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Abstract

In this paper, the influence of axial force on the&ynamic
response to moving concentrated masses of rectamgulplate
incorporating rotatory inertia correction factor isinvestigated. The
solution technique is based on the versatile twadnsional generalized
integral transform with the normal modes of the g as the kernel of
transformation and a modification of the Struble’asymptotic technique.
The closed form solutions are analyzed and numeliaaalyses in plotted
curves are presented. The results show that asdkial force (prestress),
N, and N, foundation moduli K and rotatory Rincrease, the response
amplitudes of the dynamic system decrease for hbitistrative examples.
However, higher values of M N,, K and R, are required for a more
noticeable effect in the case of simple-clamped bdary conditions than
those of simply supported boundary conditions. Fnetmore, for the same
natural frequency, the critical speed for the mognmass problem is
smaller than that of the moving force problem. Hes resonance is
reached earlier in moving mass problem.

1.0 Introduction

The problem of the response of an elastic systeranfbor plate) to a moving load (moving force or
moving mass) has been the objective of numerousstigations in Engineering, Mathematical Physicd an
Applied Mathematics for many years [6]. Stanisiakf{3] made landmark feet when they studied the-tw
dimensional problems of flexural vibration of pktander the actions of loads, paying more attention
moving mass. Only the inertia term that measureseffiect of local acceleration in the directionthé
deflection was considered. The method of solutias Wased on the Fourier sine transform technigjtesosel
only for simply-supported boundary conditions. Témutions so obtained were shown to converge very
rapidly. The work of Stanisic et al (1968) was takg much later by Gbadeyan and Oni [2] who stuthed
dynamic analyses of an elastic plate continuousyperted by an elastic Pasternak foundation tradeloy an
arbitrary number of concentrated masses. All thepmments of the inertia terms were considered had t
rectangular plate was assumed to be simply suphattie deflection of the plate was calculated fresal
values of the foundation moduli and shown graphicas a function of time. As in the previous papbe
method of solution is suitable only for simply-sopied boundary conditions. More recently, Oni [4]
developed a versatile solution technique for sgimo-dimensional moving load problems for all eats of
classical boundary conditions. The technique ine@slthe use of the modified generalized two-dimeraio
integral transform to reduce the fourth order défeial equation governing the motion of the platesecond
order ordinary differential equation which is thieeated using the modified asymptotic method ofil8#&,
[7,8]. The elegant method in Oni[4] was extended(ni[9] to investigate the dynamic behaviour under
several masses of rectangular plates resting oasteifhak elastic foundation and having an arbiteargt
supports. The solution method was based on the fieddiwo-dimensional generalized transform and a
modification of Sturble’s asymptotic method. It wiasnd that the critical speed for the system cgiimgg of a
rectangular plate resting on Pasternak’s subgramet@versed by a moving mass is reached prior that
traversed by a moving force. Also, a two-dimensidheaory, on the correction for rotatory inertiay, fexural
motions of plate under moving load was studied hyi {1]. The generalized two-dimensional integral
transform with the normal modes of the plate askitimel of transformation is used for the solutadrthe
problem. The results show that the moving forceutsmh is not always an upper bound for the accurate
solution for the plate problem. However, no attemvps made to extend the theory developed in thidysio
solve the problem of flexural motions of prestressectangular plate under moving loads.

Thus, this paper is concerned with moving concéstranass problem of a rectangular plate
incorporating the effects of rotatory inertia andgiress under a Winkler foundation. The main dhjeds to
classify the effects of prestress and foundatidfness on the response of the plate. For simplicitanalysis
two opposite sides of the plate are simply suppoated other (two opposite edges) supported at hfthct,
plate structures of bridges are known usually tehso opposite edges simply supported and the eilhges
are free [6]. The generalized two-dimentional inégransform with the normal modes of plate askémel
of transformation is used for the solution of tlelpem. Analyses of the results are carried forplaée model
having simple supports at all edges and that hasimgle-clamped supports at two opposite edges.
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2.0 Thebasic equation

A rectangular plate of thickness h and lateral disien L, and L, (Respectively in thex andy
direction in the rectangular axis) under the actioha concentrated lod(x, y, ) of massM traveling from
pointy = y; on the plate along a straight line parallel toxhaxis with constant velocity c is considered irsthi
thesis. Neglecting damping and the effects of skeéormation, according to the two-dimensional tleaf
flexural motions of isotropic elastic rectanguléatp, the transverse displacem®é, y, ), of the mid-surface
of such rectangular plate exhibiting anisotropiesstress and under a Winkler foundation is foungdbying

