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Abstract 
 

Solitons are very stable solitary waves in a solution of the plate 
equation obtain from the three dimensional equations of the linearized 
director theory for an elastic body (the basilar membrane) which were solve 
and solution shows solitons. We show that the solitary waves behave like 
particle. When there are located mutually far apart, each of them is 
approximately a travelling wave with constant shape and velocity. The 
stability of the solitons stems from the delicate balance of “nonlinearity” and 
“dispersion” in the model equations. Nonlinearity drives a solitary wave to 
concentrate further; dispersion is the effects to spread such a localized wave. 
In this exhibition, we present equation of soliton phenomena along with 
soliton solution.  

 
 
 
1.0 Introduction  
Solitons are nonlinear waves which is considered as solitary travelling wave pulse, solution of nonlinear partial 
differential equation (PDE). The equation describing the (unidirectional) propagation of wave on the surface of 
shallow channel was derived by Green & Niaghdi. Therefore, considering the basilar membrane as an elastic 
plate displacement in a continuum can conveniently make the study of the motion of both the basilar membrane 
and the fluid reasonable. 

The basilar membrane can be considered as a thin plate, which is light and taut at the basal end of the 
cochlea and thick and loose near its apex in a medium (fluid-endolymph). It is elastic in nature so that under this 
fluid motion, it undergoes some form of deformation, which we shall consider as motion. Unlike the well-known 
theories of plates with loads, our load is not purely a load but a kind of solitary travelling wave load caused by 
the motion of the endolymph as the stapes rock the foot on the cochlea. We shall recall the mechanism of hearing 
such that when the stapes rock foot on the cochlea, it sets up wave motion in the endolymph in which the basilar 
membrane is immersed. In the absence of any sound or noise, the basilar membrane will be lying in the fluid 
with a load (i.e. the fluid thrust on it), equally distributed throughout its length. 
 We note that the basilar membrane in the fluid has hair cells on its surface. These hair cells on their 
own undergo some form of motion as the wave is generated in the endolymph, which causes the deformation of 
the basilar membrane. Since the motion of the hair cells is dependent on the motion of the basilar membrane, we 
then have to consider the motion of the hair cells along side with that of the basilar membrane. 
Models which attempt to incorporate the properties of the basilar membrane as a plate are those of Chadwick, 
Inselberg and Steele [4]. The model of Chadwick and Inselberg [4] is two dimensional, so the plate is replaced by 
a beam. The exponential variation of compliance is based on shallow water wave theory. Steele’s model is 
probably the most detailed yet attempted. It is a three dimensional model in which the basilar membrane appears 
as a plate. Various boundary conditions for the support of the plate at its edges are considered.  A class of the 
cochlea models of direct concern in the present paper, may be described as follows: 
(1) The model is an enclosed two-dimensional cavity and the basilar membrane appears on it as a thin plate 

which is light and taut at the basal end of the cochlea and thick and loose near its apex in a medium 
(fluid-endolymph). 

(2) The flexural deformation of the basilar membrane is derived from the linear theories of the elastic plate. 
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(3) The simplest mathematical model, which contains the linear short time scale aspects of cochlea 

behaviour, is considered. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.1 
1.1 Elastic plate 
 The flexural deformations of the basilar membrane are derived from the linear theories of the elastic 
plate. The plate equations are obtained from the three dimensional equations of the linearized director theory for 
an elastic body. The equations resulting from the later derivation completely agree with those obtained 
previously for an elastic Cosserat plate. We neglect the equation for the directors. 
 The equation of such a plate has been given by Green and Naghdi [10], Tmoshenko and Woinowsky-
Krieger, [26] and can be extracted in the form:  

3 3 3 3,u F uααα ρ ρ+ = &&    (1.1) 

where α3 is the flexural rigidity, ρ mass density of the basilar membrane.  ( ),αα is the Laplacian of the 

quantity ( ).  As a model of the basilar membrane, on x3 = 0, 0 < x3 < L (see figure 1) the equation of flexural 
vibration of the basilar membrane is: 

( ) ( )2
3 3 3 2 1 1 1,0, ,0,u u x t x tα ρ ρ ρ∇ − = −&&   (1.2) 

where 

2
2

2
1x

∂∇ =
∂

 and ( ) ( )3 2 1 1 1,0, ,0,F x t x tρ ρ− = −  is the load on the basilar membrane. The 

boundary condition on the basilar membrane is given by:  

3 1 3 2

3 3

,    
u u

t x t x

φ φ∂ ∂ ∂ ∂= =
∂ ∂ ∂ ∂

     (1.3) 

We seek a solution such that the field variables will be proportional to 
i t ste eω = . 

