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Abstract 
 

The dynamic response of a finite elastic thin beam to fast 
moving heavy concentrated forces is investigated.  The beam is assumed 
to be under tensile stress and have simple supports at both ends.  
Furthermore, the beam is assumed to rest on elastic foundation of the 
exponential rigidity and the moving concentrated forces is assumed to 
move with constant velocity type of motion.  The fourth order partial 
differential equation governing the flexural motions of the elastic systems 
is solved using mode superimposition and Integral transform method and 
the closed-form solutions to this beam problem is obtained.  Effects of 
some beam parameters on the response of the beam are classified.  
Results presented both analytically and numerically in this paper are 
readily applicable in engineering design and analysis and for further 
investigation in structural dynamics. 
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1.0 Introduction 
 This paper scrutinizes the practical engineering problem of the forced vibrations of prestressed finite 
beam under the actions of fast traveling concentrated forces.  Applications of this class of problems are 
enormous.  It is applicable in studying electromagnetic phenomenon that arose from electrical machinery, 
communications equipment and computer chips.  Applications also includes the response of railroad rails to 
moving trains, the response of bridges and elevated roadways to moving vehicles, machine chain and belt drives, 
computer tape drives, floppy disks and video cassette recorders all these and many more examples are indicated 
in [1-10]. 
 Generally, it is well known that structural vibration problems are modeled either as a moving force 
problems or moving mass problems.  There exist very large bodies of literature devoted to these classes of 
problems few example of these can be seen in [10-15].  When fast traveling heavy loads traverses on a structure, 
its effect on such structural members are dual, on one hand is the gravitational effects of the moving load while 
on other hand are the inertia effects of the moving mass.  The former is termed the moving force problem while 
the later is termed the moving mass problem. 

Structural dynamics problems (whether moving force or moving mass) have been modeled with or 
without foundation.  Few examples of beam models in literatures in which the elastic structures subjected to 
traveling loads were not placed on elastic foundation can be seen in [16-20].  It is note worthy however, that 
elastic solid structures (Membrane, Rods, Beams, Plates or shells) on elastic foundation has a lot of practical 
applications in Mathematical physics, Applied Mathematics and Engineering.  In particular, structural members 
on elastic foundations are commonly used in several applications such as roadways, runways, rail road tracks, 
submerged pipes etc. 
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Studies on elastic structures resting on elastic foundation are numerous in literatures references [21-27] 

presented handy examples of such problems.  In all these studies nevertheless, elastic foundations of constant and 
linear rigidity has been the form of the foundations commonly employed.  Analysis of beams on non-linear 
elastic foundation is not common in literatures.  To the best of authors knowledge, the dynamical system 
involving the problem of the prestressed damped elastic beam resting on exponentially decaying foundation and 
subjected to fast traveling loads does not exist in literature. 

Thus, this paper assesses the dynamic response of prestressed finite damped thin beam resting on non-
uniform elastic foundation (whose rigidity is of exponential type) and under the actions of fast traveling heavy 
concentrated forces.  The specific objective is to obtain a closed-form solution to this beam problem and to 
classify the effects of some beam parameters namely; axial force, foundation moduli and internal damping on the 
vibrating system. 
 
2.0 The mathematical formulation 
 Consider the motion of a uniform simply supported finite beam under tensile stress which rest on elastic 
foundation of the exponential rigidity.  The concentrated forces traversing on the beam is assumed to move with 
constant velocity type of motion. According to the simple beam theory of flexures, the equation of motion with 
damping included of the prestressed elastic thin beam is given by the fourth order partial differential equation  
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where 
EI is the flexural rigidity, ),( txV is the transverse displacement response of the vibrating beam, x is the spatial 

coordinate, t is the time, N is the axial force, µ is the mass per unit length, 0ε is the damping coefficient, K(x) is 

the non-uniform elastic foundation function and P(x,t) is the traversing load.  
Since the beam is assumed to have simple support at both ends, the boundary conditions are thus given as  
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and the initial conditions are 

t

xV
xV

∂
∂== )0,(

0)0,(      (2.3) 

In this study, the traversing load is assumed to be of constant magnitude so that  

( )tcxPtxP m−= δ),(      (2.4) 

mc is the velocity of the mth particle of the system and we shall use elastic foundation of exponential rigidity 

given by     
xeKxK λ−= 0)(     (2.5) 

whereλ is a constant and 0K is the foundation constant. 

