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Abstract 
 

This paper investigates the dynamic response of a highly 
prestressed isotropic rectangular plate resting on a bi-parametric subgrade 
under the action of a moving load. Using the singular perturbation 
technique, specifically the Method of Matched Asymptotic Expansion 
(MMAE), in conjunction with the method of integral transformations and 
Cauchy Residue theorem, a uniformly valid analytical solution in the entire 
domain of definition of the rectangular plate is obtained.  Analyses of 
analytical solutions and numerical results show that the leading order 
solution and the first order correction are affected by the bi-parametric 
subgrade and anisotropic prestress to the response of   0(�1) of the 
rectangular plate.  It is also found that the critical velocities of the dynamical 
system increase with prestress for all values of shear modulus and foundation 
stiffness used. Thus, resonance is reached earlier for lower values of 
prestress, shear modulus and foundation stiffness than for high values. 

 
 
1.0 Introduction 

The works on dynamic loading of one dimensional solid such as beams have received attention of 
several researchers. Among several authors that have worked on this subject are Jeffcott [1], Steuding [2] and 
Odman [3], Milomir  et al [4], Leipholz [5], Oni and Gbadeyan [6] to mention but a few. Among the earliest 
work on moving load plate problem is the work of Holl [7]. He solved the problem of a rectangular plate under 
the action of uniform moving loads. He indicated that a critical velocity existed for each vibrational mode. Much 
later Stanisic et al [8] studied the two dimensional problems of flexural vibration of plate under the actions of 
moving masses. Only the inertia term that measures the effect of local acceleration in the direction of the 
deflection was considered. The work in Stanisic et al [8] was taken up much later by Gbadeyan and Oni [9] who 
studied the dynamic analysis of an elastic plate continuously supported by an elastic Pasternak foundation 
traversed by an arbitrary number of concentrated masses. All the components of the inertia terms were 
considered and the rectangular plate was assumed to be simply supported. The deflection of the plate was 
calculated for several values of the foundation moduli and shown graphically as a function of time. More 
recently, Oni [10] developed a versatile solution technique for solving plate moving load problems for all 
variants of classical boundary conditions. 
 In all the aforementioned studies, no consideration has been given to bending effects at the boundaries. 
In particular, when a plate structure is highly prestressed, a small parameter multiplies the highest derivative in 
the governing differential equation. 

This class of dynamical problem in which a small parameter multiplies the highest derivative in the 
governing differential equation is not common in literature. However, this class of plate problems has been 
solved when the plate is executing free vibration or when a static load is acting on such plate, Hutter and 
Olunloyo [11]. Singular perturbation has to date seen relatively little use in solid mechanics but it is nonetheless 
being successfully used, Cole [12].  In particular, Hutter and Olunloyo [13] have employed it in investigating 
rectangular membranes with small bending stiffness. In a more recent article, Gbadeyan and Oyediran [14] 
compared the two singular perturbation techniques (MCE and MMAE) for initially stressed thin rectangular 
plate. They found that the results of the MMAE agree with those obtained using generalized MCE and 
specialized version of MCE when the effect of shearing deformation is 0(ε). 
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 After an earlier work by Oni [15] where he studied the dynamic response to a moving load (using the 
Method of Matched Asymptotic Expansion MMAE) of a fully clamped prestressed orthotropic rectangular plate, 
Oni and Tolorunsagba [16] took up the problem of assessing the rotatory inertia influence on the highly 
prestressed orthotropic rectangular plate when it is under the action of moving load. The method of composite 
expansion (MCE), an alternate singular perturbation technique is employed in conjunction with the method of 
integral transformation and Cauchy residue theorem to obtain an approximately uniformly valid solution in the 
entire domain of definition of the rectangular plate. Analysis showed that the critical velocities of the dynamical 
system increase with an increase in prestress and rotatory inertia values. However, in the work of Oni [15] and 
Oni and Tolorunsagba [16], only plates not resting on foundation were considered. Thus, in this work the 
dynamic response to a moving load of a highly prestressed isotropic rectangular plate resting on a Pasternak-type 
foundation is considered. 
 