We write Re( )steφ φ= , 3 3Re( )stu u e= , Re( )st
i ip p e= .  The equations of motion of 

pressure variation now become 

1 1 2 20, 0p s p sρ φ ρ φ+ = + =     (1.4) 

On 3 10, 0x x L= < <  

2 2
3 (1) 3 3 2 1 1 1( ,0,) ( ,0,)u s u p x p xα ρ∇ − = −    (1.5) 

The boundary conditions (1.3) become  

1 2
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3 3

,     su su
x x
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      (1.6) 
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at the boundary, 3 0x = , for 1x L= ,    1 2

1 1

0
x x

φ φ∂ ∂= =
∂ ∂

     (1.7) 

 
 
 

The outer walls are rigid and the basilar membrane is an elastic plate where undisturbed position is the 
plane 

3 0x = , which is also a plane of symmetry. The spaces above and below the basilar membrane are filled 

with a non-viscous, incompressible fluid. The basilar membrane is light and taut at the basal end of the cochlea, 
it is thick and loose near its apex. 

We assume the end 1 0x =  is under stress and 1x L=  is stress free and as such 

1

3

1

0x L

u

x =
∂ =
∂

      (1.8) 

From equation (1.5), we obtain  )(
1

12
33

3
2

2
1

3
2

ρρ
αα

ρ
−=−

∂
∂ us

x

u
   (1.9) 

From equation (1.4), and substituting values of 1φ  and 2φ , (from Adagba unpublished thesis, we obtain 

( ) ( ) ( ) ( ) ( )1 1 3
2 1 1 2

cos cos cos cos

cos cos
3s L x h - x L x h x

s
L h

ρ β λ λ γ λ λ
ρ ρ ρ φ φ

λ λ
− − − +  − = − =

l l

l
so that on 3 0,x =  we obtain 

   
( ) ( )1

2 1
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s L x

L

ρ β γ λ
ρ ρ

λ
− −

− =     (1.10) 

substituting (1.10) into (1.9), gives 
L

xLsus

x

u

λα
λγβρ

α
ρ

cos

)(cos)(

3

1

3

3
2

2
1

3
2 −−

=−
∂
∂

  (1.11) 

The solution of the homogenous part is 10103 sinhcosh xBxAu λλ +=   (1.12) 

where   
33

2

0 α
ρω

α
ρλ i

s ==       (1.13) 

see Titchmarch, Barrett and Wylie [27].  Let the particular integral be 

   )(cos 13 xLku −= λ       (1.14) 

Substituting (1.14) into (1.11), gives 

( ) ( ) ( ) ( )2
1 12

1
3 3

cos cos |
cos

cos

s k L x s L x
k L x

L

ρ λ ρ β γ λ
λ λ

α α λ
− − −

− − − =  

which upon simplification, gives 
Ls

s
k

λραλ
γβρ
cos)(

)(
2

3
2 +

−−=  (1.15) 

valid for 3 0x = .  Substituting (1.15) into (1.14), we obtain the particular integral  

Ls

xLs
u

λραλ
λγβρ

ρ cos)(

)(cos)(
2

3
2

1
3 +

−−
=  (1.16) 

Hence, the complete solution is 

 ( ) ( ) ( )
( )

1
3 1 0 0 2 2

3
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s L x
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  (1.17) 
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Since the apex is assumed loose 
1

3

1

0
Lx

u

x =

∂ =
∂

 is satisfied identically and it implies that 

sin cos 0,o oA h L B h Lλ λ+ =  which gives  
L

LA
B

0

0

cosh

sinh

λ
λ

=  (1.18) 

Substituting (1.18) into (1.17), we obtain 
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L

xLA
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λ

cos)(

)(cos)(
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)(cosh
)(

2
3

2
1

0
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−−
−

−
=  (1.19) 

Applying the last equality in equation (1.7), ( the values 1φ and 2φ , see 10) 1 2

3 3x x

φ φ∂ ∂=
∂ ∂

 on 3 0x =  

yields
( ) ( )1 1cos sinh cos sinh

cosh cos cosh

L x l L x l

cos L l L l

β λ λ λ γ λ λ λ
λ λ λ λ

− − −
= .  Upon simplification leads to the result

 γβ =−  (1.20) 

Substituting (1.20) into (1.19), gives  
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λ
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−
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 Also, the first equality of the same (1.16) gives 
3 0

1
3

3
xsu

x

φ
=

∂=
∂

 which implies that 
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cosh

)(cosh 1
2
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 (1.22) 

Substituting equation (1.13) into (1.22), yields 

 
( ) ( ){ } ( )

( )
2 2 21

3 13

2 2
3

3

cosh
2 tanh cos

cos
cosh

sA i L x
s s l L x

s L
i L

ρω ρ λ α ρ λ λ β λα
λ α ρ λρω

α

− − + −
=

+
 (1.23) 

