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Abstract

This paper investigates the dynamic response of a highly
prestressed isotropic rectangular plate resting on a bi-parametric subgrade
under the action of a moving load. Using the singular perturbation
technique, specifically the Method of Matched Asymptotic Expansion
(MMAE), in conjunction with the method of integral transformations and
Cauchy Residue theorem, a uniformly valid analytical solution in the entire
domain of definition of the rectangular plate is obtained. Analyses of
analytical solutions and numerical results show that the leading order
solution and the first order correction are affected by the bi-parametric
subgrade and anisotropic prestress to the response of o(0Y) of the
rectangular plate. Itisalso found that the critical velocities of the dynamical
system increase with prestress for all values of shear modulus and foundation
stiffness used. Thus, resonance is reached earlier for lower values of
prestress, shear modulus and foundation stiffness than for high values.

1.0 Introduction

The works on dynamic loading of one dimensionaldsslich as beams have received attention of
several researchers. Among several authors tha Wwavked on this subject are Jeffcott [1], Steud@jgand
Odman [3], Milomir et al [4], Leipholz [5], Oni @hGbadeyan [6] to mention but a few. Among theiesirl
work on moving load plate problem is the work oflH@]. He solved the problem of a rectangular elahder
the action of uniform moving loads. He indicatedtth critical velocity existed for each vibratiomabde. Much
later Stanisic et al [8] studied the two dimenslgmablems of flexural vibration of plate under taetions of
moving masses. Only the inertia term that measthreseffect of local acceleration in the directiohtoe
deflection was considered. The work in Stanisial¢8] was taken up much later by Gbadeyan and[@nvho
studied the dynamic analysis of an elastic platetinaously supported by an elastic Pasternak fotioma
traversed by an arbitrary number of concentratedsem All the components of the inertia terms were
considered and the rectangular plate was assumée wimply supported. The deflection of the platesw
calculated for several values of the foundation atiodnd shown graphically as a function of time. riglo
recently, Oni [10] developed a versatile soluti@ehnique for solving plate moving load problems é&ir
variants of classical boundary conditions.

In all the aforementioned studies, no considenatias been given to bending effects at the boueslari
In particular, when a plate structure is highlygtressed, a small parameter multiplies the higthesvative in
the governing differential equation.

This class of dynamical problem in which a smaltapaeter multiplies the highest derivative in the
governing differential equation is not common itedature. However, this class of plate problems Iesn
solved when the plate is executing free vibrationmhen a static load is acting on such plate, Hudied
Olunloyo [11]. Singular perturbation has to daterseelatively little use in solid mechanics businonetheless
being successfully used, Cole [12]. In particuldatter and Olunloyo [13] have employed it in intigating
rectangular membranes with small bending stiffnéissa more recent article, Gbadeyan and Oyedirah [1
compared the two singular perturbation techniqd€E and MMAE) for initially stressed thin rectangul
plate. They found that the results of the MMAE &gmeith those obtained using generalized MCE and
specialized version of MCE when the effect of simgpdeformation is Gi.
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After an earlier work by Oni [15] where he studib& dynamic response to a moving load (using the

Method of Matched Asymptotic Expansion MMAE) ofdly clamped prestressed orthotropic rectangulatepl
Oni and Tolorunsagba [16] took up the problem dfeasing the rotatory inertia influence on the highl
prestressed orthotropic rectangular plate whes itnder the action of moving load. The method ohposite
expansion (MCE), an alternate singular perturbatemhnique is employed in conjunction with the noetlof
integral transformation and Cauchy residue theaeembtain an approximately uniformly valid solutionthe
entire domain of definition of the rectangular plaf\nalysis showed that the critical velocitiestof dynamical
system increase with an increase in prestress@atbry inertia values. However, in the work of Q%] and
Oni and Tolorunsagba [16], only plates not restomg foundation were considered. Thus, in this wdr& t
dynamic response to a moving load of a highly pessed isotropic rectangular plate resting on &eRek-type
foundation is considered.

2.0 Problem formulation
The transverse displacement of an isotropic regetian plate resting on a Pasternak foundation uader
moving load is governed by the fourth order padifferential equation

o QWX ¥it)  0W(x,¥it) a“vv(x,y;t)} N OWR ) 0W(x, i)

ox* ox°0y’ ay* T ax? oy
o oS T
m%+ KW(X, y:t) +G[6 Wa(i, yit) @ Wa(i, y,t)} - P(.5:0) on
X y

WhereD is the bending stiffnessl,\li is the axial prestress in thé direction,N)7 is the axial prestress in the
Y direction, X , y are the position coordinate in the x and y directicespectively f is the time coordinate, W

is the deflection of the plate, m is the mass effifate per unit ared?(?, Vi f) is the applied dynamic loaH,

andG are the foundation stiffness and shear modulusntsely. The boundaries of the plate are fullyngbeed,
and as such both the deflection and slope vardishtically. Thus,

Xx=0, 0<y<B| , __ X, V,
X V=Bl y)=0  WERY g
x=L, 0<y<B 0X
y=0, Osx<sL| , __ X, V;
4 ¥ yg)=o R
Xx=L, 0<sX<L oy (2.2)
and for simplicity, the initial conditions are take® be
W(X, y:0) = 0 w =0 2.3)
2.1 Non-dimensionalized form

