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Abstract

The steady state temperature field of a homogenous biological
tissues is discussed when the blood perfusion is temperature dependant. The
solution to the steady Maxwell equations provoke a two regional
compartments. Our solution is obtained for the temperature field using an
adeguate matching condition at the interface of the two regions. The results
revealed the effects of varying blood perfusion, tissue thickness, Electric field
and the matching temperature on the temperature pattern in the tissue. Great
care is needed before treatment and modality is administered.
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1.0 Introduction

Hyperthermia is the use of heat to treat cancemwthe body cells are subjected to higher than nbrma
temperatures. There is no single factor which ptagsoverall role in achieving success in clinicgberthermia,
hence the countless efforts in the form of reseanthvarious thermo physical properties which haeerb
undertaken over the years to find effective methafdtierapy in dealing with cancer. Adebile and Omgoyela,
(1) worked on temperature profile in biologicalsties while investigating perfusion effects by agpnate
series method of solution. Their results showed tha spatial dependence of the blood perfusion raitl
promote stability in the temperature profile novegirise to multiple solutions. In another paper Bike and
Ogunmoyela, (2) also worked on the effects of tewmijpee dependent perfusion; and obtained steadg Sta
solutions using a series approximation with an adegmatching condition. Their findings revealeel tieed for
greater care in dealing with tissues where perfugotemperature dependent due to the existenceutifple
solutions. Recently, Adebile et al (3) solved tbeed Maxwell’s and Penne’s Bio heat equationdyéinally.
The effects of thermal conductivity, blood perfusiahe thickness of tissue and the electric fieldrav
highlighted. Their results agreed with that obtdifgy El dabe et al (2003). Gowrishankar et al (6)ied Bio
heat transfer requiring evaluation of temporal apdtial distribution of temperature using the Pé&nb@ heat
equation. Transport of heat by Conduction and teaipee dependent, spatial heterogeneous blood sienfu
was modeled using the transport lattice approadtis Thethod was validated by comparing an analytical
Solution for a slab with heterogeneous thermal eriigs and spatially distributed uniform sink hatdconstant
temperature at the ends. Damage was found to bk evea with prolonged skin contact to a surfaceupfto
45%. Also revealed was the fact that spatial hetmeiy in skin thermal properties lead to a norfarni
temperature distribution during exposure. A re@listvo dimensional model of the skin showed thatue
heterogeneity did not lead to a significant loeshperature increase when heated by an Iron tip.etal (7) in
June 2007 worked on the computer modeling of thecebf perfusion on heating patterns in RF turmdaton.
They performed a computer simulation of RF heatisigg 2-D and 3-D finite element analysis. Thiswdation
was systematically modeled on clinically relevapplacation parameters for a range of inner tumafyséon
and outer normal surrounding tissue perfusiontriternally cooled single and cluster electrodes aveange of
tumor diameters and RF application times. The cdaerpuodel demonstrated that
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perfusion reduced both RF coagulation and the tinechieve thermal equilibrium. Their results shthe
importance of considering not only the tumor pedosut also size and background tissue when atiegfo
predict the effect of perfusion on RF heating abldton times.

Nomenclature

Symbol Quantity Unit

p Density glent

Co Specific heat capacity Jikg/k

t Time S

Cy Specific heat Capacity of blood Jlkglk

E Electric field Vim

X Space coordinates cm

H Magnetic field T

T Tissue temperature °c

Ta artery temperature °c

To Blood temperature °c

T. Core temperature °c

Tw Wall temperature °c

L Distance from skin surface to core cm

m Positive Integer .

Pb Density of Blood g/em®
®p Blood perfusion rate Ml/g-min
K Thermal Conductivity of tissue Mw/cm °c
Q Body heating coefficient J

u Magnetic permeability. Hm*

€ Electric permittivity. Frt

o Electric conductivity. Js*M A wmikt
Ho Magnetic field in free space upon tissue. T

E, Electric field in free space upon tissue vm?

P, Prandt’’s numbePr = uC,/K Kgm's?
0 Kinematics viscosityd = u/p Kgsm*
I Viscosity of tissue Nsm?