2.0 Problem formulation  
 The transverse displacement of an isotropic rectangular plate resting on a Pasternak foundation under a 
moving load is governed by the fourth order partial differential equation  
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Where D is the bending stiffness, xN  is the axial prestress in the x  direction, yN  is the axial prestress in the 

y direction, x , y are the position coordinate in the x and y directions respectively , t  is the time coordinate, W 

is the deflection of the plate, m is the mass of the plate per unit area, ( )tyxP ;,  is the applied dynamic load, K 

and G are the foundation stiffness and shear modulus respectively. The boundaries of the plate are fully clamped, 
and as such both the deflection and slope varnish identically. Thus,  
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and for simplicity, the initial conditions are taken to be 
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2.1 Non-dimensionalized form 
Equation (2.1) is presented in a non-dimensionalized form for the purpose of solution.  Substituting 

yLyxLxLVW === ,, ,  / ott ω= into equation (2.1), followed by some simplification and arrangement 

leads to the system of equation 

 

 
y

tyxV
 

x

tyxV

y

tyxV

yx

tyxV

x

tyxV
2

22
2

2

22
1

4

4

22

4

4

4
2 ),,();,,();,();,();,(

∂
∂−

∂
∂−









∂
∂+

∂∂
∂+

∂
∂ ββε

 (2.4) 

( )tyxp
y

tyxV

x

tyxV
V

t

tyxV
o ;,

),,(),,(),,(
2

2

2

2
2
12

2

=








∂
∂+

∂
∂++

∂
∂+ ση

 
whereε is the small parameter multiplying the highest derivative and defined by the relation  
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1   , ββ  measures the prestress ratio and the boundary conditions in non–dimensionalized form become:  
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and the initial conditions are 
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In this dynamical system, moving load on the rectangular plate moves at a constant velocity u along a straight 
line parallel to x-axis, say, yo. Thus Pa(x,y,t) takes the form 

( ) ( ) ( )oa yyutxMgtyxp −∂−∂=;,     (2.8) 

where M is the mass of the moving load, g is the acceleration due to gravity and ( )•δ  is the dirac delta function 

defined as  ( )
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When equation (2.8) is substituted into (2.4); one obtains  
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Equations (2.10) together with boundary conditions (2.6) and initial conditions (2.7) define completely the 
equation of a fully clamped highly prestressed isotropic rectangular plate occupying the domain 0 ≤ x ≤ 1, 0 ≤ y ≤ 
b in a non–dimensionalized form. 
2.2 Operational Simplification 

It is observed that a small parameter multiplies the highest derivatives in (2.10) and as such the problem 
is amenable to singular perturbation techniques. However, equation (2.10) is considerably simplified by 

introducing the Laplace transform defined by  ∫
−= dteVV st    (2.11) 

in conjunction with the initial conditions defined in (2.7). Taking t as the principal variable, the Laplace of (2.10) 
is given as 
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Subject to the boundary conditions 
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2.3 Method of Solution  
 In equation (2.12), an exact uniformly valid solution in the entire domain is not possible and it is 
observed that a small parameter,  say, multiplies the highest derivative in the governing differential equation.  
This is due to the bending effects at the boundaries.  Consequently, solution valid away from the boundaries 
breaks down near as well as at the boundaries.  Thus, only approximate solutions are possible. The two but 
equivalent approaches that could be used to tackle this type of problem are the method of composite expansion  
 
 
 
(MCE) and the Method of Matched Asymptotic Expansion (MMAE). In this paper, MMAE is used. This 
technique provides an approximate solution to the given problem in terms of two separate expansions which are 
valid in part of the domain. The two separate solutions, one valid at and near the boundaries and the other valid 
away from the boundaries are then matched to obtain a uniformly valid solution in the entire domain of definition 
of the rectangular plate. The Method of Matched Asymptotic Expansion MMAE developed by Bretheton [17] 
required that the asymptotic solution of equation (2.12) be of the form   
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Substituting the expansion (2.14) into equation (2.12) and equating coefficients of like powers of ε, one obtains 
the recurrence relation  
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here that equation (2.15) are not uniformly valid in the entire domain of the rectangular plate under 
consideration.  In fact, solutions obtained for Vo, Vv, v ≥ 1 are not valid near the boundaries.  The reason for this 
is simple.  The order of the partial differential equation (2.12) has been reduced but the number of boundary 
condition is not reduced.  These solutions are termed outer solutions and the equation (2.15) outer problem. 
2.4 Expression near the boundary  