Equation (2.1) is presented in a non-dimensiondlifoem for the purpose of solution. Substituting
W=VL, Xx=xL, y=YyL, t =t/ @, into equation (2.1), followed by some simplificatiand arrangement
leads to the system of equation

g2 VYD) OV (xyit) 0V (x, y:t)} BN (xyt) BV (%

ox* X0y’ ay* ox° oy’ 2.
62\7()(1 y,t) \ / 2 62\7()(! yat) 62\7()(! yat)
+——=+nV +0; + = X, Vit
atz ,7 1 axz ayz po( y )

wheref is the small parameter multiplying the highestdtive and defined by the relation
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32:—2<<1,;7:— 0'12:_, ﬂlZ:N_O' ﬂZZ:N

NOL mag NO (o] (25)

ﬂlz, ,822 measures the prestress ratio and the boundarjtiomsdn non—dimensionalized form become:

Ny

x=0 0< ySbV(x,y,t):O; av(x,y;t):0
x=1 0<y<b 0X (2.6)
y=0 O0< xsl}v(x, y1)=0 oV (x, y;t)=O
y=b, 0=s<x<l1 oy
and the initial conditions are _
V(x,y.0)=0; W =0 (2.7)

In this dynamical system, moving load on the regtdar plate moves at a constant velocity u alorsgraight
line parallel to x-axis, say, ThusP(x.y,t) takes the form

p.(x y;t)=Mga(x-ut)a(y-y,) (2.8)
where M is the mass of the moving load, g is theeksration due to gravity an5(°) is the dirac delta function
0, X#uUut
defined as o(x—ut)= (2.9)
0o, X=ut

When equation (2.8) is substituted into (2.4); ob&ins

gz[a“v (xy:t) , OV (xyit) 9V (x y;t)}_ﬁfazv (xy:t) _ BV (% yit) 0V (x yit)

aX4 aXZayZ ay4 aXZ ayZ at 2

0%V (x,y;t) 9%V (X, y;t)
aXZ + 2

V(X yit) + Uf{ 1) } = p.o(x-ut)o(y-vy,) (2.10)

Equations (2.10) together with boundary conditig®d6) and initial conditions (2.7) define complgtehe
equation of a fully clamped highly prestressedriguit rectangular plate occupying the domai< 1, 0<y <
b in a non—-dimensionalized form.
2.2 Operational Simplification

It is observed that a small parameter multiplieshighest derivatives in (2.10) and as such thbleno
is amenable to singular perturbation techniqueswéver, equation (2.10) is considerably simplifieg b

introducing the Laplace transform defined by V = .[ Ve Sdt (2.11)

in conjunction with the initial conditions definéa (2.7). Taking t as the principal variable, theplace of (2.10)
is given as

g{a“V(x;y;t) N 64\/(2x, )g;t) N 64V(x;y;t)} _ ,81262V(2X, yit) [32262V(;<, yit) | SV (x, yit)
0X ox-oy oy 0X
0V (X yit) , 0V (X i) | _ Pud(y=¥o) i
2 ay? u

+nV (X y;t) + Uf{ (2.12)

Subject to the boundary conditions

X =0, OSySb}V(x,y)zo; c‘)V(x,y):0
x=1 0=<y<hb X
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= < <
y=0 Osxs 1}\/ xy)=0. (xy)_g (2.13)
y=b, 0<x<1 oy
2.3 Method of Solution

In equation (2.12), an exact uniformly valid s@uatin the entire domain is not possible and it is
observed that a small parametersay, multiplies the highest derivative in the goveg differential equation.
This is due to the bending effects at the boundari€onsequently, solution valid away from the laries
breaks down near as well as at the boundaries.s, Tdnly approximate solutions are possible. The b
equivalent approaches that could be used to técldeype of problem are the method of composifgesion

(MCE) and the Method of Matched Asymptotic ExpansidMAE). In this paper, MMAE is used. This
technique provides an approximate solution to fkergproblem in terms of two separate expansionistwére
valid in part of the domain. The two separate soh#, one valid at and near the boundaries andttier valid
away from the boundaries are then matched to obtaimformly valid solution in the entire domaindagfinition

of the rectangular plate. The Method of Matched mgtpotic Expansion MMAE developed by Bretheton [17]
required that the asymptotic solution of equat®ni?) be of the form

V=V, +&V, +&V, +... (2.14)
Substituting the expansion (2.14) into equatiodZpand equating coefficients of like powersepbne obtains
the recurrence relation

2 o . 2 [o] .
ﬂlazvv (X' y,t) +ﬂ262Vv (ZX’ y't) +SZVVO(X, y,t)

ox? oy
PO =Yo) o S = 019
o . o . u u '
g2 %V, (%9 LoV DY) | vex, yit) = 1o, v=1
X oy
ERVAN V=2

o 470 470
where 0*V,2, = IV, + OV + 0V where the subscripts denote the ordet.it is remarked
ox*  ox’ay® oy’
here that equation (2.15) are not uniformly valid the entire domain of the rectangular plate under
consideration. In fact, solutions obtained fqr V,, v>1 are not valid near the boundaries. The reasothi®
is simple. The order of the partial differentigjuation (2.12) has been reduced but the humbeoofidary
condition is not reduced. These solutions aregdrouter solutions and the equation (2.15) ouiglpm.
2.4 Expression near the boundary
In order to obtain an expression that is validhat boundary, near x = 0, we set the inner variable

X =xle and write the solution valid near~ 0 as

V=g =gi(X,y)+ewl(X,y)+ e3pi(X,y) +0le?) (2.16)
where superscript i denote the inner solution. gfiqu (2.16) is also valid near= 1, where we set the inner
variableX = (1—X)/ & . Expressions similar to (2.16) can be written ddar the solution near= 0 and y=b

where we set the inner variableYass Y/ € andY = (b—y)/ £ respectively, as
V=g =g (xY)+ el (xY)+ e (x Y)+0[e?) (2.17)
Using equation (2.16) in (2.12) near eitler 0 orx = 1, the differential equation dyi'i gives
M_(ﬂz _Jz\azw\i/ - ,3262414-2 _ 64414-2
x4 o THlax2 o oay? dy20x’

