→{0,1} n be defined as H(M)=
H(H1(M)||H2M) with two independent n-bit hashes H1 and H2. If both H1 and H2 are independently defined as
random oracles, then finding collisions for H takes time 2n. If, however, either is constructed as a MD hash,
finding a collision for H only takes time O(n/2*2n/2). W.l.o.g., let H1 be the MD hash:
• Find 2n/2-collisions for H1 (in n/2*2n/2 units of time).
Statistically, one such collision also collides for H2 (and thus H).
He also demonstrated the applicability of the multi-collision attack as a tool to find multiple (2nd) preimages
very efficiently. Given a target Y Є {0,1} n, the attack proceeds as follows:
• Generate 2k colliding k-block messages (M1,…,M2k) with Hk = H(M1) =…= H(M2k).
• Find a message chunk Mk+1, such that C(Hk, Mk+1) = Y.
This provides a 2k -way preimage. The first step takes time k*2(n/2), which is marginal, compared to the second
step. This takes about the time for a single preimage attack, i.e., O(2n). For a 2nd preimage message attack with
the target message M, just set Y = H(M).
2.1.4 The Davies-Meyer hash and Kelsey's Attack
The attack described above is applicable for any compression function C. Often, compression functions are
designed according to the “Davies-Meyer” principle: given a block cipher like E, the function C is defined by

,11,1)()(−−− += iiMii HHEMHC .

Journal of the Nigerian Association of Mathematical Physics Volume 13 (November, 2008), 273 - 280

Design of provably secure cryptographic hash functions Tola John Odule J. of NAMP

Figure 2.2: The Davies-Meyer construction

Here “+” is any group operation over {0,1}n, and we write 0n for the neutral element.
iME is invertible for all Mi

(like any n-bit block cipher). This allows the adversary to compute (random) fixed points for C:

• Select a message Mi and compute)0(1
1

n
Mi i

EH −
− = .

This is a fixed point, since .0)()(111,1 −−−− +=+== i
n

iiMiii HHHEMHCH
i

 Finding such a

fixed point takes one “decryption” E-1. Note that the fixed point Hi-1 = Hi depends on the choice of Mi, but for any
Mi such a fixed point exists.

Let a message M be given, and let the expansion (M1,…,ML) of M be L chunks long. Using the fixed
point finder as a tool, Kelsey [5] describes an algorithm to compute a 2nd preimage for M in time O(max{2n/2, 2n
/L}). In an extreme case, i.e., for T ≈ 2n/2 the entire attack asymptotically takes time 2n/2 to compute a 2nd
preimage--instead of time 2n, as would be expected for a random oracle.
2.1 Security against Generic Attacks

The above attacks are generically applicable against a wide class of hash functions. Joux' attack is
applicable against all MD hashes, and the compression function C can be realised by a random oracle. Further,
the attack can be made to work even if the adversary only has oracle access to the hash function H, but not to the
compression function C. So Joux' attack is generic in a very strong sense.

Kelsey's attack requires the compression function C(H,M) + EM(H) + H to be a Davies-Meyer
compression function. In contrast to Joux' attack, Kelsey's would not work with oracle access to H only--the
adversary needs oracle access to E-1. But Kelsey's attack is still generic, since it does not assume any specific
weakness for E - E can be as strong as a Shannon cipher.

In consequence of the weaknesses of iterated hash functions noted above, can we design iterated hashes
and prove their security without making the assumption that some internal building block is much stronger than
the hash function itself?

The focus of this article is to propose a modified MD design for hash functions, provably secure against
all generic attacks, including, but not limited to Joux' and Kelsey's.

3.0 Two twined-pipes hash with Davies-Meyer (DM)

In technical discussions, the compression function is treated like a random oracle with fixed input size.
However, for most practical hash functions, the compression function is, by itself, based on some block cipher-
like building block, often according to the DM construction. This provides the adversary with some additional
handles. If we use such a compression function for the Two Twined-Pipe Hash, we must re-examine the security
of the double-pipe hash.

In this section, we consider the double-pipe hash H, using a DM-based compression function
C:{0,1} n × {0,1}m

→{0,1} n,
,11,1)()(−−− += iiMii HHEMHC

For each M Є {0,1} m, the function EM is a permutation over {0,1}n.
3.1 Notations
For our formal treatment, we consider an adversary A with access to a Shannon oracle for E and E-1. Similarly to
[1], we assume:
• The adversary A never asks a query in which the response is already known. Namely, if A asks for Ek(x) and
receives y, she neither asks for E-1

k(y), nor for Ek(x) again. Similarly, if she has asked for E-1
k(y) and received x.