In order to obtain an expression that is valid at the boundary, near x = 0, we set the inner variable as 
ε/xX =  and write the solution valid near x = 0 as  
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where superscript i denote the inner solution.  Equation (2.16) is also valid near x = 1, where we set the inner 
variable ε/)1( xX −= .  Expressions similar to (2.16) can be written down for the solution near y = 0 and y=b    

where we set the inner variable as ε/yY =  and ε/)( ybY −=  respectively, as 
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Using equation (2.16) in (2.12) near either x = 0 or x = 1, the differential equation on iψ  gives 
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The differential equation near y = 0, or y = b can similarly be written as 
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3.0 Solution procedure 
 The solutions of equation (2.15) for the function vV and equations (2.18), (2.19), (2.21) and (2.22) for 

function vψ  subject to boundary conditions (2.20) and (2.23) are sought using Fourier transformation 

techniques. 
3.1 Leading order solution 

Here the solutions of V0 and 0ψ  are sought. 

3.2 Solution for 0
0V  

Substituting v = 0 in the recurrence equation (2.15), the governing differential equation for V0 are 
obtained as  
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Equation (3.1) is solved for V0 by introducing the finite Fourier sine transform defined as 
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So that the transform of (3.1) with respect to x is 



Journal of the Nigerian Association of Mathematical Physics Volume 13 (November, 2008), 141 - 160

 

Transverse vibration under a moving load S. T Oni and O. K Ogunbamike J of NAMP 
 

( )ooyyo yyTynVynV −=+ δα ).(),( 2
, ,    (3.4) 

where 
( )










−
++−

−=
2
1

2
2

2222
1

2
12

σβ
ηπσβα sn

, 

( )

( )( )22222
1

2
2

11

uns

eunP

T

u
s

n
a

πσβ

π

+−














−−

=

−

 while the transform of 

(3.1) with respect to y is  

( ) o

xo
oxxo y

b

m
e

u

P
xmVxmV u

s π
σβ

σ sin),(),(
2
1

2
1

2
,

−

−
−

=+  (3.5) 

 

 
 
 
 

where     
( ) ( )

( ) 








−
++−

−=
22

1
2

1

22222
1

2
22

b

bsm

σβ
ηπσβσ    (3.6) 

The complimentary solution of (3.4) is  yDyCynVoc αα sincos).( 22 +=   (3.7) 

Using the methods of variation parameters, the particular solution of (3.4) can be shown to be  
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Similarly, the complimentary solution of the equation (3.5) is 
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The inversion of (3.9) and (3.12) gives the general solution of the equation (3.1).  Thus, 
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where C2, D2, E3 and F3 are arbitrary constants yet to be determined by matching. 

3.3 Solution for i
0ψ  

 If  v = 0 is substituted into equations (2.18) and (2.19), neglecting terms with negative subscripts, we 
have the leading order inner problem near x = 0 or x = 1 given as 
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solving equation (3.15) together with (3.16) gives 
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Similarly, the leading order inner problem near y = 0 and y = b obtained from (2.21) and (2.22) yields 
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In (3.17) and (3.18), exponentially growing terms have been neglected while the functions 
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π
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=

−
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y
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u
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π
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2
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 −−−
=

−

 (3.21) 

It is straight forward to show that     0=i
oψ    (3.22) 

Thus, substituting (3.20) and (3.21) into (3.14) yields the inversion of equation (3.14) and the general solution of 
equation (3.1) as 

( )( ) y
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y
b

m
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u
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σ
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2
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 (3.23) 
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where
( )

( ) 
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1

2
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ηπσβσ

b

bsbm
; 

( )
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2
1

2
2
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2
2

2

2222
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2
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+

−
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= s
b

bmc

σβ
ηπσβσ  (3.24) 

The Laplace inversion of (3.23) is defined as 

( ) ( ) ( ) ( ) ( ){ }tyxFtyxFtyxFtyxF
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y
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m
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b

m
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=
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(3.25) 

where 

( ) ds
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i
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ia
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∫
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∫
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=

