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Abstract 
 

In this paper, sufficient conditions are established for the relative 
controllability of a special class of nonlinear neutral systems in which the 
base is strongly nonlinear and with time varying multiple delays in control. 
The results are established by using the Schauder fixed point theorem. 
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1.0 Introduction 

It is well known that the future state of realistic models in the natural sciences, economics and 
engineering depend not only on the present but on the past state and the derivative of the past state. Such models 
which contain past information are called hereditary systems. Neutral functional differential equations are 
characterized by a delay in the derivative. Equations of this type have applications in many areas of applied 
mathematics. There are simple examples from biology (predator-prey, Lotka-Volterra, spread of epidemics), 
from economics (dynamics of capital growth of global economy), and from engineering (mechanical and 
aerospace: aircraft stabilization and automatic steering using minimum fuel and effort, control of a high-speed 
closed air circuit wind tunnel; computer and electrical engineering: fluctuations of current in linear and nonlinear 
circuits, flip-flop circuits, lossless transmission lines), (see Chukwu [6]). A good guide concerning the literature 
for neutral functional differential equations is the Hale and Verduyn Lunel book [12] and the references therein. 
Some of the authors who have contributed to the study of the theory of neutral functional differential equations 
include Chukwu [5], Hernandez and Henriquez [13], Balachandran and Dauer [2], and Fu and Ezzinbi [10]. 

Controllability is the property of being able to steer between two arbitrary points in the state space 
using a set of admissible controls. The controllability of neutral systems has been studied by several authors 
including Balachandran and Anandhi [1], Balachandran and Sakthivel [3], Bouzahir [4], Umana [15], Fu [9] and 
Li et al [14]. 

The main purpose of this paper is to examine the relative controllability property of a special class of 
nonlinear neutral systems described by 

 ( ) ( ) ( )
0

( , ) , , ( ) , ( ), ( ) ( )
N

t t i i
i

d
D t x f t x u t B t x t u t u w t

dt =
= +∑  

in which the base is strongly nonlinear. Our approach, similar to one used by Do [8] for nonlinear neutral 
systems, is to define the appropriate control and its corresponding solution by an integral equation. This equation 
is then solved by applying the well known Schauder fixed point theorem. 

However, it should be stressed that the most literature in this direction has been mainly concerned with 
controllability problems for nonlinear perturbations of linear neutral functional differential systems in which the 
base system is inherently linear and controllable, and the perturbations are assumed to satisfy some growth 
conditions. In contrast to these studies, our current paper assumes that f be nonlinear. 
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2.0 Preliminaries 

Suppose h > 0 is a given number, E = (-∞,∞), En is a real n-dimensional linear vector space with norm |.| 
and C = C([-h,0] → En ) is the space of continuous functions from [-h,0] → En with sup norm. Let x  be a 

function from 1[ , ] nh t Eσ − → . Let 1[ , ]t t Eσ∈ ⊂ . We use the symbol xt to denote the function on [-h,0] 

defined by xt(s) = x(t + s) for s Є [-h,0]. 
We consider systems of nonlinear functional differential equations of neutral type with time varying 

multiple delays in control having the form 

( ) ( ) ( )
0

( , ) , , ( ) , ( ), ( ) ( )
N

t t i i
i

d
D t x f t x u t B t x t u t u w t

dt =
= +∑    (2.1) 

where 
nx E∈ , u is an m-dimensional control function with u Є C([σ,t1],E

m), Bi(t,x,u). i = 0, 1, ..., N are n × m 
matrix functions, continuous in (t,x,u) and f:E × C × Em → En is continuous and uniformly Lipschitzian in the 
last two arguments. The continuous strictly increasing functions wi(t):[σ,t1] → E, i = 0, 1, ..., N, represent 
deviating arguments in the control, that is, wi(t) = t – hi(t), where hi(t) are lumped time varying delays for i = 0, 1, 
..., N. The operator D, D: E × C → En is atomic at 0 and uniformly atomic at 0 in the sense of Hale [11]. Instead 
of the atomicity assumption on D, we may assume that D is of the form ( , ) (0) ( , )D t g tφ φ φ= −  where g: E 

× C → En is continuous and is uniformly nonatomic at zero on E × C in the following sense: 
Definition 2.1 

For any ( , )t E Cφ ∈ × , and 0µ ≥ , 0s≥ , let  

{ }( , , , ) : ( , ) , , ( ) ( ), , [ ,0]Q t s C t E C s hφ µ ϕ ϕ ϕ φ µ ϕ θ φ θ θ θ= ∈ ∈ × − ≤ = < − ∈ − . 

