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Abstract 
 

A sheared elastic material containing a central hole and two cracks 
has been investigated.  One of the cracks propagated from a far distance and 
terminated at the hole which acted as a crack breaker. The other one 
originated from the boundary of the hole opposite the one of infinite extent and 
moved a finite distance, b-a, where a is the radius of the hole. The fields close 
to the tip of the finite crack were derived in terms of the complete elliptic 

integral of the first kind. The stress intensity factor, ( )TabK III ;−  was 

derived in the standard form and is comparable with known stress intensity 

factor, ( )TaK III ,0
 for a tunnel crack of width, 2a under remote shear stress.  

The dependence of ( ) ( )
( )TaK

TabK
TabK

III

IIIN
III ;

;
;

0

−=−  on the ratio 
b

a
 was 

displayed in a graph. 
 
 
 
1.0 Introduction 

This study concerns a homogeneous isotropic elastic material containing a central circular hole of 
radius, a. One of the cracks is of infinite extent and terminates at the boundary of the hole, which acts as a crack 
breaker while the other one originates from the side of the hole opposite the first one and has length b - a.  The 
problem is formulated in terms of polar coordinates r, θ for the only non vanishing component of displacement, 
W(r, θ).  The crack of infinite extent lies along the ray r ≥ a, θ ± π while the finite one lies on θ = 0, a ≤ r ≤ b. 
The boundary r = a, 0 < θ < π is subjected to anti-plane shear, -T while r = a, -π < θ < 0 is subjected to opposite 
shear, T. The crack surfaces are stress (Figure 1.1).  The central circular hole with finite cracks has been 
investigated by several authors see for example [1,2,3]. Investigation of anti-plane fields complements those of 
tensile and in-plane shear fields. 
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Figure 1.1: Geometry of the problem and load sites 
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2.0 Governing equations 
 The non-vanishing polar stresses are related to W(r, θ) through 
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µθσ θ ,,;,, r
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W
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∂
∂=   (2.1) 

 W(r, θ). is sought for in the following boundary value problem: 

  ( ) arrW
rrrr

≥≤≤−=








∂
∂+

∂
∂+

∂
∂

,,0,
11

2

2

22

2

πθπθ
θ

  (2.2) 

    ( ) πθ
µ

θ <<−=
∂

∂
0,,

T
a

r

W
    (2.3a) 

    ( ) 0,, <<−=
∂

∂ θπ
µ

θ T
a

r

W
    (2.3b) 

   ( ) arandbrar
W >±=≤≤==

∂
∂

,,0,0, πθθθ
θ

  (2.4) 

The boundary and the problem are made more mathematically tractable by their transformation using the 
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Therefore, we seek ( )φρ,W  in the problem (see Figure 2.2) 
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   0=  otherwise      (2.7c) 
The behaviour of the stresses are 
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Figure 2.1: Boundary conditions due to the transformation 
 
 
3.0 Solution of the transformed problem  
 Mellin transformation of (2.7) yields 
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where the Mellin transform of W(ρ, θ) is defined by 
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To analyze the singularities of ( )sbag ;,  we write the integrand as 
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Equation (3.5) is obtained from 
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to separate singularities because they may not occur, in the cases ,, mkandmkmk <=>  in the same 

half planes, Res > 0 and Res < 0.  Let 
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Then (3.5) becomes  ( ) ( ) ( )( ) ( )( ){ }ss sMsMsbag 1;11;11;, 2
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If (3.2) is applied to the solution of (3.1) given as   ( ) ( ) ( ) ssBssAsW φφφ cossin, +=   (3.8) 

it turns out that ( ) ( ) ( )
ss

sbagaT
sAandsB

πµ cos
;,

0 == .  Hence  

    ( ) ( )
ss

s
sbag

aT
sW

π
φ

µ
φ

cos

sin
;,, =    (3.9) 

The inversion formula for the Mellin transform and (3.9) yield 
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Using (3.11) the integral in (3.10) is evaluated for ε - 1 < ρ < ε + 1 by residue technique with choice of contours 
regulated by Jordan’s lemma. It is note worthy that the singularities involved do not occur simultaneously when ρ 
< ε + 1 and ρ > ε -1.  For ρ < ε + 1, Jordan’s lemma suggests closure of contour in the  
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left half plane Res < 0 where M(ε + 1; s) has double poles at s = -(k - m) - ½, k > m and at s = ½. For ρ > ε -1 the 
contour is closed in the right half plane Res > 0 where M(ε – 1; s) has double poles at s = m – k - ½, k < m.  The 
integrals to be evaluated are: 
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4.0 Crack tip neigbourhood fields 
 The solution for 10 << ρ  is derived by employing (3.6) and noting that, in this case ( )sbag ',  is 

an analytic function with removable singularities. The integral in (3.10) is therefore evaluated by referring to the 
simple poles contributed by sπcos  in the left half plane Res < 0. The result is: 
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As the crack tip is approached (4.1) yields  
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 is the complete elliptic integral of the first kind whose values are tabulated, for example in 

[5].  Introducing local polar coordinates (R,ψ) at the crack tip, (Figure 2.1), we get rcosθ = b + Rcosψ and rsinθ 
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In view of these derivations and (4.2), the standard from of the displacement is [6]  
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The stress intensity factor is then given by ( ) ( ) 
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The energy release rate is ( )TabKG III ;
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5.0 Conclusion 
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displacement field for the geometry under consideration has been derived in (4.4) in terms of the complete 
elliptic integral of the first kind for b>a. The stress intensity factor is 
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for a tunnel crack of width 2a in an infinite body with anti plane shear load applied parallel to the tunnel [1]. 

Then ( )TbaK III ;−  can be compared with known stress intensity results. The dependence of N
IIIK  on the ratio 

b

a
 is showed in Figure 5.1. 
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