2 Y @Yo &Y (WYY L 0W(X, Y1)
[D(aay] ‘ﬂatz][ax“aszW(x'y"’ A G

°W (X, y,t) 1(9° 9° , 072 2.1
TEE LT LKW (X, y,t)= P, (X, y,t) 1= =| =+ 2c——+c2— || (2.1)
K¢ (o y.t)=P (xy.1) gl at? axat ax?
E is the Young's modulus of the plateis the Poisson'’s ratit,is time,u is the mass per unit area of the plate
andR, is the measure of rotating inertia effect, where
D=_EN" ., P(xy, 1) =Mgo(x—c) (y - v (2.2)
12(1-v)

M is the mass of moving load a& is the Dirac delta function.

Furthermore, two opposite sides of the plate arlyi supported and the other two opposite edges
are taken to be arbitrary.

Thus, at edgep=0 andy = L, the following conditions pertain

62 2
W(x,0,t) = 0 =W(X, L, 1), a—yZW(X, 0,t)=0= a—yZW(X, Ly,t) (2.3
For simplicity, the associated initial conditiong a
ow
W(X! Y, Dt=0 =0 :F (X! Y, Dt=0 =0 (24)

3.0 Analytical solution procedure
In order to solve equation (2.1) subject to thd eonditions (2.3), equation (2.2) is substitutgd

equation (2.1) one obtains

4

D iW(x,y,t)+2674W(x,y,t)+ 9 wW(x,y,t) —N"a—zw(x,y,t)—
M ox* ox’oy? ay* * ox2

02 62 02 Mg (31)
NS = W(x, y,t)+ KW(x y,t) - R, —5 OW(x, y,t)+ —5W(x, y,t)+ —>3(x—ct)3(y - y;)*
Y oy ot ot U
9° 9° a° M
[atz+2c oo +C2ﬁ (x, y,t):Tgé(x—ct)é(y—yl)

D N N K
—, N: :_X’ NS :_y’ KO = __
U U H H
The analysis of the dynamic response to the dynaesiponse to moving concentrated masses of redeangu
plates incorporating rotatory inertia correctior gmestress factors is carried out in this seatimploying the
solution technique [5]. The transformations techrigvhich is based on two-dimensional Fourier Siegral
transformation is termed generalized two-dimendioniagral transformation defined by

where D, =

(3.2)

LLy k
. _ . K7y
Ui kit)= [ Wiy t)sin-=w, (x)dxdy (3.3)
00 y
with the inverse
Wy t)=3 3 2 Ay (j K t)sin P w (x) (3.4)
=1 k=1 Ly W; Ly
Lx
where W, = J.,UWJ-Z(X)dX (3.5)
0
andW(x) is the 3 normal mode in the direction of x-axis vibratiditioe plate defined as.
a X a. X - X X
W, (x) = Sin—1=+ A,Cos = + B, Sinh i +CjCosh'B—’ (3.6)
L)( L)( L)( LX

where
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FEnLua )

m y m

b
e _(04)"
al- = Lx |_2 _D— (3.7)
y

are mode frequencies aAd B; andC; are constants arid, = D/u. The parameteﬂjyk is the natural circular
j'rt ikt K
L« L L

The function (3.6) satisfies all classical boundaopditions for this class of plate problem in shdirection.
Applying the generalized integral transformatior8§3o (3.1), equation (3.1) can be written as.

D,Zo(0,L, L, )+ D H (i kL L, )+ U, (j.k,t) = N°H,(j,k.L, L, )-

(J K, Ly, y) RH, ( K, Ly y) RoH( ’LX’Ly) (3.9)
— :m i ﬂ
’u[Gl(p,k,t)+Gz(p,k,t)+Gs(p,k,t)] P Sin 3 W.(ct)

y

frequency defined by Qf «=D [ (3.8)

where
L
4 GZ\N iii aW iii
2,00, = [ 00w (0w () 2w (1)
0
k2 OW K22, . kry
Coox W, (x) + B W, (xw SlnL—y (3.10)

L L
. 7 v . kny k2m? i . kny
H, (i k,L,,L, )= [ [ww " (x)Sin == dxdy - WW " (x)Sin == dxdy
3 2 { jo ' L L jo Io L, (3.11)