2222
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1
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σ
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( ) ( ) ds
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i
tyxF
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ia c
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∫
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1
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i
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ia c
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∫
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=
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π sinh

sinhcosh
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1
;,

2224  

In order to evaluate the above integrals, residue theorem is employed. The singularities in the integrals 

are poles. In particular the denominators of the integrands of ( )tyxF ;,1  and ( )tyxF ;,2  have simple poles at 

1Ω±=s , where 

 
 

,  
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( )22
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2
1

2
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2
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1
ub
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    (3.28) 

it is straight forward to show that 
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where   
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2
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1

2
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( )2
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2
1 2

2
1

2
1

2
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1 Ω+Ω
−

=Ω
σβ

  (3.30) 

Furthermore, to evaluate F3(x, y; t), its integrand is rewritten to take the form 

( )[ ]
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2
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2
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1
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a
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σφ    (3.31) 

Thus, the simple poles are 11 Ω  and  sΩs −== . In order to obtain poles emanating from  
cσsinh . It is set to zero, i.e.  0sinh =cσ ; which implies    πσ ivc ±= ,     (3.32) 

Thus, 4Ω±= is , where ( ) ( )
2

2222
1

2
22

1
2

1
22

4 b

bm
v

ηπσβσβπ +−+−=Ω   (3.33) 

Thus, the contribution towards F3(x, y; t) due to simple poles at 1Ω±=s  is given by 
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t
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t

a ee
A

x
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31

4
3

11
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;,   (3.34) 

In a similar manner, the contribution due to simple poles at 4Ω±= is  is given by 
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−
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−−= πνπσβ
   (3.35) 

Therefore    ( )tyxF ;,3 = ( )tyxF a ;,3 + ( )tyxF b ;,3    (3.36) 

The contributions toward ( )tyxF ;,4  are obtained in a similar manner as we have in ( )tyxF ;,3  
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  (3.37) 

Substituting (3.26), (3.27), (3.36) and (3.37) into (3.25) yields  
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 The combination of the results (3.22) and (3.38) yield the desired leading order solution of (2.1) which 
represents the uniformly valid solution of the entire domain of definition of the given plate. 
 
4.0 First order correction 

4.1 Solution for 
0

1V  

 The next corrections in outer solution are obtained by setting v = 1 in equation (2.15).  For the outer 

solution, the governing equation for 
0

1V  is given as 

( ) ( )
0);,();,(

);,();,(
11

2
2

1
22

1
2
2

2
1

2
2
1

2
1 =−−

∂
∂−

+
∂

∂
− tyxVtyxVs

y

tyxV

x

tyxV ησβσβ  (4.1) 

Using the method of finite Fourier sine transform (3.2) on equation (4.1) with respect to x yields  

( ) 0),(, 1
2

,1 =+ ynVynV yy α       (4.2) 

The homogeneous solution of (4.2) gives ( ) yDyCynV αα sincos, 331 +=   (4.3) 

Similarly, if equation (4.1) is subjected to finite Fourier sine transform (3.3) with respect to y, one obtains 

( ) ( ) 0),(),(),(),( 11
2

1
2
1

2
22

22

,1
2
1

2
1 =−−−+− xmVxmVsxmV

b

m
xmV xx ησβπσβ  (4.4)  

so that     ( ) 0),(, 1
2

,1 =+ xmVxmV xx σ     (4.5) 

The complimentary solution of (4.5) gives  ( ) xFxExmV σσ sincos, 441 +=  (4.6) 

The inversion of equation (4.3) together with equation (4.6) gives 

( ) [ ] xnyDyCynV παα sinsincos2, 331 += [ ] y
b

m
xFxE

b

πσσ sinsincos
2

44 ++  (4.7) 

where C3, D3, E4 and F4 are unknown constants to be determined by matching.  



