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Abstract 
 

Experiments with fluid whose viscosity depends on temperature are used 
to study the effect of viscosity variations. At large viscosity, Rayleigh number 
can either be conductive or convective depending on whether the Rayleigh 
number is high or low or decreased from a pre-existing convective state. At 
high Rayleigh numbers and for the entire range of viscosity variation, the 

stability occurs at 70.407=criRa . From the viscous fluid when the 

Rayleigh is defined in terms of wave number corresponding to a temperature 
equal to the average of the boundary temperatures. The relationship between 
critical Rayleigh number and the temperature appears not to depend on the 
Rayleigh number. 

 
 
 
1.0 Introduction 
Although the Earth’s mantle, which is a spherical shell between the lithospheric layer and the core is largely a 
solid and behaves elastically on short time scales, it acts like an extremely viscous fluid on longer time scales and 
its convection is driven thermally and compositionally. The Earth’s mantle viscosity could be dependent on 
temperature that could impact greatly on the style of convection, which with increasing viscosity contract is 
larger than 104 - 105. Min Chan et al (2004) considered theoretically an initially quiescent, fluid-saturated , 
horizontal porous layer heated from below with constant heat flux, use darig’s law as a model to the fluid motion 
and linear stability theory, predict the onset of buoyancy-driven convective motion.[2] using propagation theory 
on the onset of buoyancy-driven convection in an initially isothermal quiescent fluid layer confined between the 
two infinite horizontal plates, predicts that dimensionless critical time t decreases with increasing prenatal 
number for a given Rayleigh number. [3], investigated how variable viscosity affects the onset of instability in 
the Rayleigh-Benard convection using the so called combine method. [4], said, the problem of heat transfer by 
convection in a horizontal layer of fluid across which the imposed temperature gradient gives rise to an unstable 
density gradient is classical in the theory of fluid mechanics. [5], experiments with fluids whose viscosity 
depends strongly on temperature are used to study the effect of viscous variations in the range 104 - 105on the 
heat transfer and horizontally averaged temperature of a convecting layer between horizontal isothermal 
boundaries. [6], treated the problem for a gray fluid with black rigid boundaries and arbitrary optical thickness 
using rigorous integral formulation of radiative transfer, but he neglected both thermal conduction and the 
radiation effect on the static temperature. [7] were the first to introduce the effects of fluid nongrayness and 
boundary emissivities. They used the approach of [8] , combining planck and Rossel and mean absorption 
coefficients, to account for fluid nongrayness.[9], in their work, investigated theoretically the radiation on the 
Rayleigh-Benard instability for real gases such as NH3, H20 or C02, they develop a procedure that enables 
quantitative predictions of critical Rayleigh numbers  and that accounts for the complex structure of molecular 
absorption spectra and the full integro- differential nature of the radiative transfer equation. The main aim of this 
paper is to examine the linear analysis of the problem of a radiating fluid layer heated from below with 
temperature-dependent viscosity and application to the Earth’s mantle; since the rheology of mantle material is 
likely to be temperature dependent, critical Rayleigh numbers considered and the temperature appeared not to 
depend on the Rayleigh number. 
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2.0 Basic formulation  

We consider the problem of linear stability analysis of an incompressible viscous radiating fluid with 
temperature-dependent viscosity in a horizontal channel with radiating heated flux. The system used in this paper 
is a radiating fluid with an initial temperature. The horizontal layer of fluid depth is d. 

Under Boussinesq approximation, the governing equations for the flow including radiative heat transfer 
are      0. =∇V      (2.1) 
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where rqandgpTV ,,,,,,,,,1 µββρ  are respectively the velocity vector, temperature, pressure, density, 

thermal expansion coefficient, gravitational acceleration constant, viscosity and radiation heat. The subscript qr 

represents basic state. The surface temperature ễz  at the vertical distance z = 0 increases with the time during the 
conduction state . The fluid temperature is prescribed at the boundaries while velocity boundary conditions are 
determined either from the no slip condition for a rigid surface or for a free surface. The basic state of the system 
by the static solution V = 0 of the system (2.1) – (2.3) to which correspond the static temperature T, and the 

radiative vertical heat flux q r . In other to study the stability of the static state, and thus, to determine the onset 

condition of Rayleigh–Benard instability, we consider the perturbed state defined by the layers 
1VV =      (2.4a) 
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where T<< T0, P0 <<< P1..  The temperature disturbance induces a disturbance rq  in the radiative flux which 

becomes    )(. 12
∞−=∇ TTqr α      (2.4d) 

We follow the classical procedure of linear mode analysis of [10]. The decomposition given in (2.4) is 
introduced in (2.1) – (2.3) and the resulting equations are linearized. 

The linear system is then reduced to a set of two scalar equations by taking the double curl of the 
momentum equation and keeping only the vertical component w of the velocity, we have two equations 
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Using the non-dimensional parameters 
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(2.5) after simplifying becomes  w
Ra

w
t n

22222

Pr
∇−∇−∇=∇







 ∇−
∂
∂ µθ   (2.8) 

Also, using the non-dimensional parameters 
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(2.6) after simplifying becomes  θαθ
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where 
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Following Chandrasekhar (1961), We study the stability of normal mode disturbances, which are 
chosen in our case to be two dimensional periodic waves in the horizontal plane (x, y). Each normal mode is 
defined by a non dimensional wave number K, and the corresponding disturbances have temporal and spatial 

horizontal dependence of the form ( )[ ],exp ntykxki yx ++  where 
222
yx kkk += .  We seek for solutions 

of the form   ( )[ ]ntykxkiWw yxz ++= exp)(    (2.12) 

( ) ( )[ ]ntykxki yxZ ++≥Θ= expθ    (2.13) 

Substitute (2.12) and (2.13) into (2.8) and (2.10), differentiate with respect to t, x, y, z and simplify, we get 
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3.0 Stability analysis 

In order to determine the stability of system (2.14) and (2.15), we must study the stability of all possible 
disturbances for all the wave numbers. The stability criterion can be found by determining the Rayleigh number. 

