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Abstract 
 

The steady state temperature field of a homogenous biological 
tissues is discussed when the blood perfusion is temperature dependant. The 
solution to the steady Maxwell equations provoke a two regional 
compartments. Our solution is obtained for the temperature field using an 
adequate matching condition at the interface of the two regions. The results 
revealed the effects of varying blood perfusion, tissue thickness, Electric field 
and the matching temperature on the temperature pattern in the tissue. Great 
care is needed before treatment and modality is administered. 
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1.0 Introduction 

Hyperthermia is the use of heat to treat cancer when the body cells are subjected to higher than normal 
temperatures. There is no single factor which plays the overall role in achieving success in clinical hyperthermia, 
hence the countless efforts in the form of research on various thermo physical properties which have been 
undertaken over the years to find effective methods of therapy in dealing with cancer. Adebile and Ogunmoyela, 
(1) worked on temperature profile in biological tissues while investigating perfusion effects by approximate 
series method of solution. Their results showed that the spatial dependence of the blood perfusion did not 
promote stability in the temperature profile nor give rise to multiple solutions. In another paper Adebile and 
Ogunmoyela, (2) also worked on the effects of temperature dependent perfusion; and obtained steady State 
solutions using a series approximation with an adequate matching condition. Their findings revealed the need for 
greater care in dealing with tissues where perfusion is temperature dependent due to the existence of multiple 
solutions. Recently, Adebile et al (3) solved the coupled Maxwell’s and Penne’s Bio heat equations analytically. 
The effects of thermal conductivity, blood perfusion, the thickness of tissue and the electric field were 
highlighted. Their results agreed with that obtained by El dabe et al (2003). Gowrishankar et al (6) studied Bio 
heat transfer requiring evaluation of temporal and spatial distribution of temperature using the Penne’s bio heat 
equation. Transport of heat by Conduction and temperature dependent, spatial heterogeneous blood perfusion 
was modeled using the transport lattice approach. This method was validated by comparing an analytical 
Solution for a slab with heterogeneous thermal properties and spatially distributed uniform sink held at constant 
temperature at the ends. Damage was found to be small even with prolonged skin contact to a surface of up to 
45Oc.  Also revealed was the fact that spatial heterogeneity in skin thermal properties lead to a non uniform 
temperature distribution during exposure. A realistic two dimensional model of the skin showed that tissue 
heterogeneity did not lead to a significant local temperature increase when heated by an Iron tip.  Liu et al (7) in 
June 2007 worked on the computer modeling of the effect of perfusion on heating patterns in RF tumor ablation. 
They performed a computer simulation of RF heating using 2-D and 3-D finite element analysis. This simulation 
was systematically modeled on clinically relevant application parameters for a range of inner tumor perfusion 
and outer normal surrounding tissue perfusion for internally cooled single and cluster electrodes over a range of 
tumor diameters and RF application times. The computer model demonstrated that  
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perfusion reduced both RF coagulation and the time to achieve thermal equilibrium. Their results show the 
importance of considering not only the tumor perfusion but also size and background tissue when attempting to 
predict the effect of perfusion on RF heating and ablation times. 
 
Nomenclature 
Symbol Quantity Unit 
ρ Density   g/cm3 
Cp Specific heat capacity  J/kg/k 
t Time   S 
Cb Specific heat Capacity of blood  J/kg/k 
E Electric field  V/m 
X Space coordinates cm 
H Magnetic field T 
T Tissue temperature  OC 
Ta artery temperature  OC 

Tb  Blood temperature  OC 

Tc Core temperature  OC 

Tw Wall temperature  OC 

L Distance from skin surface to core  cm 
m Positive Integer  __ 
ρb Density of Blood g/cm-3 
ω b Blood perfusion rate  Ml/g-min 
Ҝ Thermal Conductivity of tissue Mw/cm oc 
Q Body heating coefficient  J 
µ Magnetic permeability.  Hm-1 
ε Electric permittivity. Fm-1 
σ Electric conductivity. Js-1M-1k-1/wm-1k-1 
Ho Magnetic field in free space upon tissue. T 
Eo Electric field in free space upon tissue  Vm-1 
Pr Prandtl’s number Pr = µCp/K Kgm-1s-1 
θ Kinematics viscosity, θ = µ/ρ Kgsm-1 
θt Viscosity of tissue  Nsm-2 
ω Perfusion Ml/g-min 
a, b Arbitrary constants.  - 
 
Subscripts 
b : Blood 
a : Artery 
c : Core 
w : Wall 
e : Permeability 
o : Initial / free space 
t : time. 
 
2.0 Mathematical formulation. 

This section is concerned with the mathematical formulation of the problem. Physically reasonable 
assumptions are taken in order to simulate the model based on the governing equations.  
2.1 The governing equations 
 The temperature, electric and magnetic fields are the three dependent variables in the governing 
equations.  T =T(x, t); E = E (0, E(x, t), 0); H = H (0, 0, H(x, t))   (2.1) 
Presented below is a one dimensioned tissue model 
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Superscripts 

m : Positive integer. 
n : positive integers 
i : Inner 
o : Outer. 