K47t L.Ly _ kﬂy
+ % _([_[WWJ (x)sin N dxdy
Ly
H,(j.k, L, L) = ”aZ\NO(zéy sin kl_”ywj (x)dxdy (3.12)
00 y
LyLly 52
Mk LL,)= [ ]2 Wa(x;y't)sm kLnij(x)dxdy (3.13)
00 y y
L L
W (x,y,t).. kry
H (j,k,Lx,L ): * 22/5in =W (x)dxdy (3.14)
‘ y J;J; at*ox* L, '
L L
W (X, y,t) . k7
H:j,k,L,,L, )= ———="2Sin—=W, (x)dxd (3.15)
(ikL.L,) !}[ otvay? o N ,(x)dxdy
Leby
Gu(p.kot)= | [ 5x-ct)oly - yl)"zwa(txg Y t)in 8, ey (3.16)
00 y
XLy
G.(p. k)= 2¢] [8(x - ct)a(y yl)aZWa(xjavty Dsin 7w, (e (3.17)
0 y
LxL‘/
G,(p.k,t)=c de(x—ct)é'(y— yl)WSinkL—nyWj (x)dxdy (3.18)
00 y
it is remarked at this juncture that when
W(x, y,t) = Ska”)’ (X)SinQ, t (3.19)

y
is the natural circular frequency of a rectangplate is substituted into the equation of free afilan of plate
namely

D[a“v\/(x;y,t) 6“W(2x y.t), G“N(X;y,t)}ﬂaz\N(Xzyy,t):O (3.20)
0x ax*ay? ay ot
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2.2 4.2 4. 4
one obtainsp {w;v (x)-2 kL” Wi (x)+ kL” Wi (x)+ X7 W, (x)} =2 W, (x) (3.21)

2 J 2 J 4
y y y

Equation (3.22) implies

Hyww ¥ (x)sin kl_ﬂdxdy -2 kz’fz [ jWW ' (x)sin "y dxdy
5% y y 00
4 LxLY
X TA [ Jww; (x )Smk_”ydxdy =Q% U(j,kt)@.22) (3.22)
y 00 y
. U A .
Consequently, Hl(J K, LXLy) = BQ KU (j.k,t) (3.23)
In order to evaluatel,(j,k,LyL,), it is noted that for any arbitrary subscriptsp , k = g, equation (3.4) can be
N 2 M q7y
written as t)Sin—=W,_(x (3.24)
22w U(p.at) N W, (x)

It follows that

_ 29w M qny d?
W, (x,y,t) == oy t)Si (3.25)
(%, y.t) LypZzqu:le (p.a,t)sin==* T »(x)
therefore, Hz(j UK, LXLy) = Z”:V%W(p, k,t)/\z(p, j) (3.26)
p=1¥%p
L2222 »
similarly H3(j,k,LXLy): k2n2 S HEw(p,k,t)A (p, ) (3.27)
Ly P=1Wp

where (p, ) I ( )\N( dx, /\ p, JW X)\N (3.28)

Using similar arrangements, notlng that equatioh4Bcan be rewritten as

9% T o W(x y,t) . K
(j kL, y) FI[I[ (')(xzy )SII". Liyyvvj(x)dxdy (3.29)
It is straight forward to show that H 2(] K, L, Ly) = iv%W(p, k,t)/\z(p, J) (3.30)
L2 w
In a similar manner Hs(j,k,LxLy)= kzﬂzinn(p,k,t)/\ (p,j) (3.31)
Ly P=1Wp

To evaluate integral (3.9), use is made of the @ntypof the Dirac Delta function as a function t@eess it as
a Fourier Cosine Series, namely

nrct N7x

o(x—ct)= 1, iz Cos—Cos (3.32)
LX LX LX
Similarly, y-y,)= 1, _ZCos 78 cosny (3.33)
L, L= L, L,
It follows from (3.4), that W, (x, y,t) = —z Z Hy «(p.q, t)Sln 9%\ (X) (3.34)
Ly p=1 g= 1Wp y
Thus, using (3.32), (3.33) and (3. 34) into thegm (3.12) to (3.18) which when simplified andmranged
becomes G,(p.k,t)= ZZZ U, (p.a, t)COSn—msm k78,
>< y p=1 g=1 ”=1 Lx I‘y
. . 2 nsct .
Sln%/\(n, i p)+ ZZ Un(p,q,t)cosL—/\(n, j.p)
y y p=1n= l X
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2 Yy H CIﬂS’o EEERe ] i
e pZ_quzlwp «(p.at)sin=2 L Ai,p)+ L 2w, U (p.a.t (i p) (3:35)
where An, j,p)= Lxco STEW, (X)W, (x)dlx (3.36)
Gz(p,k,t) iii (p,q,t)cosnmtsin K78) <in 978
y p=10= ln-l Lx Ly I—y

