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Abstract

Experiments with fluid whose viscosity depends on temperature are used
to study the effect of viscosity variations. At large viscosity, Rayleigh number
can either be conductive or convective depending on whether the Rayleigh
number is high or low or decreased from a pre-existing convective state. At
high Rayleigh numbers and for the entire range of viscosity variation, the

stability occurs at Ra,; = 407.70. From the viscous fluid when the

Rayleigh is defined in terms of wave number corresponding to a temperature
equal to the average of the boundary temperatures. The relationship between
critical Rayleigh number and the temperature appears not to depend on the
Rayleigh number.

1.0 Introduction

Although the Earth’s mantle, which is a spheridatlsbetween the lithospheric layer and the corargely a
solid and behaves elastically on short time scétlests like an extremely viscous fluid on longiere scales and
its convection is driven thermally and compositibnaThe Earth’s mantle viscosity could be depertdem
temperature that could impact greatly on the sofleonvection, which with increasing viscosity c@uat is
larger than 10- 10°. Min Chan et al (2004) considered theoreticallyimitially quiescent, fluid-saturated ,
horizontal porous layer heated from below with ¢ansheat flux, use darig’s law as a model to thiel fmotion
and linear stability theory, predict the onset nbyancy-driven convective motion.[2] using propamatheory
on the onset of buoyancy-driven convection in atiaity isothermal quiescent fluid layer confinedttveen the
two infinite horizontal plates, predicts that dirs@mless critical time t decreases with increagimgnatal
number for a given Rayleigh number. [3], investighhow variable viscosity affects the onset ofahaity in

the Rayleigh-Benard convection using the so calleaibine method. [4], said, the problem of heatdfanby
convection in a horizontal layer of fluid acrossigththe imposed temperature gradient gives risantanstable
density gradient is classical in the theory of dlunechanics. [5], experiments with fluids whosecwossty
depends strongly on temperature are used to shedgffect of viscous variations in the rangé 10Con the
heat transfer and horizontally averaged temperatiire convecting layer between horizontal isothérma
boundaries. [6], treated the problem for a graydflvith black rigid boundaries and arbitrary oplitgickness
using rigorous integral formulation of radiativaarisfer, but he neglected both thermal conducticsh the
radiation effect on the static temperature. [7] evére first to introduce the effects of fluid noagness and
boundary emissivities. They used the approach df, [Bombining planck and Rossel and mean absorption
coefficients, to account for fluid nongrayness.[@),their work, investigated theoretically the ibn on the
Rayleigh-Benard instability for real gases suchNi, H,0 or CO,, they develop a procedure that enables
guantitative predictions of critical Rayleigh numbeand that accounts for the complex structurenofecular
absorption spectra and the full integro- differahtiature of the radiative transfer equation. Teénnaim of this
paper is to examine the linear analysis of the lprabof a radiating fluid layer heated from belowthwi
temperature-dependent viscosity and applicatiothéoEarth’s mantle; since the rheology of mantleemal is
likely to be temperature dependent, critical Rajlehumbers considered and the temperature appeatetd
depend on the Rayleigh number.
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20 Basic formulation

We consider the problem of linear stability anaysf an incompressible viscous radiating fluid with
temperature-dependent viscosity in a horizontahoklwith radiating heated flux. The system usethis paper
is a radiating fluid with an initial temperatureh& horizontal layer of fluid depth is d.

Under Boussinesq approximation, the governing egsfor the flow including radiative heat transfer

are av =0 (2.1)
DV?!
0 o - =0p' +pg,[>’( )ez+ ARy 2.2)
1
£C, ?)Il =0T -04q, (2.3)

where VY, T, p, 0, 3,9, B, i, and,q, are respectively the velocity vector, temperatpressure, density,
thermal expansion coefficient, gravitational acraien constant, viscosity and radiation heat. $hlscriptq,

represents basic state. The surface temperatuaethe vertical distance z = 0 increases withtitne during the
conduction state . The fluid temperature is présctiat the boundaries while velocity boundary comas are
determined either from the no slip condition faigid surface or for a free surface. The basicestditthe system
by the static solutioty = 0 of the system (2.1) — (2.3) to which correspdine static temperatufg and the

radiative vertical heat flug, . In other to study the stability of the statictstaand thus, to determine the onset
condition of Rayleigh—Benard instability, we coreidhe perturbed state defined by the layers