® Perfusion Ml/g-min
ab Arbitrary constants. -
Subscripts Superscripts

b : Blood o

a: Artery m: Positive integer.

c: Core n : positive integers

w: Wall i Inner

e: Permeability 0: Quter.

o: Initial / free space

t:time.

2.0 Mathematical formulation.

This section is concerned with the mathematicaitdation of the problem. Physically reasonable
assumptions are taken in order to simulate the hzased on the governing equations.

2.1 The governing equations
The temperature, electric and magnetic fields thee three dependent variables in the governing
equations. T =T(x,t); E = E (0,E(x, 1), 0); H =H (0, 0, Hk, 1)) (2.1)

Presented below is a one dimensioned tissue model

Y
z /
A

AT .
H 7/ > X Key:

) B ) i = Epidermis,
! " m v ii = Dermis,
iii = Subcutaneous,

R _ . . iv=i ti
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Figure 2.1 Multilayered tissue
In the work done by Hill and Pincombe (1992) thaxviell’'s and bio heat equations were given as:

07H+567E+0'E:0 (22)
0Xx ot
0E oH
OE , ,OH _, (2.3)
ox ot
oc 9T = 9 [ OT ) + @Gy (Ty-T) + Q(T) EF (2.4)
P ot ox ax

In (2.4), the first term is the energy gradient #econd term presents the energy stored in theetis
while the third term is the blood transport betwéss tissue and the blood. Equations (2.2), (@rf2) (2.4) are
subject to the following initial and boundary cotiatis:

T(x,0) = X T(L, )= T, ,T(0,0)=0
L

Tb
E(x, 0) = EoX E(L, 1) =E, E0,1)=0 (2.5)
L
Hex, 0) = HoX  H(L, ) =H,, H(O, 1) = 0
Merchant and Liu (2001) reported a power law depand on temperature, so that,

QM =T1" (2.6)

Introducing the following non dimensional variahle

tD:t%v X = 1: TDZEI C :&

L L T ™ ¢,
2
EDZ E!HD:H!p:L:&va:% (27)
E, H, 0 v
m- 2
1 = L2T," 2 [E,| A= UEEO’/]z _ LUEO’/13 _ HeHqo
up C P LH o H 0 LZO
Hence the dimensionless Maxwell’'s and Penne’s ba bquation after ignoring the star mark is wmits,
67H+A167E+A2E:0 (28)
ox ot
9E + A, oH _ 0 (2.9)
ox ot
OT _ 1 (0°T | 4+0,p,Cy(L-T) +AEPT (2.10)
at  Prl ax?

Subject to the non dimensional initial and boundzmyditions:
T(x, 0) =Te x, T(L,t) = Tc , T(0,t) = 0
Tb Tb
E(x, 0) =x, E(1,t) =1,E(0,t) =0 (2.11)
H(x, 0) =x, H(1,t) =1,H(0,t) =0

3.0 Method of solution
Some of the assumptions taken to simplify the madel
1. The rate of blood perfusion is temperature ddpeto = (ag + byT)", N € R, by <<< 1
2. For the body heating coefficie@(T) =T", m=1

Therefore the steady states Maxwell’'s and Penrie*sdat equations to be solved are;
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dH +),E=0 (3.1)

dx
dE -o (3.2).
dx
ﬁdT (2, +b,T)" @-T)+AE[*T 3.3)
X
subject to: T(0) = 0 E(©)=0,H(0)=0 B.4
T1)=tc ,E1)=1,H@A)=1 (3.5)

b

The solution to equation (3.2) 5= Constant. This provokes seeking solution in tegions. Region 1([8)) is
region of no electric effecE() and region 2§,1]) is the region where electric field is acti)
For region of no electric effedE; = constant = 0, hence, the steady state Penr@lseait equation to

2
be solved is: B d -l;l +(a, +b,T,)"@-T,)=0 (3.6)
T1(0) = 0,Ty(a) =h (3.7)
Consider a solution for: Tli = z o x',0< x< a (3.8)
substituting (3.8) into (3.6) comparing and coliegtthe coefficients of,
ordend, p,=_ f _ 4
2B
orderx’; p;=_ 9P P
68
ordery?, p, = _ 99, ~hR’* _ = 9P+, (3.9)
12ﬂ
n(n—1 nin-1)
where f = aaf; g = aa] b, ~aal; h=a ™ )ao *y - amag 'y, J—%aé‘zbé
f -h -
= = —" 1:—&;192:—;193: gp2 (310)