• Recall that for the type of attacks we consider, a successful adversary always outputs one or more messages
Mi, which either collide or constitute some (2nd) preimages. Before finishing, the adversary makes all the oracle
calls to compute all hash values H(Mi).
• We define a simulator, to respond to A's oracle queries:

▪ Initially:

Journal of the Nigerian Association of Mathematical Physics Volume 13 (November, 2008), 273 - 280

Design of provably secure cryptographic hash functions Tola John Odule J. of NAMP

 * set i = 0; clear the logbook;
 * for all (k,x): mark Ek(x) as undefined;

 ▪ Responding to an oracle query Ek(x):
 * set i + i + 1

 * randomly choose y from RANGE (EK)
 * append (xi, ki, yi) = (x, k, y) to the logbook;
 * respond y;

▪ Responding to an oracle query E-1
k(y):

 * set i + i + 1
 * randomly choose x from DOMAIN (EK)
 * append (xi, ki, yi) = (x, k, y to the logbook;
 * respond x;

Here, DOMAIN (EK) is the set of points x where Ek(x) is still undefined. Similarly, RANGE (EK) is the set of
points y where E-1

k(y) is still undefined. For our proofs, we will discuss the logbook entries (xi, ki, yi). This is
without loss of generality: (w.l.o.g) any adversary not following the first two conventions can easily be
transformed into an equivalent one following them. And an adversary following the first two conventions can't
distinguish the simulator from a “true” random oracle.
3.2 Internal collisions
Lemma 3.2.1
 Consider the double-pipe iterated hash H:
(i). Any internal collision either reduces to a strict or to a cross collision.
(ii). Finding a K-collision requires time Ω(min(TS, TX, T(K)).

Proof

For the first claim, observe that the initial values H'0 and H''0 are different. Any non-strict internal
collision implies a triple),,(11 iii MHH −− ′′′ with 11 −− ′′=′ ii HH . This implies the existence of a cross-colliding

triple),,(1+′′′ jjj MHH , with 2−≤ ij , jj HH ′′≠′ and 1111),(),(++++ ′′=′′′=′′′=′ jjjjjjjj HMHHCMHHCH .

For the second claim, we observe that a K-collision for H reduces to either a final K-collision (which takes time
T(K), or to an internal collision. Due to the first claim, an internal collision is either strict (and needs time TS), or
is a cross collision (time TX).
Here we write TS for the time to find a strict internal collision, TX for an internal cross collision, and T(K) for the
time to find a final K-collision.
Theorem 3.2.2

Consider the DM-based double-pipe hash H. If we model E by a Shannon oracle, then TX = Ω(2n) and
TS.= Ω(2n)

Proof

For the proof, we assume that the adversary does not make more than q ≤ 2n-1 queries. This is
technically correct, since 2n-1.= Ω(2n).
3.2.1 Time TX to find internal cross collisions

A cross collision is described by iii MHH ,11 −− ′′≠′ with

),(),(1111 iiiiiiii MHHHHMHHC −−−− ′′′=′′=′=′′′ (3.1)

In time q, we can check at most q/2 such triples),,(11 iii MHH −− ′′′ for cross collisions. Now we argue that for q ≤

2n-1, for each such triple the probability px to satisfy Equation (3.1) is at most 1/2n-1. This implies that the
expected number of oracle queries we need to make before we get the first cross collision is TX = Ω(2n), as
claimed.

We still have to show px ≤ 2n-1. Observe that if the adversary's answer involves a cross collision, then,
by the above conventions, the simulator's logbook contains two triples (xa, ka, ya) and (xb, kb, yb) with ba ≠ ,

Journal of the Nigerian Association of Mathematical Physics Volume 13 (November, 2008), 273 - 280

Design of provably secure cryptographic hash functions Tola John Odule J. of NAMP

1−′= ia Hx ,)(1 iia MHk −′′= ,)(aka xEy
a

= ,

1−′′= ib Hx ,)(1 iib MHk −′= and)(bkbb xEy = .

Thus, we can rewrite Equation 1 by

b

y

bka

y

ak xxExxE
b

b

a

a
+=+

484 76484 76
)()(which corresponds to

bbaa xyxy +=+ (3.2)

If (w.l.o.g.) ba < , then either by or bx is a uniformly distributed random value from a huge subset of

n}1,0{ :

• If the
thb oracle query has been)(bk xE

b
, then by is a random value from RANGE)(

bkE .

• Else bx is a random value from DOMAIN)(
bkE .

Since RANGE DOMAINE

bk =)(qbE nn
kb

−≥+−= 212)(, and due to q ≤ 2n-1, we get px ≤ 2n-1, as

claimed.
3.2.2 Time TS to find strict internal collisions

(G', G'', M) with H' ≠ H'', we consider pairs (H'. H'') Є {0,1} 2n, where
H' = C(G', G''||M) and H'' = C(, G'', G'||M) (3.3)

A strict internal collision are two different triples, where the corresponding H' and H'' values both collide. When
making q oracle queries, there are Ω(q2) such pairs. We claim that for q ≤ 2n-1, the probability ps to satisfy
equation (3.3) is px ≤ 1/2n-1. Hence, the expected number of oracle queries to get a strict collision is TS.= Ω(2n).

