Journal of the Nigerian Association of Mathematical Physics
Volume 13 (November, 2008), 161 - 166
© J. of NAMP

Acoustic wave in viscous fluid
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Abstract

This discussion is concerned with an acoustic wave in a viscous
Newtonian fluid and examines the wave equation in this case. The governing
partial differential eguations for the wave are derived using the Navier-
Stokes momentum eguation, the equation of continuity (assuming an
adiabatic equation of state) and the acoustic wave condition. One advantage
of this formulation is that the wave equation is expressed in a form suitable
for finite difference time domain discretization. The formulation shows that,
in general, acoustic wave propagation in a viscous fluid is associated with
both shearing (tangential) and non-shearing (normal) viscous forces, which
account for dissipation of wave energy in the medium. In a liquid or for a
plane acoustic wave the non-shearing (normal) viscous force is the dominant
contributor to wave energy dissipation.
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1.0 Introduction

An acoustic wave is a small variation in mediurmsig or pressure which propagates in a
compressible medium. In a medium that exhibitielittstraint to deformation, such as a fluid, #taring force
responsible for acoustic wave propagation in theliom is simply due to a change in pressure. An stiou
wave is a common example of a longitudinal wavea scalar field as it can be completely represengiuly a
single function. Using a field approach to desctibe wave, the relevant field functions are thesigm(r,t),
particle velocityv(r,t) and pressure pf), wherer is a position vector and t is time. We use thedwvéeld’ in
the ordinary mathematical sense, which impliesretion of space (and time), and not in the extertegical
sense which implies a force field. The field funasp(r,t), v(r,t) and p(,t) which describe an acoustic wave are
related using the equation of continuity, the eiguadf motion and the equation of state.

Mathematically, wave phenomenon is represented twave equation. The acoustic wave equation is
derived using the equation of continuity and theatipn of motion. Usually, the acoustic wave eduatis a
second-order partial differential equation for aiygle function chosen to represent the scalad.fidcoustic
wave propagation in a lossy medium leads to th&ihsion of acoustic energy in the medium. Wherrggnloss
is involved, the loss mechanism may be introducegither the equation of continuity or the equatiémotion.
Thus, in general, an acoustic wave equation insaylonedium can be derived using either a lossytexuaf
motion and a lossless equation of continuity cossless equation of motion and a lossy equatiaoofinuity.
Earlier approaches made use of a lossless equattiorotion and a lossy equation of continuity, obtal by
using Stokes approximation to the equation of qtHteOften, acoustic energy loss in a medium isoagted
with various mechanisms like viscosity, thermalawction and molecular exchanges.

I wish to acknowledge useful clarifications provideby Mr. A. T. Ngiangia, a departmental
colleague, during the course of this work.
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Here we represent the acoustic wave equation iis@uws fluid using a lossless equation of continaitd a
lossy equation of motion. Actually, the notion of‘lassless’ equation of continuity (as an expressal
conservation of mass) is a generalization whicfoften) true in wave phenomenon, since the conckptave
propagation excludes sources, sinks and mass tdngpspecially, in small amplitude waves). Such a
formulation gives equations which may be discretilag the finite difference time domain method [2].

2.0 Equation of motion
Ignoring the temperature dependence of the vigessin a Newtonian fluid, the general equation of
motion is the Navier-Stokes (momentum) equation [3]

0
p{5¥+(mm)v}:;tr—mp+(08+Zé]m0]y)+qmzv 2.1)

wheren is the shear viscosityg is the bulk viscosity ant is the body force per unit mass . The shear vigcos
defined as the tangential stress per unit tanderglacity gradient is a measure of the diffusidnmmmentum
by molecules from regions of fluid possessing highedocities to adjoining regions possessing lowedocities,
while the bulk viscosity defined as the normal sdrgper unit normal velocity gradient is a measure¢he
resistance offered by a fluid to pure compressiodilation [4]. According to kinetic theory the tbuviscosity
arises because the kinetic energy of moleculesaissferred to the internal degrees of freedom, &nd
proportional to the characteristic (or relaxatitimje during which the transfer of energy takes @Igd.

Using the vector identity OxOxv = -0%v + D(D.V) , (2.2)
the Navier-Stokes equation (2.1) can be re-wridign
ov _ _ 4|'] _
p{5?+(mD)v}—pb []p+(nB+ /éjﬂﬁjy) nOxOxv (2.3)

In adapting the Navier-Stokes equation to acowsice phenomenon it is appropriate to admit compoiisg
and discard circulation, which concepts are remtese by the divergence and curl terms (of the \jpc
respectively. Thus the acoustic wave conditiofydsubstituted in the general equation of motien, i

Ov#0

UxOxv =0
wherev is understood to be a small variation in partigéocity introduced by the acoustic wave.