Nn,j, p)+—ZZ Hu (p,k,t)cosnL—m/\l(n,j,p)

xyplnl X

knyl qunyl A(j,p)+ U,(p.k,tW(j, p) 3:37)

U, (p.q, t)sm
L)(Ly ot 1 W, L, L, L, =W
where

Ali.p)= f:vvj(x)j W, (<l A n, . p) jcosL—vv() W,(xx (239

nlim sin k7, sin 7%,

X y y

A(n,j, p)+—2 ZZVC’ U(p.kit) (n.j.p)

Lx Ly p=1n=1

zz U(p.q, t)smkmlsmq]yl N(], ) z Hulpkt2(ip) (339
TLL&&w L, L

y y y p‘l
X 2
o W, (x)dx, A2(n, j, p) = LcosL—V\/j (x);j—xzwp(x)dx (3.40)

It is remarked at this juncture that for all clas$iboundary conditions.

zloL,L,)=0 (3.41)

1 Exo by

and G,(p, k t)z%iii

Y7
—~—Ul(p,q,t)cos
p=19g=1n 1Wp (p a )

where/\2 J p IW

4.0 Solution of the transfor med equation
In order to solve equation (3.10) after same sificplion and rearrangements yields

U.(j.kot)+(@2, +K)u (j k1) + D,z (0L, L, )- 2V%u (p.k,t[NAZ(p, })

K ] e % |
_Ny 2 /\(p!J) —R]ZﬁUn(p,k,t) /\Z(pvl)_ 2 /\(p,J)
Ly W, Ly

+TLL{G/(p.kt)+ 2cGy(p.k,t) + %Gy (p.k.t) } =wsin—kliylvvj(ct) @)

y

M
M= (4.2)
0 ML,

In what follows, two special cases of equation 4rk discussed. They are termed “moving force”
and “moving mass” problems.
(@ Casel

If inertia effect of moving load is neglected, &etting [,in equation (4.1) to zero, obviously, an
exact analytical solution of this equation is nosgble. Consequently, an approximate analytichltisn
technique which is a modification of the asymptatiethod of Struble discussed in [4] and [9] shallused.
To this end, we rearrange (4.1) to take the form

{urvf\;( L”2/\(J ) -N(j, J)HU (i kt){ ch[ N - ykL2 AL ’)ﬂ

P y P
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. i k27 . .
U (J,k,t)+FZi — NP, )= N(p, j) Uu(p.k,t) =
SwW |l L
p#1,
1 On2y o iy no KETTP N n e Ky, 43
Set R :%, [=Dh, p=j (4.4

By means of this technique, we seek the modifiedency corresponding to the frequency of the
free system due to the presence of the effecttafory inertia. An equivalent free system operatefined by
the modified frequency then replaces equation (Z.8)}this end, we set the right hand side of (tb3)ero and

consider a parametefiD <1 for any arbitrary ratid  defined as

r
A=— 4.5
1+T (*5)
So that r =/]D+O( D)2 (4.6)
Substituting equation (4.6) into homogenous pdrgqoiation (4.3) yields.
Dﬁkznz--_z-- ; 2 __H oz--_okznz--
{1” przy A(j: ) /\(J,J)HUH(J,k,t){am w,oh [Nx/\(J,J) Ny E AGL ) | [x
. o 2.2
U (Lt 403 “ 1y, (ot K7 A(p, 1) - A2(p, 1)
p=1 Wy Ly
pP#]j
1 . k27r? .
- =V (p,k,t){Nf/\z(p,J)- Ny /\(D,J)H =0 (4.7
Dh L

When A” is set to zero in equation (4.7), we obtain aasitun corresponding to the case in which
effect of the cross sectional dimensions of théepkaregarded as negligible. In such a case,dh#ien is of
the form