Journal of the Nigerian Association of Mathematical Physics Volume 13 (November, 2008), 141 - 160

 

Transverse vibration under a moving load S. T Oni and O. K Ogunbamike J of NAMP 
 

4.2 Solution for i
1ψ  

The first order correction is obtained by setting v = 1 in the differential equation (2.18).  Doing this and 
neglecting terms with negative subscripts, we have 

( ) 0
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2
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1
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−−
∂
∂

XX

ii ψσβψ
    (4.8) 

with the boundary condition   01
1 =

∂
∂

=
X

i
i ψψ      (4.9) 

Following usual argument in equation (3.17) and (3.18), the first order correction of the inner problem 
can be written as: 
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   (4.10) 

 
 

where exponentially growing terms have been neglected as unmatchable. The functions )(1 yq
ϖ

, )(1 yq
ϖϖ

, )(1 xr
ϖ

 

and )(1 xr
ϖϖ

 will be determined by matching. By matching one term outer solution with two terms inner solution 

expansion written in outer variable, we obtained as follows: 

( )( ) y
b

m
e

u

se

usb

y
b

m
uP

yq u
su

s
oo πσ

σ
σ

σσσβ

π

sincot
sin

sin2
)(

2222
1

2
1

1











+−

+−
= −

−ϖ
 (4.11) 

( )( ) y
b

m
e

u

s
e

usb

y
b

m
uP

yq u
s

u
soo πσσσ

σ
σσσσ

σσβ

π

sincotcos
sin

cos
sin

sin2
)(

2222
1

2
1

1 




 −+−
+−

= −−ϖϖ
 (4.12 

( )( ) 




 −−+
+−

= −− x
oo

u
s

u
s

ex
x

ex
usb

y
b

m
uPm

xr σσ
σ
σσ

σσβ

ππ
sincot

sin

sin
cos

sin2
)(

2222
1

2
1

21

ϖ
  (4.13) 

( )
( )( ) 




 +−−
+−

−
= −−

x
x

exe
usb

y
b

m
uPm

xr u
s

u
s x

oo
m

σσ
σ
σσ

σσβ

ππ
sincot

sin

sin
cos

sin12
)(

2222
1

2
1

21

ϖϖ
 (4.14) 

We seek an asymptotic outer solution of the form
ooo VVV 10 ε+= which implies that (4.15) 
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By matching two terms outer solution with two terms inner solution (2 – 2 matching) of equation (4.10) as 
   ,0→ε one obtains 
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substituting equations (4.18), (4.19), (4.20) and  (4.21) into (4.7), after some substitution and arrangement yields 

( )( ) ( )

 +−

+−−
=

−

yeyx

usb

y
b

m
umP

yxV
x

u
soo

αασ
σσβσβ

ππ
coscoscos

sin2
),(

2222
1

2
2

2
1

2
1

2

1
2
1  

( )
b

yx
yx

yx
e

m
x

u
s

α
ασασσ

σ
ασ

sin

sincos1
cossincot

sin

cossin −++− − ( )
b

y
e

x
u
s

m

α
α

sin

sin
1

−

−−  

( ) ( )
b

yx

b

yx
e mm u

s

ασ
ασσ

ασ
ασ

sinsin

sinsincos
1

sinsin

sinsin
1 −−−+

− ybx αασ sincotcos+  



Journal of the Nigerian Association of Mathematical Physics Volume 13 (November, 2008), 141 - 160

 

Transverse vibration under a moving load S. T Oni and O. K Ogunbamike J of NAMP 
 

σ
αασαα

sin

sincotsin
sincot

ybx
eybe

u
s

x
u
s −−

+−  }ybx αασσ sincotsincot−  

( ) ( )
x

u

sx
e

x

us

y
b

m
y

b

m
uP

u
soo

σ
σ
σσ

σ
σσσ

σσβ

ππ

cos
sin

cos

sin

coscos
sinsin2

2222
1

2
1

2
3 −−





+−
+

−

 

σ
σσσσ

σ
σσσσ

sin

sin
sincot2

sin

sincot
2sin 2 x

e
u

s
x

x
ex u

s
u
s −− +−+−



+ x

u

s σσ sincot  (4.22)  

where 

( )( )2
11 2

1
2
2

2
1

2
1

2

sin2

σβσβ

ππ

−−
=

b

y
b

m
umP

P
oo

a , 

( ) 2
32

2
1

2
1

sinsin2

σβ

ππ

−
=

y
b

m
y

b

m
uP

P
oo

a   (4.23) 

The Laplace inversion of (4.22) is given by 
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In order to evaluate the integrals ( ) ( )tyxGtyxG ;,;, 171 −  the procedure outlined for F1(x,y;t) – 

F4(x,y;t) shall be followed.  On simplification and rearrangement, one obtains 
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 Substitution of integrals ( )tyxG ;,1  - ( )tyxG ;,17  into equation (4.24) gives the complete inversion 

of ( )tyxV ;,1 . 