We say that a continuous function g: E × C → En is uniformly nonatomic at zero on E × C if, for any 

( , )t E Cφ ∈ × , there exist 0 0s > , 0 0µ >  independent of ( , )t φ , and a scalar function ( , , , )t sρ φ µ , defined 

and continuous for ( , )t E Cφ ∈ × , 00 s s≤ ≤ , 00 µ µ≤ ≤ , nondecreasing in µ , s  such that 

0 0 0 0 0( , , ) sup ( , , , ) 1E CE C s t sρ ρ µ ρ φ µ×= × = <  and 0( , ) ( , )g t g tϕ φ ρ ϕ φ− ≤ −  for t E∈ , 

( , , , )Q t sϕ φ µ∈  and all 00 s s≤ ≤ , 00 µ µ≤ ≤ . 

Definition 2.2 
Given Eσ ∈ , Cφ ∈ , we say ( , )x σ φ  is a solution of (2.1) with initial value φ  at σ  if there 

exists 0a >  such that ( )[ , , nx C h a Eσ σ∈ − + , xσ φ=  and ( , )tD t x  is continuously differentiable on 

( , )aσ σ +  and satisfies (2.1) on ( , )aσ σ + . 

It is known ([7] and the references therein) that under the prevailing assumptions on D, f, g, Bi and u for 
each Cφ ∈  there is a unique solution of (2.1) with initial value φ  at σ . The solution is continuous with 

respect to initial data and parameter u. 
Definition 2.3 

The set { }( ) ( ), ,t tz t x t x u=  is said to be the complete state of the system (2.1) at time t . 

Definition 2.4 

The system (2.1) is said to be relatively controllable on [ 1[ , ]tσ  if for every initial complete state 

( )z σ  and every vector 1
nx E∈ , there exists a control ( )1[ , ], mu C t Eσ∈  such that the solution 

( ) ( , , , )x t x t uσ φ=  of (2.1) satisfies ( , , , )x uσ σ φ φ⋅ = , 1 1( , , , )x t u xσ φ = . 

A function x  is a solution of (2.1) through ( , )σ φ  if and only if there exists a 0τ >  such that x  

satisfies the equation  ∫+=
t

st dssuxsfDxtD
σ

φσ ))(,,(),(),(  
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∫ ∑
=

∈+
t N

i
ii tdsswuuxsBuxstX

σ
τσ

0

],[,))((),,(),,,(     (2.2) 

φσ =x  where ( , , , )X t s x u  is an n × n matrix function defined for s t hσ ≤ ≤ + , continuous is s  from 
 

 
 

the right, of bounded variation in s, X(t,s,x,u) = 0, t < s ≤ t + h.  Since D(t,xt) = x(t) – g(t,xt).  We deduce that the 
solution x(t) of (2.1) is given by  ( ) ( ), [ ,0]x t t t hσ φ+ = ∈ − ,  

∫++=
t

st dssuxsxtgDtx
σ

φσ ))(,,(),(),()(  

 ∫ ∑
=

∈+
t N

i
ii tdsswuuxsBuxstX

σ
τσ

0

],[,))((),,(),,,( , t σ≥ . (2.3) 

The function wi:[σ,t1] → E, i = 0, 1, ..., N, are twice continuously differentiable and strictly increasing in [σ,t1]. 
Furthermore, wi(t) ≤ t for t Є [σ,t1], i = 0, 1, ..., N.  Let us introduce the following time lead functions r i with 
r i(t):[wi(σ), wi(t1)] → [σ,t1], i = 0, 1, ..., N, such that r i(wi(t1)) for t Є [σ,t1].  Without loss of generality, it can be 
assumed that w0(t) = t and the following inequalities hold for  

t = t1:h = wN(t1) ≤ wN-1(t1) ≤ … ≤ wm+1(t1) ≤ σ = 1 1 1 1 1 0 1 1( ) ( ) ... ( ) ( )m mw t w t w t w t t−< ≤ ≤ ≤ = . (2.4) 

Using the time lead function and the inequalities (2.4) we have ( ) ( ), [ ,0]x t t t hσ φ+ = ∈ −   