For a propagating acoustic wave in a source frediung the term which represents the body force will
not apply as it denotes an external force. Whigeghavitational force is always present, any adowgave with
wavelengthh much smaller than’g, where c is defined in (5.2) and g is the acegilen due to gravity, is
negligibly affected by gravity [6]. When the wawe of small amplitude, we ignore non-linear termd,ahe
equation of motion for an acoustic wave in a homegels Newtonian fluid reduces to,

(2.4)

p%%=—Dp+nJKDNLna=nB+mﬂ3, (2.5)

an expression similar to the Navier-Stokes equdtorirrotational flow in a compressible Newtoni#inid. In
(2.5) we have used Stokes linearization [7]

(v.Ol=0. (2.6)

3.0 Equation of continuity
The relationship between the motion of the fluitd dats compression or dilation is given by the
equation of continuity [8],

%%+u@w=o, (3.1)

which is in general non-linear. However, for snaatiplitude waves we define the condensation s,

s=(p=p,)/po. (32)
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where s is a very small quantity ang, is a constant equilibrium density of the fluid. tarms of the
condensation, the equation of continuity may bevrigten as

0s
poa+pOD.V+po(V.DS+SD.V):O. (3.3)
For small amplitude waves we may ignore non-lireems, and the continuity equation reduces to
0s
—+[.v=0. (3.4)
ot

Assuming an equation of state for the fluid, tmedr continuity equation can be written in termpm@ssure and
particle velocity.

4.0 Equation of state

The relationship between the internal restoringdand the corresponding deformation in a medaim i
given by the equation of state. In a fluid the (thal) equation of state links the pressure, den&ty
condensation) and temperature. For an acoustic waadossless medium, the pressure and condensaioin
phase. One way to account for acoustic energy ilmsa medium is to allow a time-delay between the
introduction of a sudden pressure change and thmm@ent of the resulting equilibrium condensatidhis is the
approach used in the Stokes equation of state hwihicoduces a relaxation time associated withrtiquéar loss
mechanism.

The compression of a fluid causes a rise in itaperature and its dilation is accompanied by a
temperature decrease, unless allowance is givehdatr exchange. As an acoustic wave propagatesgtnra
fluid, the regions that are compressed at anymstee slightly warmer than those which are dilatacordinary
circumstances, the wavelength is too large andhiienal conductivity too small for any appreciaataount of
heat to flow. Thus acoustic wave propagation iluia fis an adiabatic process.

Given that we intend to use a lossless continedfyation, we are interested in a lossless equafion
state. For fluids other than a perfect gas, thatedic equation of state is often approximatedgigih

p=Bs 4.1)
where B is the adiabatic bulk modulus of the flulthugh, in liquids an alternative is the Tait eijpraof state.
However, we assume that the adiabatic equatiotaté & applicable to an acoustic wave in a fluid.

5.0 Acoustic wave equation
We describe the linearized acoustic wave equati@viscous fluid using the two coupled equations:

0. Y = -Op+n,0(0.v) (5.1a)

°at

0

—f =-Bl.v (5.1b)
wherep, is required by the approximation leading to (Al p is taken to be the acoustic pressure (that is
variation in pressure introduced by the acoustigejaEquation (5.1b) is obtained by substitutindl4n the
linear equation of continuity (3.4). The two couplequations in (5.1) is a system of four partidfedential
equations governing four unknown scalar field fiored; namely, three velocity components and thegune.
The acoustic wave equation representation (5.4)itable for finite difference time domain disceetion.

The acoustic wave equation can be expressed,sagi@ partial differential equation, in terms of a
single field function by using the two coupled etipras in (5.1). Differentiating (5.1a) with respeottime and
using (5.1b) to eliminate p leads to the acoustgenequation in a viscous fluid in terms of theipkr velocity:

0%v 0 B
~—c’0% :n—a—[D(D.v)] ¢ = |—, (5.2)
ot ot

(o] (o]
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where c is the thermodynamic speed of sound inmééium. Observe that in equation (5.2) the acoestergy
loss in the fluid is represented using a term ifiatlves the viscosities, and so the loss terneis in an inviscid
fluid (n, ns = 0), with the acoustic wave equation in an indgtilid reducing to the usual

expression:

0%v
dt?

Also note that equation (5.2) is written in symbofiotation. Specifically the x-component of (5.8) 3-D
rectangular coordinates is

a2v, z(azvx a2v, azvxj N, 0 a(avx ov, avzj
-C + + = + + (5.4)

-c’0%v=0. (5.3)

2 x> 9y’ az% ) p,0t| x| ax Ay 0z
which in 1-D reduces to

2 2 2
0°v, ,0°v, m, 0 (6 ij' 55)

_C = __< _
at? ax> p,0t\ ax?