U4(j kt)=CyCos(a,t-a) (4.8)

where  Cg,aandg are constants.

st?
Furthermore, asl”’ < 1, Stubble’s techniques require that the solutioreauiation (4.8) can be of
the form U(j.k.t) = A(j kCoda,t - @ (j k1) + AU (. k1) + o7 (a9

whereA( ], K,t) and ¢(j,K,t) are slowly varying functions of time or equivalgnt
Substituting equation (4.9) and its derivative® iaquation (4.7) and taking into account equation

(4.6) , where terms higher thanA() are neglected. Now, since only the terms invavin
Sir(ajkt —¢(j,k,t)) and Cos(ajkt —¢(j,k,t))contribute to the variational equations descritting

behavior of A (j, k, t) andz( ], K,t), one obtains

~2a,, A(j. k. t)Sin(a, t - @),k 1)+ 2A(), k@], k 1) a,Cos (@,t-a(jk.b)-

A ) (K7 p o iv—reco i = nereo iv-ne K A i —dikt)= 4.10
FDEpd.,!{afk( 2, Np.j) /\(m)j Dr{Nx/\(m) Ny Z, Np.J)|{A Colrt—¢(j kt))=0 (4.10)
The so-called variation equations of this equat{drl0) are obtained by setting the coefficients Cos
[ajkt —¢(j,k,t)J and Sinl_a’jkt —¢(j,k,t)J to zero. Thus, one obtains

20, A°(j,k,t)=0 (4.12)
and  2A(j.k.t) &(j.kay —A(j,k,t)rmwﬁ[akao(t)—%Ql(t)}:o 4.12)

p
where
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Q) = "2/\(1 D=L 0) Q) = NIA*(, j) - NykLG2

Solving equation (4.11), one obtains A(j,k,t) =C, (4.14)

A(jL ) (4.13)

where C, is a constant . The first order differential etipra (4.10) describing the behavior ¢f( j,K,t)
implies.

de(j.k,t) _ Au _
p '2\/\4,{ «Qo(t) ﬂ, ——Qt )} (4.15)

hence, dj.k.t)= { PON( A Dh

Therefore when cross sectional dimension of tladepis considered, the first approximate to the

(t)}t + @, (4.16)

homogenous system is U (j : k,t) = CSfCOS(ﬂjkt - (l)sf) (4.17)
_ A
Where By =a; 1_2_Wp Q,(t) - Dh 12k Q(t) (4.18)

represents the modified frequency due to the efiéebtatory inertia of the plate. It is observéuhtt when
A= 0, we recover the frequency of the moving force prablehen rotatory inertia or effect is neglected. In
order to solve the non homogeneous equation (h8)differential operator which acts ol (j,k,t) and

U (p,K,t)is replaced by the equivalent free system operbined by the modified frequenq@’jk ie.
Therefore, equation (4.3) becomes

: . -k . .
U (i, k1) + BRU (j.k,t)= PLSm%[Smajft + ACosat + B;Sinhg; t +CjCosfﬁjft] (4.19)
y

a.c .C
a; =——, B; :’8—l (4.20)
LX LX
solving equation (4 19) in conjunction with therséormed initial conditions and inverting yields
(y ) ; it o
W (x,y,t — LML | Sing .t - —-Sing, t + A Cosat — A Cosp, t
boyt)= ZZ {zw,k ay) o o
PV, . B. S C Ch i
MA [ “ﬂ"k Sing,t-BSinB 1+ 22 Cosfit- TPk cogt || sinkPa Sk () (4.21)
26,5 +5)| A A A L, L

Equation (4.21) above represents the transvergéadement response of a rectangular plate havioitrany
edge supports along edges 0 asx =L, and simply supported along edges 0 andy = L, and traversed by a
moving force.
(b) Casell

In this case inertia term is retained dnét 0. This is termed moving mass problem. This reguire
the solution to the entire equation (4.1). Asase 1, and exact analytical solution to equatioh) [does not
exist and so we resort to the approximate analytivethod discussed in case | to obtain the modified
frequency corresponding to the frequency of the figstem due to the presence of moving mass namely.

a)jk = :Bjk|:1+ (Sa(J !22: SC(J ' k))} (4.22)