 

Key: 
i = Epidermis,  
ii = Dermis,  
iii = Subcutaneous,  
iv = inner tissue 
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Figure 2.1: Multilayered tissue. 
 In the work done by Hill and Pincombe (1992) the Maxwell’s and bio heat equations were given as: 
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In (2.4), the first term is the energy gradient; the second term presents the energy stored in the tissue 
while the third term is the blood transport between the tissue and the blood.  Equations (2.2), (2.3) and (2.4) are 
subject to the following initial and boundary conditions: 
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H(x, 0) 
L

xH 0= , H(L, t) = Ho, H(0, t) = 0 

Merchant and Liu (2001) reported a power law dependence on temperature, so that,  
Q(T) = Tm      (2.6) 
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Hence the dimensionless Maxwell’s and Penne’s bio heat equation after ignoring the star mark is written as, 
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Subject to the non dimensional initial and boundary conditions: 

T(x, 0) =
b

c

T

T x, T(1, t) = 
b

c

T

T , T(0, t) = 0 

E(x, 0) = x, E(1, t) =1, E(0, t) =0       (2.11) 
H(x, 0) = x, H(1, t) =1, H(0, t) = 0 

 
3.0 Method of solution 

Some of the assumptions taken to simplify the model are: 
1. The rate of blood perfusion is temperature dependent ω = (a0 + b0T)n, n Є R, b0 <<< 1 

 2. For the body heating coefficient, Q(T) = Tm, m = 1 
Therefore the steady states Maxwell’s and Penne’s bio-heat equations to be solved are; 
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The solution to equation (3.2) is E = Constant. This provokes seeking solution in two regions. Region 1([0,a)) is 
region of no electric effect (E1) and region 2([a,1]) is the region where electric field is active (E2). 

For region of no electric effect, E1 = constant = 0, hence, the steady state Penne’s bio-heat equation to 

be solved is:  ( ) ( ) 01 11002
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Substituting the compressed forms of p2, p3 and p4 in (3.9) into (3.8) subject to (3.7), the quadratic equation 
obtained is,  
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We consider a case for which the discriminant, 013 =sD , so that a unique solution is obtained otherwise there 

will be multiple solutions.  Again for the second region, E2 = constant = 1, hence the steady state Penne’s bio-

heat equation to be solved is: ( ) ( ) 01 222002

2
2

=+−++ TTTba
dx

Td n λβ     (3.13) 

T2 (a) = h, T2 (1) =
b

c

T

T
     (3.14) 

We seek a solution for;  oT2 =∑
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Introducing (3.14) into (3.12), comparing and comparing the coefficients of,  



 
Journal of the Nigerian Association of Mathematical Physics Volume 13 (November, 2008), 183 - 188

 

Model for temperature dependant  E. A. Adebile, B. N. Akintewe. and K. M. Owolabi  J. of NAMP 
 

order Z0, 
( ) ∂≡−+−−=
β

λ
2

0
2
0

3
0

2

fqghqJq
q  

order Z, 
( )

11
10

2
0

3 6

23
q

qghqJq
q ∂≡+−−=

β
λ

      (3.16) 

order Z2, 
( ) ( ) ( )

3
2
12

2
1020

2
0

4 12

323
∂+∂≡

−++−−
= q

qhJqqghqJq
q

β
λ

 

where: f = α na0 ; g = α nn ana 0
1

0 α−− ; h1 =α  
( )

0
1

0
2
0

2
02

1
bnaba

nn nn −− −− α ; J=
( ) 2

0
2

02

1
ba

nn n−−
 

( )
β

λ
2

0
2
0

3
0 fqghqJq −+−−=∂ ; 

( )
β

λ
6

23 0
2
0

1

+−−=∂ ghqJq
 

 
 
 

β12

3 0
2

hJq −=∂ ; 
( )

β
λ

12

23
20

2
0

3

qghqJq +−−
=∂ , Z = 1 - x   (3.17) 

Substituting (3.16) into (3.15), the quadratic equation obtained is;  
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We consider a case for which the discriminant, 014 =sD , so that a unique solution is obtained otherwise there 

will be multiple solutions  
 
4.0 Result and discussions. 
4.1 Graphs of temperature dependent blood perfusion for m = 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.1: Temperature distribution plotted against the 
space coordinate for a temperature dependent blood 

perfusion, for different tissue thickness, L, where a0 = 1, 
b0 = 1, n = 2, cb = 3770, cp = 3590, wb = 0.00125, k = 0.24, 

g = 1050, E0 = 2 and gb = 1060 
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Figure 4.2: Temperature distribution plotted against the space 
coordinate for a temperature dependent blood perfusion, for 
different electric field in the free space  upon issue, where a0 

= 1, b0 = 1, n = 2, cb = 3770, 
c  = 3590, w  = 0.00125, k = 0.24, g = 1050, E  = 2 and g  = 

…….. EO  = 2, _______ EO = 4, --------- EO = 6 
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In figure 4.1, thicker skin types tend to attain lower temperatures while less thick skin types record 
higher temperatures. In region I, where the electric field in free space upon tissue is zero, there is no significant 
effect for the different values of E0. While in region II a direct proportion is observed so that higher values of E0 

attain higher temperatures in figure 4.2.   Higher blood perfusion rates imply higher temperatures as clearly 
displayed in figure 4.3 
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