∫ ∑∫
=

+++=
t m

i
w iist

i

dsssruxsrBuxstXdssuxsxtgDtx
σ

σ

σ
ηφσ

0
)( 11 )()(),),((),,,())(,,(),(),()( &

∑ ∫
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+
N

mi

tw

w ii

i

i

dsssruxsrBuxstX
1

)(

)( 1

1

)()(),),((),,,(
σ

η& +∑∫
=

m

i

t

ii dssusruxsrBuxstX
0

)(

)( 1

1

)()(),),((),,,(
σ

&  (2.5) 

where u(s) = η(s) for s Є [σ – r,σ].  Define, ++= ),(),(),,( txtgDuxtp φσ dssuxsf s

t
))(,,(∫σ , 

( ) ∑∫
=

=
m

i
w ii

i

dsssruxsrBuxstXxtq
0

)( 11 )()(),),((),,,(,,
σ

σ
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m
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&∑
=

=  

and the n × n-dimensional controllability matrix ∫
∗1

),,,(),,,(,,,( 111

t
dsuxstSuxstSuxtW

σ
σ  where the star 

denotes matrix transpose.  Then equation (2.5) becomes ( ) ( ), [ ,0]x t t t hσ φ+ = ∈ −  

dssuuxstSxtquxtptx
t

)(),,,(),,(),,()( 111

1

∫=++=
σ

η   (2.6) 

It is clear that x1 can be obtained if there exist continuous x and u such that 

 [ ]1
1 1 1 1 1( ) ( , , , ) ( , , , ) ( , , ) ( , , )u t S t t x u W t x u x p t x u q t xσ η∗ −= − −  (2.7) 

and  

dssuuxstSxtquxtptx
t

)(),,,(),,(),,()( 1 ∫=++=
σ

η     (2.8) 

Now we will find conditions for the existence of such x  and u . If 
1

1[ , ]i L tα σ∈ , 1,2,...,i q= , the iα  

is the 1L  norm of ( )i sα . That is, 
1

( )
t

i i s ds
σ

α α= ∫ . 

 
3.0 Main Results 
Theorem 3.1 

In (2.1) assume that 
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(i) the function g:E × C → En is uniformly nonatomic at zero on E × C and f: E × C ×Em → En × is 
continuous; 

(ii ) the continuous function Fi:E
n × Cm →E+ and L1 functions αi:E → E+, i = 1, 2, …,q are such that  

  
1

( , , ) ( ) ( , )
q

i i
i

f t u t F uφ α φ
=

≤∑  for every ( , , ) mt u E C Eφ ∈ × × ,  

 
 
 

where    ( −
∞→

r
r

suplim { }) ∞=≤∑
=

ruuFc i

q

i

,(:),(sup
1

1 φφ .   

Then system (2.1) is relatively controllable on 1[ , ]tσ  with 1t hσ> +  if there exists a positive constant d  

such that for each pair of functions 1 1( , ) [ , ] [ , ]mx u C t E tσ σ∈ ×  1det ( , , , )W t x u dσ ≥ . 

Proof 
Let 1 1[ , ] [ , ]mQ C t E tσ σ= ×  and define the nonlinear continuous operator:T Q Q→  by 

( , ) ( , )T x u y v= , 

where  [ ]1
1 1 1 1 1( ) ( , , , ) ( , , , ) ( , , ) ( , , )v t S t t x u W t x u x p t x u q t xσ η∗ −= − −   (3.1) 

and   dssvuxstSxtquxtptv
t

)(),,,(),,(),,()( ∫=++=
σ

η    (3.2) 

By our assumption, the operator T is continuous. Clearly the solutions u and x to (2.7) and (2.8) are fixed points 
of T. Our immediate aim now is to establish the existence of such fixed points by using the Schauder fixed point 

theorem. Indeed, let { }( ) sup ( , ) : ( , )i iF r F u u rφ φ= ≤ .  Since the growth condition in (ii) is valid, 

there exists a constant r0 > 0 such that 0 0
1

( )
q

i i
i

r c F r d
=

− ≥∑ or 0 0
1

( )
q

i i
i

c F r d r
=

+ ≤∑  for some d.  With this 

r0, define Q = Q(r0).  Now introduce the following notations 

 { }1max ( , , , ) :K X t s x u s t tσ= ≤ ≤ ≤ , 

{ }
1

1 1max ( , , , ) ,1
s t

k S t s x u t
σ ≤ ≤

= , 

{ }
1

1
1 1 1

0
3 max ( , , , ) ( , , , ) ( , , , )i i

t t
a k S t t x u W t x u X t t x uσ α∗ −

≤ ≤
= , 

 3i ib K α= , 

 { }max ,i i ic a b= , 

1

1
1 1 1 1 1 1

0
3 max ( , , , ) ( , , , ) ( , , ) ( , , )

t t
d k S t t x u W t x u x p t x u q t xσ η∗ −

≤ ≤
=  + +   , 

 2 1 13 ( , , ) ( , , )d p t x u q t xη=  +   , 

{ }1 2max ,d d d= . 