Since 
3 3

cos coshi
ρ ρω ω

α α
= , then 
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L
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We can determine the constant A, if we take 
3

,
ρλ ω

α
=   Hence, we have  
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Substituting (1.24) into (1.21) and simplifying, gives 

 

Ls

xLlthanh

txu

3

1
333

13
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)(cos
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α
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α
ρω

α
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α
ρβ −−

=  (1.25) 

Recalling that { }3 3Re stu u e= , then 
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Therefore  

 ( )
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3 3 3
3 1

3

tanh sin cos

,

cos
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ρ ρ ρβω ω ω ω
α α α

ρω ω
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( ) ( )1 1
3 3

3 3

3

sin sin

tanh

2 cos

t L x t L x

l

L

ρ ρω ω ω ω
α αρ ρβω ω

α α ρω ω
α

    
+ − − − −     

    = −  

1 1
3 3 3 3

3 3

3

sin sin

tanh

2cos

t x L t x L

l

L

ρ ρ ρ ρω ω
α α α αρ ρβ ω

α α ρω
α

    
− + − + −     

    = −  (1.27) 

 This is oscillatory with two travelling waves, one in the positive direction whereas the other in the 
negative direction with the same speed, see Jeffrey and Jeffrey [14], Mikilin, Murrray [19]. 
 Consider the deflection given by (1.25), the maximum deflection with respect to the distance is at the 

helicotrema ( )1x L= as required by the place principle at low frequencies, see Furness and Hackey [6], 

Furukawa and Matura [7].  Hence (1.25) becomes  
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 ( ) 3 3
3 1

3

tanh sin

cos

l t

u x

L

ρ ρβ ω ω
α α

ρω
α

−
=  (1.28) 

This is actually the case for the real basilar membrane. The taper in the basilar membrane is needed for optimal 
low frequency behaviour, see Huggin and Licklider [11], Huxley, Inselberg and Forster [12]. 
 A uniform basilar membrane provides excellent high frequency response for a basilar membrane 
modelled as a beam with uniform geometrical and elastic properties.  
 The high tones have oscillation patterns in which the maximum activity occurs in the basal region, 
while the low tones have broader patterns. The region of most vigorous action shifts toward the basal end as the 
frequency of the external signal increases. The phase of Hair cells response is synchronized with the basilar 
membrane. The HC at the apex behaves as might be expected, with a maximum excitation when the basilar 
membrane is between maximum displacement and velocity toward scala vestibuli. However, the neural 
recordings at the base indicate excitation with velocity toward scala tympan, see Johnstone and Yates 15], King 
[16], Pain [21], Peskin [22]. 

 
 
 
2.0 Conclusion  

Solitons are very stable solitary waves in a solution of this equation. As the term “Soliton” suggests, 
this solitary waves behave like “particles”. When there are located mutually far apart, each of them is 
approximately a travelling wave with constant shape and velocity. The stability of the solitons stems from the 
delicate balance of “nonlinearity” and “dispassion” in the model equations. Nonlinearity drives a solitary wave to 
concentrate further, dispersion is the effects to spread such a localized wave. If one of these two competing effect 
is lost, solutions become unsuitable, and eventually, case to exist. In this respect, solitons are completely 
different “Linear waves” like sinusoidal waves. Infact, sinusoidal waves are rather unsuitable in some model 
equation of solitons phenomena.   

Figure 2.1, graphically represents the deformation of the basilar membrane. This results in several 
solitary waves that interact and are propagated in a complex waveform. The shape of the graph depicts the 
flexural deformation of the basilar membrane as indicated by the model. The complex waveforms are determined 
by the fact that sound waves of common phase reinforce each other whereas, sound waves of opposite phase 
cancel when they meet. 
 Figure 2.2 is also the deformation the basilar membrane without the time function (t). It is only a 

function of 1x , and it shows solitary wave cycles slightly different from figure 2.1. 

2.1 Deformation of the basilar membrane 

 
α3: = 2, L: 35, ρ: = 1, m0: = 0.05, ω: = 104, s: = 104, 1: = 1, β: = 1, N: = 25, i: = 0, …, N, j: = 0, …, N, xi: 

= 1.5 + 0.5i, tj: = 1.5 + 0.15j. 
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Figure 2.1: Deformation of the basilar membrane. 
2.2 Deformation of the basilar membrane along the x-axis 
 α3: = 2, L: 35, ρ: = 1, m0: = 0.05, ω: = 104, s: = 104, 1: = 1, β: = 1, N: = 25, i: = 0, …, N, j: = 0, …, N, xi: 

= 1.5 + 0.5i, tj: = 1.5 + 0.15j. 
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