It remains to prove px ≤ 1/2n-1. Consider a triple (xa, ka, ya) with Gxa ′= ,)(MGka ′′= and

)(aka xEy
a

= from the simulator's logfile. We only have a chance for a strict collision, if the logfile contains

another triple (xb, kb, yb) with Gxb ′′= ,)(MGkb ′= , and)(bkb xEy
b

= . Note that bx and bk are

uniquely determined by ax and ak , and vice versa. Equation 3 can then be rewritten as

aaaak xyxxEH
a

+=+=′)(and bbbbk xyxxEH
b

+=+=′′)(.

A strict collision implies the adversary to handle a colliding triple),,(NFF ′′′ , that is,),(NFFCH ′′′=′

and),(NFFCH ′′′=′′ . This information corresponds to two more triples (xc, kc, yc) and (xd, kd, yd) on the

server's logfile with

ccaa xyxyH +=+=′ (3.4)

ddbb xyxyH +=+=′′ (3.5)

Each of these two equations is of the same type as Equation 3.2. As in that context, we argue that due to q ≤ 2n-1
the probability for (3.4) to hold is no more than 1/2n-1; similarly for (3.5). More importantly, the conditional
probability to satisfy (3.5), assuming (3.4) is at most 1/2n-1. Thus, the joint probability ps for both (3.4) and (3.5)
is Ps ≤ 1/22(n-1)
3.3 K-Collisions
Theorem 3.3.1

Consider the DM-based double-pipe hash H. If we model E by a Shannon oracle, then finding K-
collisions for H takes time Ω(2n(K-1)/K).

Proof

Due to the first claim of Lemma 3.2.1 and Theorem 3.2.2, we know that an internal collision would take
time Ω(2n). Thus, in time Ω(2n(K-1)/K). we don't find any such collision. In order to find a K-collision faster than in

Journal of the Nigerian Association of Mathematical Physics Volume 13 (November, 2008), 273 - 280

Design of provably secure cryptographic hash functions Tola John Odule J. of NAMP

time Ω(2n), we must find a final K-collision. In the remainder of this proof, we will show that finding a final K-
collision takes time Ω(2n(K-1)/K).

A final K-collision consists of K different pairs (Gi,Hi) Є ({0,1} n)2 with ()nmHGHC −0,
11*

()nmKK HGHC −== 0,*Λ . Hence, after a possible permutation of triples, we have to find K triples

),,(,),,,(*
11

*
kk ykHykH Κ in the simulator's logbook with different ki but

=+ **

1

1
)(HHE

y

k

484 76
**)(HHE

K

K

y

k +=
484 76

Λ ,

or equivalently

484 76
Λ

484 76 K

K

y

k

y

k HEHE)()(**

1

1
==

By fixing the input H* for E, we turn the Shannon-oracle into an ordinary random oracle, see Fact 2.
According to Fact 2, finding a K-collision takes time Ω(2n(K-1)/K).
3.4 K-Way (2nd) preimages
Theorem 3.4.1

Consider the DM-based double-pipe hash H. If we model E by a Shannon oracle, then finding a single
or K-way preimage or a single or K-way 2nd preimage takes time Ω(2n).

Proof

Finding K-way (2nd) preimages isn't faster than finding single (2nd) preimages. Thus, we concentrate
on single ones. Due to Lemma 3.2.2, (see appendix) finding a single preimage for K takes time Ω(P(1)).P(1) =
Ω(2n) follows from Facts 3 and 2.

Now assume an algorithm exists to find 2nd preimages for H. Consider we are given X Є {0,1} n+m, and
searching for some 2nd preimage key Y ≠ X with EY(H*) = EX(H*) for E. The proof is as follows:

We choose some message M and compute the internal hashes
LL HHHH ′′′′′′ ,,,,, 11 ΚΚ . Assume

}1)(),{(LiMHHMHHX iiiiii ≤≤′′′′′′∉

(this holds with overwhelming probability). Set 




 ′′′= −mn

LLL HHH 0 . We define the function

:}1,0{}1,0{}1,0{: nmnnE →→′ +
() ()
() ()

()







∉⋅=′
⋅=⋅′

⋅=⋅′

},{for LZZ

HL

HLX

HXZEE

E

EE

Now we run the adversary, replacing the (Shannon-) oracle for E and E-1 by an oracle for E' and its inverse. Both
E and E-1 are random permutations over {0, 1}n. If the adversary succeeds in finding a 2nd preimage for M, she
either has found an internal collision (which would take time Ω(2n), or Y:=HL ≠ X is a solution to the 2nd
preimage problem for E. By Facts 2 and 3, this would take time Ω(2n),. In any case, finding a 2nd preimage for M
reduces to solving a problem we know to take time Ω(2n),.