Now let { }
0 0( , ) : ( , )rQ x u Q x u r= ∈ ≤ .  If 

0
( , ) rx u Q∈ , then from (3.1) and (3.2) we have 

1
1 1 1 1 1( , , , ) ( , , , ) ( , , ) ( , , )v S t t x u W t x u x p t x u q t xσ η∗ −≤  + +  
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σ
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1
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rrr
vkrFcd
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i
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Hence T maps 
0r

Q  into itself. Further, it is easy to see that T(Qr) is equicontinuous for all r > 0 [8]. By the 

Ascoli–Arzela theorem, 
0

( )rT Q  is compact in Q. Since 
0r

Q  is closed, bounded and convex, the Schauder  

 
 
 
 
fixed point theorem guarantees that T  has a fixed point 

0
( , ) rx u Q∈  such that ( , ) ( , )T x u x u= . Hence, for 

( , ) ( , )x u y v= , we have dssuuxstShxtquxtptx
t

)(),,,(),,(),,()( ∫=++=
σ

.  Thus the solutions of (2.7) 

and (2.8) exist. Hence the system (2.1) is relatively controllable on 1[ , ]tσ  with 1t hσ> + . 

Inspired by the above ideas we have the following corollaries. 
Corollary3.1 

For the system (2.1) assume 
(i) condition (i) of Theorem 3.1 holds, 

(ii) 
( , )

( , , )
lim 0

( , )u

f t u

uφ

φ
φ→∞

=         (3.3) 

uniformly in t , 1[ , ]t tσ∈ .  Then (2.1) is relatively controllable on 1[ , ]tσ  with 1t hσ> +  if there exists a 

positive constant d  such that for each pair of functions 1 1( , ) [ , ] [ , ]mx u C t E tσ σ∈ ×  

1det ( , , , )W t x u dσ ≥ . 

Proof 

 Let { }1( , ) sup ( , , ) : [ , ]F u f t u t tφ φ σ= ∈ . Then 

 ( −
∞→

r
r
lim { }) ∞=≤∑

=

ruuFc i

q

i

),(:),(sup
1

1 φφ .    (3.4)  

if  







∞→ rr

1
inflim sup 














≤
1

1
),(:),(

c
uuFi φφ . (3.5) 

But condition (3.3) implies (3.5) by a modification of an argument of Do [8]. The required modification is the 

proof that if the corresponding sequence { }( ,i iuφ  is bounded we can assume it compact. Therefore (3.4) is 

valid and Theorem 3.1 can be concluded.  Recall that ( , , )f t uφ  is said to be locally bounded in u  if for any 

0M > , there is an 0L >  such that ( , , )f t u Lφ ≤  for all ( , )t E Cφ ∈ ×  and for all u M≤ . 

Corollary 3.2 
 For the system (2.1) assume 
(i) condition (i) of Theorem 3.1 holds, 

(ii) : mf E C E× ×  is locally bounded in u , 
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 (iii) 
( , , )

lim 0
u

f t u

u

φ
→∞

=    (3.6) 

uniformly in ( , )t E Cφ ∈ × .  Then (2.1) is relatively controllable on 1[ , ]tσ , 1t hσ> +  if there exists a 

positive constant d  such that for each pair of functions 1 1( , ) [ , ] [ , ]mx u C t E tσ σ∈ ×  
1det ( , , , )W t x u dσ ≥ . 

Proof 

Let { }1( , ) sup ( , , ) : [ , ]F u f t u t tφ φ σ= ∈ . Then  

 ( , , ) ( , )f t u F uφ φ≤  for every 1( , , ) [ , ] mt u t C Eφ σ∈ × × . 

Because of (3.6) the following is valid: 

  







∞→ rr

1
lim sup{ }) 0|),(|:),( =≤ ruuF φφ  

As a consequence (3.5) holds, and the result follows. 
 
 
 
 
4.0 Conclusion 

In the paper, sufficient conditions for the relative controllability of neutral systems in which the base is 
strongly nonlinear and with time varying multiple delays in control have been formulated and proved. The 
approach used here was to define the appropriate control and its corresponding solution by an integral equation. 
This equation was then solved using the well known Schauder fixed point theorem. 
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