      From equation (2.14), the perturbation scheme of a uniformly valid solution in the entire domain of definition 
of the plate problem is given by 

    ( ) ( ) ( )tyxVtyxVtyxV o ;,;,;, 1ε+=    (4.67) 

where Vo(x, y, t) is the leading order solution and V1(x, y, t) is the first order correction. These are given 
respectively as (3.38) and (4.24). Thus substituting (3.38) and (4.24) into equation (4.67) gives the required 
solution. 
 
5.0 Remark on theory 

Equations (3.38) and (4.24) are the leading order and first order (transformed) solutions of the problem. 
The leading order and the first order solutions are combined in equation (4.67) to form the composite solution 
which is uniformly valid in the entire domain of the highly prestressed plate. 

 
 
 
 

 
From equation (3.38), it is found that the anisotropic prestress, shear modulus and the foundation 

stiffness affect the response to )(εo  of the rectangular plate. In an undamped system such as this, it is pertinent 

to examine the phenomenon of resonance.   It is observed from the leading order and the first order correction 
results that fully clamped prestressed isotropic plate resting on a Pasternak-type foundation and transversed by a 

moving force reaches the state of resonance whenever  2
1

2
1 σβ =   (5.1) 

Other conditions when the system reaches a state of resonance are 

 2
1

2
2 σβ =  and u=− 2

1

)( 2
1

2
1 σβ    (5.2) 

( )
( ) ( ) ( ) 








+−+−−=









−−
+− ηπσβσβπν

σβ
ηπσβ

2

22
2
1

2
2

2
1

2
1

22
22

1
2

1
2

2222
1

2
22

2
1

b

m

ub

bm
u   (5.3) 

( )
( ) ( ) ( ) 








+−+−−=









−−
+− ηπσβσβπ

σβ
ηπσβ

2

22
2
1

2
2

2
1

2
1

22
22

1
2

1
2

2222
1

2
22

2
1

b

k
n

ub

bm
u   (5.4) 



Journal of the Nigerian Association of Mathematical Physics Volume 13 (November, 2008), 141 - 160

 

Transverse vibration under a moving load S. T Oni and O. K Ogunbamike J of NAMP 
 

From (5.1) to (5.4), it is observed that the resonance conditions of the plate are dependent on the anisotropic 
prestress and the elastic foundation.  It is also evident that to any order of calculation, resonance conditions are 
affected by both the shear modulus G and foundation stiffness K. 
 At this juncture, the critical velocities for the system of a highly prestressed isotropic rectangular late on 
an elastic foundation traversed by a moving load are sought. The three distinct critical velocities that exist in the 
dynamical system are given as  
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6.0 Numerical calculations 

In order to illustrate the analytical results, for example, the isotropic rectangular plate is taken to be of 
length LX = 1.0m and width 0.5m.  Other values used for the analysis in this section are b = 0.5 m, v = 1, 

7
22=π . The values of the prestress ratio in x - direction 2

1β  range between 0 and 100000. The critical 

velocities are plotted against prestress and foundation stiffness for various values of shear modulus G and 
subgrade K. Values of shear modulus G between 0 and 100000 were used while the values of foundation stiffness 
K were varied between 0N/m3 and 2000000 N/m3. 