Thus equation (4.1) takes form
Uy(i.kt)+af (j,kt) = AgLxLyW(y,)Sirt + ACos t + B SinBt +CCostBt|  4.23)
Equation (4.23) is analogous to equation (4.21)thedsolution after inversion becomes
Sy Aguv(yl) o a,
X, y,t Sing ;t —— Sinw, t + A Cosw, t — ACosx  t |+
( ) ;Z:‘IKZ:;L W{ 25’2k if wjk ik i ik Al if

y

/] ngLyBJf B
20y, (IBJf + a)JZk)
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Sin—=2 K7y, Slnk W, () (4.24)
Ly Ly

Equation (4.24) is the transverse displacementorespunder moving concentrated masses of our gsestt
rectangular plate having simply supports along sgige0 andy = L, and arbitrary supports along edges 0
andx = L,.
5.0 Applications

In this section, results of the analysis in thigkvare applied to our plate model by considerinmso
examples of classical boundary conditions alongweopposite edges having arbitrary conditions

By way of illustrating the foregoing analysis, wensider a simple example of rectangular plate
incorporating rotatory inertia correction factoviray simple supports at all edges. Thus, along €dge0 and
x =L, we have

0° 0°
W(o,y,t) =W(L,, y,t)=0,~,W(x,0,t) = W(x L,t)=0 (5.1)
ox® ay*
9° 62
Hence for the normal modes W, (0) =W, (L,) =0, x —W,(0) = oy k(Ly)= 0 (5.2)
Inview of (5.1) and (3.6), A, =0,3, =0 C,; =0anda;=jn W, :'U7LX (5.3)
In view of equations (5.3) equation (4.1) becomes
U.(i,kt)+afu (j.kt)=PR DSkaﬂy SanL— (5.4)
y X

where

2 y 2
a? = u - (5.5
2.2 2.2
jemt ke
1+ RO( ]
T
po = 2r, (5.6)
L 222 2.2
1+ RO[ J IZT + K 727 ]
L: Ly
where I'O =0 for moving force problem of our model. Solving atjon (5.4) and inverting yields
4PV . a, . . . jIR
W(x y,t)= (yl)zz \| Simy t—L Sinr t inY sinl ¥ 5.7)
e ) T
j=1 k=1 ik i ik

Using arguments S|m|Iar to what we had in lastieacthe modified frequency for the moving massbpem

2
is obtained as Vi = a3 1-T,Sirf k78, [l+ 2 77221 j (5.8)
L, a; L,

Thus, the moving mass problem takes the form

d2
gY (B0 (k) =0LL gSin==

which when solved and inverted gives

UL.L,g

W(X,y,t) = ZZ Sina t -—- Iy Siny,t Sinkzy Sinjx (5.10)
J/J j=l1k=1 y]k I-y Lx

Next, as second example, we consider a rectangléde clamped at edgés=0, X = |X with simple

ki'5/1 Sinjrct 5.9)
L L

y X

supports at edgeg =0,y = |y, the boundary conditions at such opposite edges ar
wW(0,y,t) =W(,,y,t)=0,W(x,0t)= OW(x,,t)=0 (5.11)
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oW(o,y.t) _ aW(,,y.t) _ 0 9W(x,0,t) _ OW(x,.t) -0

= 5.12
ox ox ay? ay’ 512
while for have the normal modes we have
W, (O) =W, (|X) =0 W, (O) :VV]- (|x) -0 aa\/\/k(o) : aZ\Nk(L() -0 (5.13)
ox ox ay* ay?
Applications of equation (5.13) to equation (3.Blgs
a, . .
—sinhg, —sina, a.
_A B,=——L, A =-C, (5.14)
' cosa, - coshp, B
The frequency equation of the clamped edges
2-2cosa, coshp; +(C¥"—’BJ}sinaj sinhg, =0 (5.19)
j j

The corresponding general solution of the assatieteving force and moving mass problems are obddlirye
substituting results in (5.14) into (4.21) and @.2espectively. Thus, solution for any chosen itz

boundary conditions along x=0 and xAlequires only to obtain the corresponding constang; andC; the

proof of the convergence of solutions in both ext@spre similar to those in [1].