- 52414-2 —/7414-2
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2 02414-2 _ 64‘/Iv—4

,v=0134.... 2.18
1 ayz ay4 7]*3! ( )
oy, Y, _ B0, _ 0, | i

ax—4_(ﬂl 12) axz zayz 2 - aygaxz _Szwv—Z _/74[/\/—2

g2 Wi POV Yo) i 0.19)
oy u
. i i al//i

Subject to boundary condition w,=——=0,v=0123,.. (2.20)

YoaX

The differential equation negr= 0, ory =b can similarly be written as

644” z\azl// 0° wv 2 644”\i/—2 i [
6Y4 ( 2 1 ]/ aYz _ﬁl X2 axzayz S‘)[N—Z /74”\/—2
0%y o°
-0} 4[;“ Yy v =0134. (2.21)
ox ox*
o'y, 0°Y, _ 0 wv OWys _ 2 |
aY4 ( 2 ) aYz - ﬂl 2 - axzayi =S wv—Z _,7‘//v—2
0%y! Paly- =s
Pt v y")e“X V=2 (2.22)
OX u
. . N
subject to boundary condition W, = —- 3y =0,v=0123,. (2.23)
3.0 Solution procedure
The solutions of equation (2.15) for the functM)and equations (2.18), (2.19), (2.21) and (2.22) for
function ¢, subject to boundary conditions (2.20) and (2.28) sought using Fourier transformation
techniques.
3.1 Leading order solution

Here the solutions of, and ¢/, are sought.

3.2 Solution forVo0

Substitutingv = 0 in the recurrence equation (2.15), the gowgrrdifferential equation fol, are
obtained as

(g2 o2 )62\/(x,yt) (52 -

1

)62\/ (x,y;t)

2

-Pdly- =
~ SV, (4 Vi) 7V, (% Vi) = ad(uy Yo)gx  (aa)
Equation (3.1) is solved faf, by introducing the finite Fourier sine transforefided as

V(n,y) = J':V(x, y) sinn7xdx, with the inverseV (X, y) = ZZV (n,y)sinn/x (3.2

n=1

V(m,x) = j V (X, y)smT ydy with the invers¥ (X, y) ——ZV(m x)smTy (3.3)
m=1
So that the transform of (3.1) with respect to x is
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V,,, (ny)+a*Vv,(ny) =Ta(y-y,). (3.4)

|
=l

Pnml(-1)'e -1

while the transform of

. [B -t +sten]
where @° = 5 5 T =1 3 PR >
B, —o; (ﬂz _01)(5 +n°ru )

(3.1) with respect tg is

V, o (M, X) + o?V,(m,x) = (T"zﬁefx sinm—bﬂ Y, (3.5)

1 1

2 2 )2 2 2
-0l )m?m? +(s* +
where o° = { ('82 L ) > > (2 ,7)0 } (3.6)
(ﬁl -0 )b
The complimentary solution of (3.4) is V. (ny) =C, cosay + D, sinay (3.7)
Using the methods of variation parameters, thequaar solution of (3.4) can be shown to be
= T .
Ve (N,y) = 75lncry0 cosp, + ;cosa'y0 sing, (3.8)
Consequently, the general solution of the ordimkifferential equation (3.4) can be
obtainedas  V,(n,y)=C,cosay+D,sinay+I,sina(y-vy,) (3.9)
%
Pannu[(— 1)'e —1}
where r = (3.10)
toalg? - o?)s? +nPrtu?)
Similarly, the complimentary solution of the eqoati(3.5) is
V_.(m, x) = E, cosax + F, sinax (3.11)
It is then straight forward to obtain Vv, (m, X) = E,cosax+ F;sinax-T,e ' (3.12)
. mir
Pu smT y
where r, = (3.13)
2 (/812 —012)(82 +0'2U2)
The inversion of (3.9) and (3.12) gives the gensoaltion of the equation (3.1). Thus,
V,(x,y) = 2[C, cosay + D, sinay + ', sina(y - y, )| sinn7x
2 . i B 11V/ 4
+E E, cosox + F;sinox—T ,e smTy (3.14)

whereC,, D,, E; andF; are arbitrary constants yet to be determined higiirag.
3.3 Solution for ¢/,

If v =0 is substituted into equations (2.18) and (R.h@glecting terms with negative subscripts, we
have the leading order inner problem near0 orx = 1 given as

o'y, 0°, _
ax4 _('6,12 _0-12) ax2

0 (3.15)
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0y, _

subjected to Y, X (3.16)
solving equation (3.15) together with (3.16) gives
qwo(y) X +%e”ﬂz_”fx —% near x=0
i \//81 -0 \//81 -0
Y, = (3.17)
C%(Y) X +—21 = g VAeX ——21 = near x=1
\/,31 -0 \/,31 -0

Similarly, the leading order inner problem ngar O andy = b obtained from (2.21) and (2.22) yields

P(x) Y+%e'“”5"’12Y —% near y=0
i \/,32 -0 \/,32 -0
W' = (3.18)
r?(x) Y+%e'vﬁ5"’ﬂ —% neary =b
\//82 -0 \//82 -0