283’ 653 123 1283
Substituting the compressed forms ¢f p; and p in (3.9) into (3.8) subject to (3.7), the quadraguation
obtained is,

gatp? + (a + z9la3)p1 +9a°+5a' -h=0 (3.11)
\/ (a+z91a3)2 —4(:92a4)(z9a2 +J.a’ —h) =D},
2,a%)

We consider a case for which the discriminﬁ)&f3 =0, so that a unique solution is obtained otherwiseet

which is solved to gep, = —((a+ 1918.3))1L (3.12)

will be multiple solutions. Again for the secorehion, & = constant = 1, hence the steady state Penne’s bio

heat equation to be solved is: 2 4+ (a0 + bOT2 )” (1 -T, )+ /]T2 =0 (3.13)
TC

T,@=hT,(1)=— (3.14)
Tb

We seek a solution for; TZOZZ q, (1- X)' ,asx<1 (3.15)

Introducing (3.14) into (3.12), comparing and conmathe coefficients of,
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Jop —hag —(g+A)ap—  _

der?, g, =
order Z, (, 2
2 — —
order Z,0, = 3306 - 2ng, ~ (g +AJay =0,0, (3.16)
65
2 _ _ _ 2
order 2, g = 399 ~2nd0) (g + A)a, + (33, e _ 5 o, o
128
wheref= @ aJ;g=a na) " —aa);h=a @a{;_zb& —anag J:@ag_zbg
5=J%-heg —(g+A)a-f , _3)g-2hg,~(g+1)
28 S 63
- 3J92 -2hq, -(g+ 1
9, =% "N 5 _ >0 7 g+ ), 721 (317)
1283 128
Substituting (3.16) into (3.15), the quadratic ggueobtained is;
d,a’q’ + (a+ 61a3)q1 +0a’+0,a*-h=0 (3.18)

\/(a + alaB)2 - 4(6 ,al )(6a2 +0,a* - h) =D},
2(6 2a4)

We consider a case for which the discrimin®f, =0, so that a unique solution is obtained otherwiezet

will be multiple solutions

q, = —((a + alaS))t (3.19)

4.0 Result and discussions.
4.1 Graphs of temperature dependent blood perfusiofor m =1
Figure 4.1: Temperature distribution plotted agaihe Figure 4.2: Temperature distribution plotted agathe space
space coordinate for a temperature dependent bloodl coordinate for a temperature dependent blood gerfugor
perfusion, for different tissue thicknesswhereag = 1, different electric field in the free space upasuis, whereg
bo=1,n=2,c,=3770,c, = 3590 Wy, = 0.00125k = 0.24, =1,bo=1,n=2,c,= 3770,
g = 1050, = 2 andg, = 1060
1.4
£1.2
1.4 .5 1
=1 2 g0.8
g ’y £0.6
2 08| g 0.4
S 06 20.2]
£ 04 F 0 P
< { 2 04 .
g 02 | 020 020
g 0 == " ‘ ‘ -04 Space coordinatix
D 0.2 04 ——p6__0. 12 .
S o4 66—.98 1
0.4 Space coordinatix
- L=0.01, L=0.002, .....L=0.0000§ || || | - EO =2,_______EO=4, -~ EC =6
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Figure 4.3: Temperature distribution plotted against th
space coordinate,for different values of the blood
perfusion in w = (@+boT)'n where a = 75,
L=0.000082,=1,bp=1,n=2,k=024, B=2,
go = 1060, g = 3770, ang} = 3590c, = 3590,

w, = 0.00125k = 0.24,9 = 1050,E, = 2 ancg, = 106(

@
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Temperature distributiorT;

Space coordinate,

----- wb =0.0005, _ wb=5,...wb=10

In figure 4.1, thicker skin types tend to attainvés temperatures while less thick skin types record

higher temperatures. In region I, where the eledield in free space upon tissue is zero, therisignificant

effect for the different values of,EWhile in region Il a direct proportion is obsetveo that higher values of E
attain higher temperatures in figure 4.2Higher blood perfusion rates imply higher tempenes as clearly
displayed in figure 4.3
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