6.0 Discussion of the analytical solution

In an undamped system such as this, it is necessagxamine the phenomenon of resonance.
Equation (5.7) clearly shows that the simply supgmbielastic rectangular plate traversed by a mofonge
I o _Jm
will be in state of resonance whenever a = L_

X
While equation (5.10) shows that the plate underittion of a moving mass encounters a resonafesetseht

(6.1)

; 2.2:2
Vi =17 or Vi :ajDk 1-T Sirf k75, 1+ 2 D]'lzzj
L, y ayl,
It is obvious from equation (6.1) and (6.2) that tlee same natural frequency, the critical speed fo
the system of simply supported elastic rectangpllate incorporating rotatory inertia correctionttac and
traversed by a moving force is greater than tleatetrsed by a moving mass. Thus, resonance is r:aeinker
in the moving mass than in the moving force system.
Similarly, equation (4.21) and (4.24) show that tegonance conditions associated with the simple-
clamped elastic rectangular plate traversed by ngpforce and moving mass are respectively.

(6.2)

T j7C

aci =4 ang o1k = 1= (6.3)
X LX

Consequently, o o=a |1 Sa(j,k) ‘:\FSC(J:k) (6.4)
20,5

Thus, from equation (6.3) and (6.4) it is eviddmatithe same results and analysis similar to tbbse
the simply supported plate are also obtained fopk-clamped plate.

7.0 Numerical result and discussion of results

In order to illustrate the analytical results, teetangular plate length, = 0.914m, and height, =
0.457m the mass travels at the constant velocByn/s. Furthermore;, y andA are chosen to be 2.109 x
10kg/n?, 0.4m and 0.2 respectively. The transverse deflecticheflate are calculated and plotted against
time for both illustrative examples for values otatory inertiaR,, axial force alongw-axis N, axial force
alongy-axisN,, foundation stiffnesk.

Figure 7.1 displays the effect of Rotatory inef@ on the transverse deflection of the simply
SL(J)Eported plate for moving mass for fixed valuekpN, andN, (K=2 x 16N/m® and axial forced\, =2 x
10N andN, = 2.5 x 16 N). The graphs show that the response amplitugeedses as Jincreases. The
values ofR, used are 10, 20 and 30.

Figure 7.2 depicts the transverse displacemenpbnsspof the simply supported plate for moving

mass for fixed values dfl,, N, andR, for various values of foundation stiffneks It is evident that a&
increases, the response amplitude decreases.
Figure 7.3 shows the deflection profile of the diyrgupported plate under moving mass for fixed gabtik,
Ro andN, (K = 2 x 16 N/m®, R,= 10 andN, =2.5 x 16 N) for various values of axial force alorguxis N,.
The analyses show that ldgincreases, response amplitudes decreases.

Figure 7.4 display the deflection profile of thafel under moving mass for fixed values of K &hd
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(K=2 x 1¢ N/m® andN, = 2 x 16 N) for various values of axial force along y-akls The analyses show that
asN, increases, response amplitude decreases.

0.3 1€
—Nx=|0
8
0.2 1 =-Nx =[2M
6
01 = Nx =20M
= >4
5 s
X
20 2
sy P
-0.1 q 02z 04 U6 Q€ 1 TZ 14 16
2| Time (seg
-0.2
-4
-0.2 -6
Figure7.1: Deflection profile of simply-sppoter Figure 7.3: Deflection profile of simply-supported
rectangular plate transversed by moving mass for rectangular plate traversbgt moving mass for fixe
fixed Nx=2M, Ny = 2.5M,K = 2M for various Ro = 10,Nx = 2.5V, K = 2M for various values dfix
values ofRo.
0.6
0.4
0.2
=
0
2
16 0 1.6
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0.2
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Figure 7.4: Deflection Profile of Simply-Suppoted

Rectangular Plate Trasversed by Moving Mass fadix
Figure 7.2: Deflection profile of simply-suppoted R0=10,Nx=2M,K=2M for various values of Ny
rectangular plate transversed by moving mass for
fixed Nx =2M, Ny = 2.5M, for various value of K
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Figure 7.5: Deflection profile of simply-supported
rectangular plate trasversed by moving Mass fadix
Ro=10,K = 2M when values olx andNy are increase
simultaneously
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“Figure 7.6: Comparison of the deflection of moving force
and moving mass cases for simple supported rede&ngu

plate for fixedRo = 10,K = 2M, Nx = 2M andNy = 2.5
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Figure 7.7: Deflection profile of simply-clamped
rectangular plate trasversed by moving mass fedfix
Nx = 2M, Ny = 2.5M,K = 2M for various values dRo
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Figure 7.8: Deflection profile of simple-clamped
rectangular plate traversed impving mass for fixed
Ro = 10,Nx=2M, Ny = 2.5 for various values &f.
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Figure 7.9: Deflection profile of simply-clamped
rectangular plate traversed by Moving Mass fordixe
Ro = 10,Ny= 2.5,K = 2M for various values dfix
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Figure 7.10: Deflection profile of simply-clamped
rectangular plate traversbgmoving mass for fixed
Ro = 10,Nx = 2M, K = 2M for various values dfly
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Figure 7.11: Deflection profile of simple-clamped
rectangular plate traversed by moving mass fordfixe
Ro=10 andK=2M when values olx andNy are
increase simultaneously.