In (3.17) and (3.18), exponentially growing termsavéa been neglected while the functions

c(f)(y), 33(y), }?(X), andria(x)are to be determined by matching. ~ To this end, Zgke’s matching

principle which requires m-term inner expansion(thle n — term outer expansion) equals the n—terterou
expansion of (the m— term inner expansion) is asthpthus, matching one term outer expansion writténner
variable (3.17) with one term inner expansion writin outer variable (3.14) (1-1 matching), we indiagely

w % w es)
have qo(y) = qo(y) =T (x) = I’O(X) =0 (3.19)
P sinn;ﬂy Pousinrrkl)ﬂy0 u
E, = , Fy = —— —Coto 3.20
s ([a’f —012)(82 +02u2) s (,[z’f —012)(82 +02u2) sino (3.20)
Ponm{(—l)”e_” —1} Ponm{l—(—l)”e_” —1}
C,= sinay, D, = cosay, 3.21
T alg - o) i) g ol ) e O
It is straight forward to show that l//f) =0 (3.22)

Thus, substituting (3.20) and (3.21) into (3.14)lgs the inversion of equation (3.14) and the gdrsalution of
equation (3.1) as

. T
2Pusin—y,
2
b{3;
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-= SiNOX
sino

s

_sy CcOsU Sinox
cosox—e ' +e -

sino

V(X y) = }sin n;)ﬂy (3.23)

-0?)s? +ou?)



where 02 =-

2 _ 22 2 | <22 2 _ 52 Im? 2 :
& Jlb)?{/ﬁzjo—”zb) = ] - {(/32 bza(lﬂ)zn—]:yb e e
1 1 2 Tt

The Laplace inversion of (3.23) is defined as

. mm . miT
2P0usmTyosmTy
V, (X, y) = b(,[z’f - 012) {Fl(x, y;t)— F, (x, y;t) + Fs(x, y;t)— F, (x, y;t)} (3.25)
where
1 aviee” cosho®x N1 a+iwes[t_5jcosha°x

Fl(X,y,t)—z—ﬂJ‘a_immds, Fz(X,y,t)—EJ.a_iw 1000 ds 3.26)
: S[t_%] H c P C i c

Fs(x,y;t):i atio @ sinhg*“x ds,F4(x,y;t):i a+io@™ COSho* sinho*x

271 o= (s? + g2u? Jsinho® 271 Ja-i= (s? + g2u? Jsinho®
In order to evaluate the above integrals, resitieerem is employed. The singularities in the irabgr
are poles. In particular the denominators of thegrands ofF1 (X, y;t) and F2 (X, y;t) have simple poles at

s==Q,, where

(,822 -0 )m2n2 +1b?
: Q, =u T2 > > (3.28)
b (,6’1 -0, -u )
it is straight forward to show that
coshQ,x _ 1 | &fvr] ol
F(xyt)= ——3(e91t -e Qlt), F(xyt)=- e ( “J -e ( “j (3.29)
2AQ, 2AQ,
_(B-aimtm e 1 20 B
where Q, = b , Q, ——%(Ql +§22)2 (3.30)
2 2
(,31 -0 )
Furthermore, to evaluate(k, y; t), its integrand is rewritten to take thoerh
0 = e* cosho®x 331)
a ™ 2 2).2 2 '
Al s? -u? _(/82 —0; )m T +nb ]
bz( 2 _ 2 2)
pi-or -u
Thus, the simple poles ar%: 2 and s= _Ql. In order to obtain poles emanating from
SINNT® 1t is set to zero, i.eSINNT = 0. yyhich implies o° =iV, (3.32)
2 2 |12 2
. —-o? I +nb
Thus, S = *i,/Q, , whereQ), = V277'2(,[5’12 - 0'12)+ (ﬂz 1 )b2 i (3.33)
Thus, the contribution towards(k, y; t) due to simple poles & = in is given by
. 1 1
sinhQ,x | @t [t
FSa(X’ y;t) =———*—le [ ”) -e [ “J (3.34)

- 2A sinhQ,

In a similar manner, the contribution due to simpidées atS = =i 1/Q‘.' is given by
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< 0B - oF brsinvr| ailer) _ i)
Fap (X, yit) = AJQ \/_4(9 +Qz [ ] (3.35)

Therefore (x yit)=F, (x, y;t)+F, (x, y;t) (3.36)
The contributions toward:4 (X, y;t ) are obtained in a similar manner as we havEgI(X, y;t)
H _ 2v+1 2 _ 2 .
F(xyit) = S|nh93x (eQlt _e_Qlt)+ (-2) (,81 o, )\/ﬂsmvm (3.37)
2AQ, sinhQ, A4, (Q, +Q?)

Substituting (3.26), (3.27), (3.36) and (3.37) i(B®5) yields

2P,u sinn;” Y, sinr:)”y{coshQ X _e_Qlt) ) te(t—Ej e—Ql[t—Ej

= ) | “m
sinhQx | af-t] -] (-1)*(g? -0 )wrsmvnx’ S -i@(-l)]
+——— " e -e + -e g
2Q, sinhQ, Jo. (o, +0?)

_sinhQ xcoshQ, (eQlt _e_Qlt) _ (—1)2V+1(:312 -0} )\/nsinvm (ei\/lett —e‘i\/‘T‘*t) (3.38)
2Q, sinhQ, \/9_4(94 +le)

The combination of the results (3.22) and (3.38)dythe desired leading order solution of (2.1)ckh
represents the uniformly valid solution of the entiomain of definition of the given plate.