4.0 Discussion
4.1 Main contributions
The major inference from [4, 5, 9] and in this treatise is that the size w of the internal hash values is a security
parameter of its own right, with w≥ n, but otherwise independent from the final hash size n .

Any cryptographer, choosing a cryptographic hash, should choose both w and n according to her
specific security requirements and also considering, of course, efficiency concerns, compatibility issues, etc.).
For some applications, the Merkle-Damgard setting with w > n. may be appropriate, while others may require w
> n.

The design of hash functions is not only about appropriate choices of the security parameters w and n,
though. If n is sufficiently large to prohibit all attacks with 2n/2 running time, then w = n, as in the plain MD
design, appears to be fine. But assume a feasible collision attack. This implies a cryptanalytic weakness in the
compression function, namely a feasible attack A against the underlying compression function. Assume there is
no variant of A to feasibly find multi-collisions. Nevertheless, Joux' attack allows one to feasibly find large

Journal of the Nigerian Association of Mathematical Physics Volume 13 (November, 2008), 273 - 280

Design of provably secure cryptographic hash functions Tola John Odule J. of NAMP

multi-collisions for the plain MD hash. Thus, finding 2k-collisions takes time k*time (A). Observe that the speed-
up over attacking an ideal hash quickly grows with k. If we use the same compression for a double-pipe hash, the
failure of the compression function would be less catastrophic. The speed-up for finding K -collisions for the
two twine-pipe hash, compared to an ideal hash, would be 2n/2/time (A). This does not depend on K at all.

Note that the hash functions proposed here do not suffer from the straightforward length extension
attack, in contrast to the plain MD hash.

5.0 Conclusion

As suggested in [10], it may be time for the cryptographic community to design new and more secure
hash algorithms. In this treatise, we took a rather abstract and proof-centric look at the design of hash functions.
Similarly to others, we consider this style a “feasible and useful step for understanding the security” [11] of
iterated hash functions, thereby complementing the attack-centric approach [4, 5], though not replacing it.

Given “good” compression functions, this paper shows how to compose “good” hashes. Though the
random oracle model is quite useless to define what it means to be a “good” compression function [6], the given
lemmas provide some specific requirements for the compression functions.

Appendix
Lemma 3.2.2 Consider the double-pipe hash H:
1. Finding a single preimage for H takes time Ω(P(1))
2. Finding K-way preimages for H takes time Ω(min{TS,TX,P(K)}).

Proof

First claim: Consider the wide-pipe hash H:
First bound: observe that finding a preimage for H (some M with H(M) = Y) implies finding a preimage HL
for C'', since C''(HL) = Y.
Second bound: finding K different preimages M1, ..., MK

for H either implies finding at least one collision
for ', or implies finding K different inputs K

LL KHH ,,1
1 Λ with YHCHC K

LL K =′′==′′)()(1
1 Λ , i.e., a K-way

preimage for C''. Second claim: Follows from claim 1 of Lemma 3.2.1.

References
[1] Odule, T.J. "Incremental Cryptography and Security of Public Hash Functions." Journal of Nigerian

Association of Mathematical Physics, vol. 11 pp.467-474; 2007.
[2] R. Merkle. One-way hash functions and DES. Crypto 89, LNCS 435, pp. 428{446.
[3] I. Damgard. A design principle for hash functions. Crypto 89, LNCS 435, pp. 416-427.
[4] A. Joux. Multicollisions in iterated hash functions, application to cascaded constructions. Crypto 04, LNCS

3152, pp. 306{316.
[5] J. Kelsey. A long-message attack on SHAx, MDx, Tiger, N-Hash, Whirlpool, and Snefru. Draft. Unpublished

Manuscript.
[6] R. Canetti, O. Goldreich, S. Halevi. The random oracle methodology, revisited. 30th STOC 1998, pp.

209{218.
[7] N. Ferguson, B. Schneier. Practical Cryptography. Wiley Publishing, 2003.
[8] National Institute of Standards and Technology (NIST). Secure hash standard. FIPS 180-2. August 2002.
[9] B. Preneel. Analysis and design of cryptographic hash functions. PhD thesis, Katholieke Universiteit Leuven,

1993.
[10] B. Schneier. Cryptanalysis of MD5 and SHA. Crypto-Gram Newsletter, September 2004.

http://www.schneier.com/crypto-gram-0409.html#3
[11] Black, Rogaway, Shrimpton. Black-box analysis of the block-cipher based hash function construction from

PGV. Crypto 02.