Figure 7.12: Comparison of the deflection of moving
force and moving mass cases for simple-clampetd p
for fixed Ro =3 O,Ny = 2.9V andNx= 2M
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Figure 7.5 displays the deflection profile of thatp under movmg load whel, N, and N, are increase
simultaneously while other parameté&tsaindR, (K=2 x1¢ N/m® andR,=10) are fixed for moving mass of
the rectangular plate. the response amplitude dseseadN, andN, are increased simultaneously. Also
Figure 7.6 compares the displacement curves ofrttxéing force and moving mass for the plate for dixe
R=20, K=2 x 16 N/, N, = 2 x 16 N, andN, =2.5 x 16 N. Obviously, the response amplitude of moving
mass is greater than that of moving force problEnis result shows the moving force solution is aletays

an upper bound moving mass solution.

Figure 7.7 display the effect of Rotatory inerRa on the transverse deflection of the simple-
clamped plate under the action of moving massiferdfvalues of KN, andN, (K = 2 x 16 N/m® N, = 2 x
10° N andN, =2.5 %16 N). The graph shows that the response amplitudeedses as th®, increases. The
values ofR, which are used are 10, 20 and 30.

Figure 7.8 depicts the transverse displacemenbrsgpof the simple-clamped rectangular plate
under the action of moving mass for fixed value®NeiN, andR; (N, =2 x 16 N, N, =25 x 16N andR, =
10) for various values of foundation stiffnéésThe graph shows that as K increases, the resgongktude
decreases. Figure 7.9 shows deflection profileecfangular plate under the action of and movmgsrrfar
various values of axial force alomgaxis, N, and for fixed values of K\, andR, (K=2 x10 N/m?, N, =25
x 10N andR, = 10).It shows that higher values of axial forcer‘@jx—axs N, reduce the deflectlon profiles
of the plate in both cases

Figure 7.10 depicts the transverse deflection iofipke-clamped plate under moving mass
respectively for various values Nf for fixed valuesk, Ry andN,(K = 2 x 160 N/m*andN, = 2 x 16 N). As
N, increases, the maximum amplitude of the plateedesers.

Figure 7.11 displays the response amplltude wheial gorces N, and N, are increased
simultaneously for fixed values &f andR, (K = 2 x 10 N/m *andR,= 10) for simple- clamped rectangular
plate under the action of moving mass. Evidentlg,response amplitudes decrease when valudsasfdN,
are increases simultaneously. Finally, figure 7depicts the comparison of transverse displacemént o
moving force and moving mass cases for simple-ci&hmectangular plate traversed by a moving load for
fixed values oR,, N,, Ny andK(Ry= 10,N, =2.5 x 16N andN, = 2 x 1§ N and K=2 x 10 N/m). Clearly,
the response amplitude of moving mass is higher that of the moving force. This important restiow
that relying on moving force solution as an appmation to moving mass solution is seriously misiegd

8.0 Conclusion.

This paper presents transverse displacement astrpssed rectangular plate incorporating rotatory
inertia correction factor under concentrated mas$he solution technique is suitable for all vatsaof
classical boundary conditions of practical inter@s$te effects of axial force, foundation moduli aothtory
inertia on transverse vibration of the plate aneestigated. It is observed for both simply suppbraad
simple-clamped rectangular plate that the critipsded for the system traversed by a moving massadier
than that traversed by a moving force for both $mgupported and simple-clamped end conditions. The
results show that as the axial force, foundationluiiand rotatory inertia increase, the responspgliasnes
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of the dynamical system decrease for both illusteatxamples. Finally, it is observed from all b&tabove results that
the moving force solution is not an upper boundtfier accurate solution. Consequently, it will besleading to rely on
the moving force solution as an approximation ®roving mass problem.
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