4.0 First order correction
4.1 Solution foer0

The next corrections in outer solution are obtdibg settingv = 1 in equation (2.15). For the outer

solution, the governing equation fyrl is given as

( : Z\OZV (X A t) (,822 - 0'12)62\/1()(, Y,t) _ SZVl(X, y,t) —/7V1(X, y’t) =0 4.1)

g,) 92x ayz

Using the method of finite Fourier sine transfoB2] on equation (4.1) with respectxtgields

V., (ny)+a?Vi(ny)=0 (4.2)
The homogeneous solution of (4.2) gives Vl(n, y) =C,cosay + D;sinay (4.3)
Similarly, if equation (4.1) is subjected to finkeurier sine transform (3.3) with respect to ye @btains
( X )\/ (m, X) P ( - )\/ (m,x) = s?V,(m,x) =7V, (mx) =0 (4.4)
so that V, o (m x)+ 02V, (mx) =0 (4.5)
The complimentary solution of (4.5) gives V, (m, X) = E, cosox + F, sinox (4.6)

The inversion of equation (4.3) together with equraf4.6) gives

. . 2 . . mr
V,(n,y)= 2[C3 cosay + D, smay]smnm + E[E4 cosox + F, smax]smT y (4.7)
where G, Ds, E; and g are unknown constants to be determined by matching
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4.2 Solution forl,llli

The first order correction is obtained by setting 1 in the differential equation (2.18). Doingstland
neglecting terms with negative subscripts, we have

o'y, (g2 - )Gztﬂi _
ox* ' X ?
with the boundary condition l/ll' = aalfl(l =0 (4.9

Following usual argument in equation (3.17) and &3. the first order correction of the inner prable
can be written as:

(4.8)

&) X+J7 W—ﬁ nearx = 0

" B x+——L \/7 g Vi \/7 nearx = 1 o
P(X)Y+\/7 ~JE-aty _ \/7 neary = 0
r&zx)Y+\/7 Bty \/7 neary = b

jo:)
where exponentially growing terms have been negteats unmatchable. The functi(ﬁ%(y) L0, (y), I{"IJ(X)

and rl(x) will be determined by matching. By matching onent@uter solution with two terms inner solution
expansion written in outer variable, we obtainefbfiews:

miT
2P usin—— b Yo -3 s
= -coto+—e " |[ogsin— 4.11
ql(y) b(,B )(s + 0% ) sing uo b Y (#.11)

2Pousinm Y,

é]a(y): b {asma e S7U+Jcosacota—§e_3}sinﬂTy (4.12
S (g2 - )s? +otu?) sing u b '
. mir
2m7Pusin——y,
W, \ _ b -s Singx . sy
N =—r- e o {cosax+e v — —cotosinox—-e } (4.13)
b ( A —Ul)(S +0°u ) sing

-5
u

-s SINOX
—COSOX—¢€ " —;
Sino

& 2(-1)"mrP,u sin ™% Y,
P = b le

bz( X )(s +0°u )
We seek an asymptotic outer solution of the fofth =V, + £V,° which implies that (4.15)

+ cotasinox} (4.14)

o -+ 7 sinox cososinox | . mmr
V°=A/|cosox-e +e ——- - sin y
sing sing b
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+ 2¢[C, cosay + D, sinay]sinnnx+§£[E4 cosax +F, sinax]sin%y (4.16)

2PousinM Yo

where A = b(,Blz - 012 )(52 " Uzuz) (4.17)

By matching two terms outer solution with two terinser solution (2 — 2 matching) of equation (4.H3)
& — 0, one obtains

. mir s
- Rusin= =Y, el Ogcosg S
E, = b - +— (4.18)
4 3 B A .
) 2\ (s , ,\|Sino sino U
(131 _01) (S tou )
Pusin—mﬂy -
- ) _s u
= coto S
F, = . b og-2ev'———+20cotP o -—— —Zcoto (4.19)
( ) 2)5(2 ) 2) sing usinoc u
B —o7) |s+ou
P.ums sin™z s
C, = 0 0 Yo {cosox-e®
b*(Bf - 07)(B; - 07)(s* +o’u?)sinn7x
< Sinox cososinox
e — - . (4.20)
sino sing
. T s
2P umsrsin—— —=X
D = 0 p J° _:meosox_(—l)meu
S R U A sinab  sinab
b (,81 -0 )(,82 —Ul) (s +0°u )smnnx
_s
-1)"e usinox (-1)" cososinox
+( ) - —( ) - + cosoxcotab
sinosinab sinosinab
s s,
-= € “ sinoxcotab .
—e vYcosab + , —cotosinoxcotab (4.21)

sinob
substituting equations (4.18), (4.19), (4.20) g4d21) into (4.7), after some substitution and mgeanent yields
2Poumnsinm Yo s
V,(X,Y) = bl {— cosoxcosay +e * cosay
o* (g7 -0t g5 - o) (" + o)

e sinoxcosay

+ cotasinoxcosay + (-1)" cosoxsinay _(_1)me’5x sinay

sino sinab sinab
- sinoxsin COSo sinoxsin i
+(-1)"e NS Qy _(=q)" 7SING ay +cosoxcotabsinay
sinogsinab sinosinab

Journal of the Nigerian Association of Mathematical Physics Volume 13(November, 2008)141 - 160
Transverse vibration under a moving load S. T Oni ad O. K Ogunbamike J of NAMP



- : . sinoxcotabsinay - ' '
_e™ cotabsinay +e ay - cotosinoxcotabsinay}

sing
N 117/ S 11V/4
2P.usin—y,sin—y s
b b 0 COST COSOX . COSOX S
+ 3 - —-0e ——— ——COSOX
2 sino sinc u
(B2 -07) s+ 0w?)

s Ccoto sinox 2 s SiNOX | S .
-osinox+2e ' ———— -2gcot’ osinox + — e u + —cotosinox (4.22)
sing u sinc u
. mrr . mn . mn