The significance of equation (5.5) is that once paaticle velocity varies with position acoustic wea

propagation in a 1-D viscous fluid involves enelggs. This is the case because viscous forces aamelay
when there is a velocity gradient, irrespectivevbether the velocity gradient is ‘tangential’ oofmal’ [9].

6.0 Dispersive and dissipative characteristics in 1-D
We examine the dispersive and dissipative chaiatits of the medium by assuming that the solution
of equation (5.5) is simple harmonic with the exgimal form

v, =v,exp—i(at —kx), (6.1)
whereo is angular frequency and k is wave number. By switieg (6.1) in (5.5) we have the 1-D dispersion
relation for the medium (C2 —ioun, /po)k2 =w. (6.2)

The dispersion relation (6.2) implies a complex &zaumber (k = + i) with a real propagation constant

(J1+ (@n./e*0,) +1jm

w
q= (6.3)
N2 1+, /c?p,f
and a damping coefficient
1/2
. H1+ (/. ) -1)
, (6.4)

B =
2 i+, /e, )

The dependence of the propagation consi@noij the angular frequency means that the waveephas
velocity (@/a) is a function of the frequency and the mediundigpersive. Also, the presence of a non-zero
damping coefficient defines a dissipative mediurbs€ve from equation (6.4) that if the viscositéee zero
then the damping coefficient is zero.

In the limitondp.c* << 1, the acoustic wave absorption coefficiend) the fluid reduces to

— 2 3
B - naw /Zpoc . (65)
Furthermore the 1-D case implies that we are lignite plane waves, i.e. a wave which depends on déintka
single space coordinate, and all quantities in suglave are independent of the other directions, ysand z.
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Thus we may only expect normal stresses and byitefi only the bulk viscosity will apply. Consequly the
viscosity term in (2.5) and in the subsequent eégnathecomes, = ng, and equation (6.5) reduces to

B=myw’/2p,C°. (6.6)

Following the definitions of the viscosity coeffgits as explained in [4] the bulk viscosity is a
fundamental contributor to energy loss in 1-D aticusave propagation in fluids (especially, liquids

7.0 2-D dispersion relation
Two-dimensional acoustic wave propagation in aois fluid, in rectangular coordinates, satisfles t
coupled pair of partial differential equations:

azvx_c2 GZVX+62VX _M. 0|0 OVX+<9Vy |
at? ax> ay? ax ay

poat_&
0’v, azvy+62vy n, 0 a(aVX+6vyj

(7.1)

2 C 2 2 |71 Aatl av
ot o0X oy p, 0t| 0y
For a plane wave with the propagation vector palrédl the z = 0 plane the acoustic field dependéxo, t),
thus

B GXW

vV, Dexp-i(wt-k,x=k,y). (7.2)
Using equation (7.2) we can re-write (7.1) in mafarm:
c’lkZ +k2)-w* +ion k2 / -toon k K,/ vV,
( X .y) (A)T]a X po , , (z*)na x2 y- po , =O (7.3)
-icon kK, /p, c?(k? +k2)-? +ion k2 /p, | v,

We derive the 2-D dispersion relation by setting dieterminant of the square matrice in (7.3) to.Z€his gives
the 2-D dispersion relation

o' +ct(k? +K2 ) —207¢? (k2 +k?) = =i D2 (k2 + k2 o2 (k2 +k2) - w?]. (7.4)

Po
Observe that equating eithgrde k, to zero in equation (7.4) does not reduce thedispersion relation to the 1-
D dispersion relation (6.2), because of the ‘couptierms’ in equation (7.1) which are not preser(bi5). These
coupling terms imply a shearing stress (accordinjéwton’s law of viscosity) which is not applicalih one-
dimension. The term that represents the viscowfior the 1-D situation denotes a non-shearingigafrstress.
Thus acoustic wave propagation in a 2-D viscousl flavolves both shearing and non-shearing visdouses
while propagation in a 1-D viscous fluid involveslya non-shearing viscous force.

8.0 Conclusion

The formulation presented above for acoustic warepagation in a viscous Newtonian fluid, which
makes use of the Navier-Stokes momentum equatimmges on the acoustic wave condition, namely, the
requirement of a compressible and irrotationaldfligssentially, the variation in particle velocityroduced by
the presence of the acoustic wave should haveeagéince and no circulation. This leads to an amustve
equation that includes an energy loss term arifiomm a combination of shearing and non-shearingotis
forces. In a liquid or for a plane acoustic wave ¥iscous loss is due mainly to a non-shearingousdorce.
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