VvV =V?! (2.42)
T =Ty, +T, (2.4b)
P'=P,+P, (2.4c)

whereT<< Ty, Py <<<P... The temperature disturbance induces a distegb@p in the radiative flux which

becomes 0g, =a*(T'-T,) (2.4d)

We follow the classical procedure of linear modalgsis of [10]. The decomposition given in (2.4) is
introduced in (2.1) — (2.3) and the resulting eipunst are linearized.

The linear system is then reduced to a set of twadas equations by taking the double curl of the
momentum equation and keeping only the verticalpmment w of the velocity, we have two equations

0 u o°u 02,u 0w\ _10°u(d°w  0*w  0°w
(F ,OD jDZWl gﬁ]ZT ((?xlz o az“j ,06212 6x12+6y12+6212 (2.5)

2 2

where 2 = o + W . And the other

oT, ., 0T _0°T, _a’T,

A =
ot 0zt 0z «
Using the non-dimensional parameters

(2.6)

tl—% a:ip’ 0% =0%w, = wafT—q wod” 9,,u U =dx Yy =dy, ' =dz  (2.7)
o 0 2 |2 Ra 2
(2.5) after simplifying becomes E_D Ow= Br —0 9 0% -0%w (2.8)

Also, using the non-dimensional parameters
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AT 1 1 1
t:%tl,(u,v,w):l(u,v,w)é’: L6, = ?TO A :L,(x,y,z): XY 2| (29
d a gwd“a d“aqw €c, d d d
2
(2.6) after simplifying becomes P % + aswj = 0_2 -B? |0 (2.10)
ot 0z
06, L
whered', = E with the boundary conditions at z£1
6=w=0
ow N
— =0, on arigid surface (2.11)
0z
0°w

> =0, on a free surface
0z
Following Chandrasekhar (1961), We study the stgbdf normal mode disturbances, which are
chosen in our case to be two dimensional periodies in the horizontal plang, (y). Each normal mode is
defined by a non dimensional wave numBgrand the corresponding disturbances have tempoilispatial

horizontal dependence of the fore»(di (kXX +K, y)+ ntJ, where k® =k + kj. We seek for solutions
of the form w =W, exdi(k,x+k, y)+ nt] (2.12)

8 =0, expz ik, x +k,y)+nt| (2.13)
Substitute (2.12) and (2.13) into (2.8) and (2.#@Jerentiate with respect to t, X, y, z and siifyplwe get

2 2
K%—KZI%—(M K2)+1J}N: K{%)O (2.14)

2
and (% -B? - nPrj@ =Pra W (2.15)
z

3.0 Stability analysis
In order to determine the stability of system (2.44d (2.15), we must study the stability of albgpible
disturbances for all the wave numbers. The stghifiterion can be found by determining the Rayteigimber.
2

d
Let D? = d_ n =0, then (2.14) and (2.15) becomes
Z

[(DZ—KZ)(DZ—K2+1)}\N:KZ[RaJO (3.1)

Pr
and (D2 -B%)0 =Prgaw (3.2)
With boundary conditions ©=0W=0, forz=0to 1 (3.3)
D?W =0, on a free surface (3.4
Eliminating © from equations (3.1) and (3.2) we have
D2 -B%)D? -K?)D? - K? +1)W = |K*Raa, v (3.5)
Let wW=ASnmz m=1,2,... (3.6)
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whereA is a constant, m is an integer. Substitute (Bi#) (3.5), simplify and take the second derivatwith

respect to z will result in
(272 + B2 \m? 2% + K2 m?r? + K2 +1)