2P0um775|nTy0 2Pou5|nTyOS|nTy
where P, = , P = (4.23)
A bz( 2_0.2)( 2_0.2)% & , 22
1 1 2 1 (,31 —Ul)

The Laplace inversion of (4.22) is given by

Vi(%, Y1) = Pu{= G, (X, ;1) + G, (%, Vit) =G5 (%, Vit) + G, (X, y;t) + G5 (X, ;1) =G (X, yit)
G, (X, ;1) =Gy (X, Vit) + Go (X, y;t) = Go (X, Vit) +Gyy(x yit) =G (%, yit)}

+ Paz{_ G (X' Y; t) -G, (X, y;t) — Gy (X y;t )+ G (X y;t )+ G, (X’ y;t)} (4.24)

1 atiog® coshacxcosha°yd

where (X y;t ) 277 e 10’0 (4.25)
s[t XJ .
G,(x yit) = L e cosha Yas (4.26)
27i Yo &% + g%
L eet  sinn ha
4y 1 eiee’ " sinho®xcosha‘y
G, (X, y,t) = o Jacie (82 +02u2)sinha° (4.27)
(x vt ) 1 a+ie@® cotho® sinhg® xcoshacyd 4.28)
277 Jacie s? +ou?
1 arie(—1)"e® cosho®xsinha®y
t)=— .
Gobeyit)=o 2l (s + o7 Jsinnos (429
o=
1 pavio(— 1)me( d sinha®y
Gix, yit)=— d :
oboyit)= HL = (s? +g?u?)sinha’b > (30

1) ginhoexsinha®
G.(x yit) = 1 aie(=1)"e S|.nh0' xsinha“y @31)
271 Jaie (s +0%u )S|nh0°smha°b

1 a+wo e cosho® sinhg®xsinha‘y

s(yit)=—=[ " — (4.32)
27% Ja- s +0°u )smhaC sinha‘b
1 a+i=@™ cosho®xcotha®bsinha‘y

G,(x, y;t)= ds (4.33)

2na'°° s? +0%u?
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st—fj
1 a+iooe[ “/ cothabsinha‘y
GlO(X’ y’t) = Z_IT'L‘“” (82 " Uzuz) ds (4.34)
1 e’ sinho*xcothabsin
, atim@ * '/ sinhg“xcothabsinha‘y
G,lx yt)=— d :
u(x y:) 277 Ja-ie (s? + o2u?sinho* S (435
\_ 1 anioe® cotho® sinho®xcotha®bsinha®y
G (x y;t) = 277 Jacieo ERRERY ds (4.36)
1 (a+i=e®gcosho® cosho®x
Gulx yt)=— d .
a6 ) 27t 2= (s? + g?u? Jsinho*® > @30
{2
1 (atio € Y gcosho®x
t)=— .
G ¥:t) 27t Ja-ie (52 +02u2)sinhaCds (4:38)
1 ratio
Gys(x, y;t):E . e H(x; s)ds (4.39)
where
ljcosho*"x +osinho®x —jcothac sinho®x + 20 coth® o° sinho®x
H (X; S) = 71 oA (4.40)
s[t-ij C
G, (x y-t):ir”""ze “ cotho® sinhcg“x @.41)
O 271 daie (8% + 0?02 )sinho® '
1 3 ginn
atio 52 Y/ siNho X
G\ yt)=— d .
(i) 27t Ja-i= (s? + g2u? Jusinha® > (@42
where a® = %[(,Bf -0} )n2n2 +n+ sz]% (4.43)
(82 - o2)
c 1 m?r? ;
a =ﬁ[(ﬂzz‘0'f)7+’7+52r
('31 ! )2 (4.44)

In order to evaluate the integra@l(x, y;t)—G17 (X, y;t) the procedure outlined fdfi(x,y;t) —
F4(x,y;t) shall be followed. On simplification and reagament, one obtains

G(x y;t)= 5 1 coshQ,xcoshQ,y(e? —e™) (4.45)

1

1Q coshQGy{te[t:) - te[tSJ] (4.46)

G, (X, y;t) = >

1
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G, (x ,t):sinhstcoshQGy te(t—EJ _e_Q{I_EJ
SV 2AQ, sinhQ,