0

100

200

300

400

500

600

700

0 20000 40000 60000 80000 100000 120000

Prestress

C
ri

tic
al

 v
el

oc
ity

 U
1

 
Figure 6.1: The graph of Critical Velocity U1 against Prestress for G=100000 and K = (2000000) 
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Figure 6.2:  The graph of critical velocity U2 against prestress     Figure 6.3:  The graph of critical velocity U2 against  
for K=2000000 and G=100000           prestress for G=100000 and various values of K   
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Figure 6.4: The graph of critical velocity U1 against   Figure6.5: The graph of critical velocity U1 against 
prestress for G =100000 and various values of K    prestress for various values of G and K. 
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Figure 6.6: The graph of critical velocity U2 against  Figure 6.7: The graph of critical velocity U1 against 
prestress for various values of G and K   foundation stiffness K for G = 100000 

 
 
 



Journal of the Nigerian Association of Mathematical Physics Volume 13 (November, 2008), 141 - 160

 

Transverse vibration under a moving load S. T Oni and O. K Ogunbamike J of NAMP 
 

 
 

Figure 6.1 displays the graph of critical velocity U1 against prestress.  From the graph, it is observed 
that the critical velocity U1 increases with prestress for fixed values of shear modulus G and foundation stiffness 
K.   

Thus, for high value of prestress, our design is more stable and reliable. In a similar manner, in figure 
3.2, the critical velocity U2 behaves exactly the same way as U1.  Results and analysis similar to those of figure 
6.1 are obtained. The graph of U1 against the restress for various values of foundation stiffness is shown in figure 
6.3.  

Evidently, the critical velocity increases with prestress for all values of foundation stiffness used. Thus 
resonance is reached earlier for lower values of prestress than for high values of prestress. Thus the design is 
more stable and the risk of resonance is remote for high values of prestress. Also, the graph of the critical 
velocity U2 against the foundation stiffness behaves the same way as U1; as evident in figure 6.4. 
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Figure 6.8: T he graph of critical velocity U2 against   Figure 6.9: The graph of critical velocity U3    

foundation stiffness K for G = 100000    against prestress for fixed value of G = 1000000 

 
 Figure 6.5 shows the plotted curves of U1 against prestress for various values of shear modulus and 
foundation stiffness. The graph shows that as prestress increases, the critical velocity increases as well. Thus, 
with these, the likelihood of collapsed structure is very remote. The critical velocity U2 in figure 6.6 behaves 
exactly the same way as U1. Results and analysis similar to those of figure 6.5 are obtained. 
 The graph of U1 against foundation is shown in figure 6.7. Evidently, the critical velocity increases as 
the foundation stiffness increases. Thus resonance is reached earlier for lower values of foundation stiffness. The 
critical velocity U2 in figure 6.8 behaves exactly the same way as U1. Results and analysis similar to those of 
figure 6.7 are obtained. Figure 6.9 displays the critical velocity U3 against prestress. From the graph, the critical 
velocity increases with prestress for fixed value of shear modulus. Thus resonance is reached earlier for lower 
values of prestress. 
 
7.0 Conclusion 
 This study concerns the problem of the dynamic response of a highly prestressed isotropic rectangular 
plate under a travelling load. The problem is governed by a fourth order non–homogenous differential equation. 
For the purpose of solution, the equation is presented in a non–dimensionalized form.  It is observed that a small 
parameter multiplies the highest derivatives in the governing differential equation.  Thus, this type of dynamical 
problem is usually amenable to singular perturbation technique. In particular the Method of Matched Asymptotic 
Expansion (MMAE) is used. This technique constructs outer (core) and inner (boundary layer) solutions that are 
valid in partly disjoint domains.  These solutions are then matched in an intermediate domain where both 
asymptotic expansions are valid. Consequently, an approximate uniformly valid solution in the entire domain of 
definition of the rectangular plate is obtained with the rigorous use of Laplace transformation and the Cauchy 
residue theorem. This solution is analysed and five distinct resonance conditions are obtained in the dynamical 
system. 

Numerical analysis is carried out and the study exhibits the following results: 
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(i) The leading order solutions and the first order correction are affected by the bi- parametric subgrade 
moduli anisotropic prestress.  

(ii) As the foundation stiffness increases, the critical velocities of the isotropic rectangular plate transversed 
by moving load increases. 

(iii) The critical velocities of the dynamical system increases with increase in prestress for all values of 
shear modulus and foundation stiffness used. 

(iv) There may be more than one resonance condition in a dynamical system such as this which involves 
plate flexure under moving loads. 
Finally, this work has showcased the use of a valuable method for the solution of this class of 
dynamical problems. 
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