Ra = 3.7
<7a. (3.7)
For a giveer, the lowest value dRa occurs whem = 1, then
+B? +K?2 +K?2+
ma o 4B K S22 + K2 +1) .
Ka,
Buta, = 6—0. The static temperaturg0 and viscous heat flug*fluid are related by the energy balance
Z
d’g on
d220 -B%6,=0 (3.9)
Subject to G, =%tlatz=pl (3.10)
The solution of (3.9) subject to conditions (3.10yiven by
L 9nh(B2)
g, =2 5 (3.11)
Sinh(j
2
B
= Cosh(Bz)
06, -
32 = B . Therefore (3.8) becomes
S'nh(j
2
th(Bj
(2 +B?) 2 + k2 + k2 +1) 2
Ra = > B (3.12)
K > Cosh(B2)

4.0 Results

From the analysis of stationary convection in thespnce of radiation with temperature dependeis, it
observed that critical Rayleigh number is minimuimew the denominator is maximum. This value occuis=a
0, that is, at the centre of the horizontal chanRet small values of the temperature parameter Bi= 0), our
result reduces the onset criterion in terms of &ghl number determined by K& 407.70 with wave number K
= 3.2 for which the stability occurs in Figure 1hi§ is plus one above the results of [10]. Furtlmamlittle
increase of the values of the temperature paranfieteB = 0.2, 0.5, 1.0), our results show that tability
occurs at K = 3.2, while the R@hanges as shown in table 1, Fig.2, Fig.3 and Fighdch is plus one above the
results of [10]

Table 4.1.

K B=01 B=02 B=05 B=1
1 1268.83 125546  1169.94  947.15
11 1087.79  1076.33  1003.01  811.99
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1.2 950.78 940.77 876.68 710.22
13 844.86 835.96 779.01 631.1

1.4 761.52 753.5 702.17 568.83
15 694.99 687.67 640.83 519.13
1.6 641.26 634.5 591.28 478.99
1.7 597.45 591.15 550.88 446.25
1.8 561.45 555.54 517.69 419.37
1.9 531.72 526.11 490.27 397.15

K B=01 B=02 B=05 B=

2 507.06 501.71 467.54 378.73
21 486.57 481.44 448.64 363.42
2.2 469.54 464.59 432.95 350.73
2.3 455.42 450.63 419.93 340.16
2.4 44377 439.1 409.19 331.45
25 434.23 429.66 400.39 324.32
2.6 426.51 422.02 393.27 318.55
2.7 420.38 415.95 387.61 313.97
2.8 415.63 411.25 383.24 310.42
2.9 412.12 407.78 380 307.79
3 409.59 405.38 377.77 305.98
3.1 408.91 403.95 376.44 304.9
3.2 407.7 403.4 375.92 304.48
3.3 407.94 403.64 376.14 304.66
3.4  408.91 404.6 377.04 305.25
3.5 410.56 406.23 378.56 306.47
3.6 412.82 408.47 380.65 308.16
3.7 415.66 411.28 383.26 310.28
3.8 419.03 414.62 386.38 312.8
3.9 422.91 418.45 389.95 315.69
4 427.25 422.75 393.95 318.94
4.1 432.04 427.49 398.37 322.51
4.2 437.25 432.64 403.17 326.4
4.3 442 .86 438.19 408.34 330.59
4.4  448.45 44412 413.87 335.06
4.5 455.21 450.41 419.73 339.8
4.6 461.92 457.05 425.91 344.81
4.7 468.96 464.02 432.41 350.07
4.8 476.33 471.32 439.21 355.58
4.9 484.03 478.93 446.3 361.32
5 492.02 486.84 453.68 367.29
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Figure 4.1 Graph ofRa againsK atB = 0.1

Figure 4.2 Graph ofRa againsK atB = 0.2

1 2 3 4

1 2 3 4 5

Figure 4 3 Graph ofRa againsK atB = 0.5

5.0 Conclusion

Figure 4.4 Graph ofRaagainstK atB = 1.0

We have presented a fundamental linear stabiliglyais for viscous fluid including the effects of
temperature — dependent. The fluid flow considersidg the Cartesian coordinate system from oureptasion
extends to infinity in the z direction and is twimnénsional hence they are difficult to realize ppkcation but
being fundamental it forms the basis and are oftged as good approximations. However, from tabli¢ i%,
observed that increase in temperature parametiysdthe onset of instability. Therefore, we codelithat a
small variation in the temperature parameter stasilthe radiating fluid layer heated from below.
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