+ (-2)*(8? - o2 Wrsinvrxcosha® y FQH(‘B ) eiQ7(t$j:|

(4.47)
AiQ7QS
G,(x yit)= 5 1 coth§23sinhancoshQGy(e"lt —e‘QI‘) (4.48)
1
(-1)"coshQ,xsiNQ,Y [ or oy
)= it 1
Gubxyi) 2AQ,siNhQ.b e -e)
(—1)m+k(,322—Uf)kncoshJC*xsink—ﬂ y, |
b (eIQgt _ e—ngt)
+ bAj_Qng (449)
G (x y't) _ (—1)msinh§26y eﬂl[t-gj _e-Ql[t—zJ
VI 2AQ, sinhQ,y
m+ .k
. (1) k(ﬂz2 —Jf)kﬂsmb y[eing(t:] _eng[tzjjl
bAQ,Q,, .50
G, (x y:t) = £ SinhQaxsinhQyy 2 _ ol
¥ 2AQ, sinhQ,sinha.b
G.(x y:t) = (-1)"sinhQ,xsinhQ,y te(t_%j —e_Ql[t_%)
Y AQ SINhQ, sinhQ,b
+ (_ 1)V+m(ﬂ12 - Uf)\/ﬂSinVﬂ(Sinha'c*y eiﬂy(t—%] _ e—iQy(t—%j
AQ.Q.sinha®b
(—1)k+m(,322 —af)kﬂsink—ﬂysinhUC*x ng[t_gj _iQQ[t_}J
' PAQLOLSThe [e e ]
AQ,Q s
G,(x y:t)= (-9" cosh§23sinhstsinhQGy(tet _eo)
o 2AQ, sinhQ, sinhQ b
. (- 1)2”’“(,812 -o? )\/ﬂsinvmsinha°* y (eiQ7t _ e‘iQﬁ)
bAQ.Q,sinha®b
(~2)"(52 - 02 Jkrrcosho® sinhac*xsink—ny
+ b (eiQQt _e—ngt)
bAQ,Q,,sinhc* @52)
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Go(x yit) = coshQ,xsinhQ bsinhQ, y(e® - &)
2AL, (4.53)
R nho 207 g2
G,(x y;t) = > cothQbsinhQ,y| e -e
' (4.54)
Gu(x yit) = sinhstcothQGbcosmey[eﬁl[t3] _ eal[tij}
2AQ, sinhQ,
.\ (~2)*(g? - o2 )rsinvrxcotha® sinha®y eiﬁn[t—%] B e_iQ7[t_%)
A (4.55)
G, (x y;t)= 1 cothQ, sinhQ,xcothQ, sinhQGy(tet —e‘QI‘)
2AQ, (4.56)
) _ 1Q5c08hQ,CosQ X ( o0 o4
Gl V)= 5 sinna, e -e)
+ (_ 1)2V+1 (/812 -0 )‘/2772 COSV7KX (eiQ7t _ e—iQ7t)
2AL04 (4.57)
- Bl
2AQ, sinhQ,
.\ (-2)(82 - 2 W72 cosvr eiﬁv[t—%] B e_iQ7[t_%J
AR (4.58)
1 _
Gis (X’ Y t) = 2A1—Q (Glsa (X’ Y t) + Gy, (X’ Y: t) *+ Gy (X’ Y: t))(eQlt —e™ )
1

&cothQs sinhQ,x
u u

Gy (X, y;t) = 2iQ, coth? Q. sinhQx

Gy, (X, y;t) = &coshst +iQ,sinhQ.x G, (x y;t) = -

(4.59)
y_ cothQ,sinhQ x| ait-1]  -av]
Gubeyit)= =0 Sina, {e e
+ (-2 (:312 - Uf)Sinvm !eiﬂ{ti] B eiQ{tllJ]
o (4.60)

Q, .
—=sinhQ,x [ (“}J o (t_gJ
+y=_Uu ou) _ Uu
G (x y:1) 2AQ, sinhQ, {e © }
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0 -ot) s i) afir) o
AQ,Q,
where =82 -2t +n: Q, = (o2 +§25)% (4.62)
(1312 _02)2

Q, =, = (723 - ) Q,): Q, = (V22 (87 - 02)+Q, + Q2) (4.63)
0, =| (g2 -t en Kz ~o)| s 0, =[o o

2 1z
a® = (:312 _10.2)% {_vzn.z( 12 _012)_( 22_0'12)mb—2ﬂ2+(:81 01) 77'2_ (4.65)

. znz‘%
o* ﬁ[ R L

Substitution of integraIGl (X, y;t) - G17 (X, y;t) into equation (4.24) gives the complete inversion
ofVl(X, Y; t) :

From equation (2.14), the perturbation schefreeuniformly valid solution in the entire domaifhdefinition
of the plate problem is given by

V(x, y;t):Vo(x, y;t)+£Vl(x, y;t) (4.67)
where (X, vy, t) is the leading order solution and(¥ vy, t) is the first order correction. These aigen
respectively as (3.38) and (4.24). Thus substigu{i®.38) and (4.24) into equation (4.67) gives tbguired
solution.

5.0 Remark on theory

Equations (3.38) and (4.24) are the leading orddrfast order (transformed) solutions of the peshl
The leading order and the first order solutions@mbined in equation (4.67) to form the composiagition
which is uniformly valid in the entire domain ofethighly prestressed plate.

From equation (3.38), it is found that the anispitoprestress, shear modulus and the foundation
stiffness affect the response @{&) of the rectangular plate. In an undamped systesh as this, it is pertinent

to examine the phenomenon of resonance. It isrebd from the leading order and the first ordarexion
results that fully clamped prestressed isotropateptesting on a Pasternak-type foundation andveased by a

moving force reaches the state of resonance whene)ﬂf = 0'12 (5.1)
Other conditions when the system reaches a statsohance are
1
Bi =0 and(B7 -07)? =u (5.2)
2 2 2.2 2 % 2.2
2 (ﬁZ_Ul)mﬂ +77b _ 2_2(p2 2 2 2\m T
u =-|vim -0l )+ -0 + (5.3)
{ bz(ﬁlz_a.lz_uz) (Igl 1) ( 2 1) b2 n
1
2 2 2.2 2 |2 2.2
z(ﬁz_al)mﬂ"'”b _ 2. 2(pn2 2 2 2\K
u =-|n°m -0+ -0 )——+ (5.4)
{ bz(ﬂlz _012 _uz) (181 1) (182 1) b2 7
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From (5.1) to (5.4), it is observed that the resmeaconditions of the plate are dependent on tl@otrapic
prestress and the elastic foundation. It is alsdemt that to any order of calculation, resonacaeditions are
affected by both the shear modulus G and foundatiffnessK.