Let ,0,
2

2
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D  then (2.14) and (2.15) becomes 
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With boundary conditions  ,0,0 ==Θ W  for z = 0 to 1    (3.3) 
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Eliminating Θ  from equations (3.1) and (3.2) we have 
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Let     W = A ,zSinπ  m = 1, 2,…     (3.6) 
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where A is a constant, m is an integer.   Substitute (3.6) into (3.5), simplify and take the second derivative with 
respect to z will result in  
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For a given K2, the lowest value of Ra occurs when m = 1, then 

 
 
 
 

( )( )( )
sK

KKB
Ra

α
πππ

2

222222 1++++=     (3.8) 

But 
zs ∂

∂
= 0θα .  The static temperature 0θ  and viscous heat flux B2 fluid are related by the energy balance 
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Subject to    10 ±=θ  at 1µ=z      (3.10) 

The solution of (3.9) subject to conditions (3.10) is given by  
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4.0 Results 

From the analysis of stationary convection in the presence of radiation with temperature dependent, it is 
observed that critical Rayleigh number is minimum when the denominator is maximum. This value occurs at z = 
0, that is, at the centre of the horizontal channel. For small values of the temperature parameter ( i.e B = 0), our 
result reduces the onset criterion in terms of Rayleigh number determined by Racri = 407.70 with wave number K 
= 3.2 for which the stability occurs in Figure 1. This is plus one above the results of [10]. Furthermore, little 
increase of the  values of the temperature parameter (i.e B = 0.2, 0.5, 1.0), our results show that the stability 
occurs at K = 3.2, while the Racri changes as shown in table 1, Fig.2, Fig.3 and Fig.4, which is plus one above the 
results of [10] 
 

Table 4.1. 
 

K B = 0.1 B = 0.2 B = 0.5 B = 1 
1 1268.83 1255.46 1169.94 947.15 

1.1 1087.79 1076.33 1003.01 811.99 
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1.2 950.78 940.77 876.68 710.22 

1.3 844.86 835.96 779.01 631.1 

1.4 761.52 753.5 702.17 568.83 

1.5 694.99 687.67 640.83 519.13 

1.6 641.26 634.5 591.28 478.99 

1.7 597.45 591.15 550.88 446.25 

1.8 561.45 555.54 517.69 419.37 

1.9 531.72 526.11 490.27 397.15 
 
 
 
 

K B = 0.1 B = 0.2 B = 0.5 B = 1 
2 507.06 501.71 467.54 378.73 

2.1 486.57 481.44 448.64 363.42 

2.2 469.54 464.59 432.95 350.73 

2.3 455.42 450.63 419.93 340.16 

2.4 443.77 439.1 409.19 331.45 

2.5 434.23 429.66 400.39 324.32 

2.6 426.51 422.02 393.27 318.55 

2.7 420.38 415.95 387.61 313.97 

2.8 415.63 411.25 383.24 310.42 

2.9 412.12 407.78 380 307.79 

3 409.59 405.38 377.77 305.98 

3.1 408.91 403.95 376.44 304.9 

3.2 407.7 403.4 375.92 304.48 

3.3 407.94 403.64 376.14 304.66 

3.4 408.91 404.6 377.04 305.25 

3.5 410.56 406.23 378.56 306.47 

3.6 412.82 408.47 380.65 308.16 

3.7 415.66 411.28 383.26 310.28 

3.8 419.03 414.62 386.38 312.8 

3.9 422.91 418.45 389.95 315.69 

4 427.25 422.75 393.95 318.94 

4.1 432.04 427.49 398.37 322.51 

4.2 437.25 432.64 403.17 326.4 

4.3 442.86 438.19 408.34 330.59 

4.4 448.45 444.12 413.87 335.06 

4.5 455.21 450.41 419.73 339.8 

4.6 461.92 457.05 425.91 344.81 

4.7 468.96 464.02 432.41 350.07 

4.8 476.33 471.32 439.21 355.58 

4.9 484.03 478.93 446.3 361.32 

5 492.02 486.84 453.68 367.29 
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Figure 4.1: Graph of Ra against K at B = 0.1   Figure 4.2: Graph of Ra against K at B = 0.2 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 3: Graph of Ra against K at B = 0.5   Figure 4.4: Graph of Ra against K at B = 1.0 
 
5.0 Conclusion 

We have presented a fundamental linear stability analysis for viscous fluid including the effects of 
temperature – dependent. The fluid flow considered using the Cartesian coordinate system from our presentation 
extends to infinity in the z direction and is two dimensional hence they are difficult to realize in application but 
being fundamental it forms the basis and are often used as good approximations. However, from table 1, it is 
observed that increase in temperature parameter, delays the onset of instability. Therefore, we conclude that a 
small variation in the temperature parameter stabilizes the radiating fluid layer heated from below. 
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