At this juncture, the critical velocities for tegstem of a highly prestressed isotropic rectamdata on
an elastic foundation traversed by a moving loadsaught. The three distinct critical velocitieatthxist in the
dynamical system are given as

U,(v,m,m) = —#[vzﬂzbz(ﬂf - af)+ (,822 - af)mzﬂ2 +/7b2]% (5.5)
U,(k,n,7) = = 3 _Uflnzﬁbz(ﬂlz AN s +,7b2] % (5.6)
T (k2 - mz)([j’z2 - 0’f)+ nzbz([i’l2 - 012)
U,= (ﬁl2 - J12 )% (5.7
6.0 Numerical calculations

In order to illustrate the analytical results, éoample, the isotropic rectangular plate is takebe of
length Ly = 1.0m and width Os5. Other values used for the analysis in this eactire b = 0.5 m, v = 1,
:%. The values of the prestress ratio in x - diraft:tiﬁ’l2 range between 0 and 100000. The critical
velocities are plotted against prestress and fdiomastiffness for various values of shear modulsand
subgradeK. Values of shear modulus G between 0 and 100008 used while the values of foundation stiffness
K were varied between ON/rand 2000000 N/fh

™

g 8 g

Critical velocity Ul

8

T T T T T |
0 2000 410 cuey) 000 100000 12000
Prestress

Figure 6.1 The graph of Critical Velocity Wagainst Prestress for G=100000 and K = (2000000)
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Figure 6.2 The graph of critical velocity Lagainsprestress
for K=2000000 and G=100000
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Figure 6.4: The graph of critical velocity Lagainst
prestress fo6 =100000 and various valueskf
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Figure 6.6: The graph of critical velocity, dgainst
prestress for various values®fandK
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Figure 6.3 The graph of critical velocity £hgainst
prestres$et 00000 and various valuesK
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Figure6.5: The graph of critical velocity Uagainst
prestress for various values of G atd
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Figure 6.7: The graph of critical velpdit against
foundation stiffnesk for G = 100000
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Figure 6.1 displays the graph of critical velodily against prestress. From the graph, it is observed
that the critical velocityJ, increases with prestress for fixed values of shezdulus G and foundation stiffness
K.

Thus, for high value of prestress, our design isenstable and reliable. In a similar manner, infig
3.2, the critical velocityJ, behaves exactly the same waylhs Results and analysis similar to those of figure
6.1 are obtained. The graphlfagainst the restress for various values of foundadtiffness is shown in figure
6.3.

Evidently, the critical velocity increases with piress for all values of foundation stiffness usduis
resonance is reached earlier for lower values e$tpess than for high values of prestress. Thusiéisgn is
more stable and the risk of resonance is remotehifgin values of prestress. Also, the graph of thgcal
velocity U, against the foundation stiffness behaves the seayeasU,; as evident in figure 6.4.

75 12D
z 100D
25
o an
Sz 3
Sos fm
3 S
520 5 -
2B
FO)
20
1% T T T T T 1 0 T T T T T 1
0 200 410 60000 00 000 12000 0 5000 100000 15000 2000 20D 3000
FaurdetionK Prestress
Figure 6.8: T he graph of critical velocity dgainst Figure 6.9: The graph of critical vetpti;
foundation stiffnes& for G = 100000 against prestress for fixed valué ef 1000000

Figure 6.5 shows the plotted curvesWf against prestress for various values of shear medand
foundation stiffness. The graph shows that as m®stincreases, the critical velocity increasewels Thus,
with these, the likelihood of collapsed structusevery remote. The critical velocity, in figure 6.6 behaves
exactly the same way &f5. Results and analysis similar to those of figuteade obtained.

The graph ofJ, against foundation is shown in figure 6.7. Evidgnthe critical velocity increases as
the foundation stiffness increases. Thus resonsneached earlier for lower values of foundatitfiress. The
critical velocity U, in figure 6.8 behaves exactly the same wayasResults and analysis similar to those of
figure 6.7 are obtained. Figure 6.9 displays thigcat velocity Us; against prestress. From the graph, the critical
velocity increases with prestress for fixed valdiessloear modulus. Thus resonance is reached etotidower
values of prestress.

7.0 Conclusion

This study concerns the problem of the dynamicarse of a highly prestressed isotropic rectangular
plate under a travelling load. The problem is goeerby a fourth order non—homogenous differentiaia¢ion.
For the purpose of solution, the equation is preegkim a non—dimensionalized form. It is obsertret a small
parameter multiplies the highest derivatives indbgerning differential equation. Thus, this tygfedynamical
problem is usually amenable to singular perturlpatézhnique. In particular the Method of Matchedmptotic
Expansion (MMAE) is used. This technique constractter (core) and inner (boundary layer) solutitireg are
valid in partly disjoint domains. These solutioase then matched in an intermediate domain whetk bo
asymptotic expansions are valid. Consequently,pgmoximate uniformly valid solution in the entirerdain of
definition of the rectangular plate is obtainedhatihe rigorous use of Laplace transformation ardGlauchy
residue theorem. This solution is analysed and digénct resonance conditions are obtained indyreamical
system.

Numerical analysis is carried out and the studyl@ththe following results:
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0] The leading order solutions and the first orderrection are affected by the bi- parametric satig
moduli anisotropic prestress.

(ii) As the foundation stiffness increases, théiaal velocities of the isotropic rectangular platnsversed
by moving load increases.

(i) The critical velocities of the dynamical sgst increases with increase in prestress for alleslof
shear modulus and foundation stiffness used.

(iv) There may be more than one resonance conditiam dynamical system such as this which involves

plate flexure under moving loads.
Finally, this work has showcased the use of a \méuanethod for the solution of this class of
dynamical problems.
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