Using (2.4) and (2.5) in equation (2.1) we have, 
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In what follows, solution to the fourth order partial differential equation (2.6) governing the motion of 
the thing beam under the actions of concentrated moving forces is sought.  This beam problem can be handled 
analytically or numerically, but analytical technique is desirable as the solution so obtained sheds more light on 
some vital information about the vibrating system. 
 
3.0 The solution techniques 
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 In this paper, in order to compute the transverse deflection ),( txV of the vibrating beam, use is made 

of mode superimposition technique.  By this technique the transverse deflection of the beam can be written as 
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where )(tYm are coordinates in modal space and )(xU m  are the normal modes of free vibration written as 
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where the constants Ak, Bk and Ck define the shape and amplitude of the beam vibration.  Their values depend on 
the boundary condition associated with the structure.  For beams with simple supports, it can be shown that Ak = 

Bk = Ck = 0 and 
L

m
m

πλ = . Thus the transverse deflection of a simply supported elastic beam, using an 

assumed mode method and taking into account equation (3.2) can be written as  
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Substituting equation (3.3) into the governing equation (2.6) and after some simplifications and rearrangements 
we obtain 
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The solution technique requires that the RHS of equation (3.4) be orthogonal to the function
L

xkπ
sin .  Thus, 

multiplying equation (3.4) by 
L

xkπ
sin  and integrating from 0 to L with respect to x after some simplifications 

and rearrangements yield 
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we note that the dirac delta function has the property that 
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Thus in view of equation (3.7), equation (3.5) can be written after some rearrangements as 
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Now considering only the mth particle of the dynamical system we have 
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Subjecting the second order ordinary differential equation (3.10) to a Laplace transform 
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in conjunction with the initial conditions defined in (2.3), yields the following algebraic equation  
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which after some simplifications and rearrangements yields 
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In order to obtain the Laplace inversion of equation (3.13), we shall adopt the following representations 
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So that the Laplace inversion of equation (3.15) is the convolution of fi’s and g defined as  
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Thus the Laplace inversion of equation (3.13) is given by 
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Thus in view of  equation (3.17) taking into account integrals (3.18) we have 
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Using the expression (3.19) in equation (3.1) we have 
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which represents the transverse displacement response of prestressed damped thin beam resting on exponentially 
decaying foundation and subjected to fast moving forces. 

It can be shown, following the same procedures as those used in [19] that the series solution (3.20) 
converges rapidly. 
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4.0 Discussion of analytical solution 
In any study concerning a vibrating system, resonance phenomenons is of great concern to researchers 

or in particular, design engineers.  Because, the transverse deflection of elastic beams subjected to fast traveling 
loads may grow without bound.  It is clearly seen from equation (3.18) above that a prestressed damped thin 
beam resting on exponentially decaying foundation and subjected to fast moving loads will experience resonance 
effects whenever 

22
1 βα −=  or 22

2 βα −=     (4.1) 

and the speed at which this occurs is termed the critical speed and is given by 
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5.0 Illustrative examples 
 To illustrate the theory proposed in this paper numerically, the velocity of the fast moving concentrated 
loads is taken to be 8.128m/s where the span L of the beam is taken to be 12.192m.  The value of flexural rigidity 

EI is 6068242, the values of foundation moduli are varied between 4000
3/ mN  and 400000

3/ mN , the 

values of axial force N are varied between 20000 and 2000000N .  In figure 5.1, the transverse displacement 
response of a prestressed finite thin beam resting on exponentially decaying foundation and under the actions of 
traveling concentrated forces is displayed. It is clearly seen that when the value of foundation moduli K0 is fixed 

and for fixed value of the damping coefficient0ε , the displacements of a prestressed finite thin beam resting on 

exponentially decaying foundation and traversed by concentrated moving forces decreases as the values of axial 
force N increases.   
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Figure 5.1: The transverse displacement response of a simply supported damped beam  

resting on exponentially decaying foundation and subjected to moving forces for various 
values of axial force N and for fixed values of foundation moduli K0 = 40000 and damping 

coefficient ε0 = 76 

___ N = 0, …. N = 20000, _ _ _ _N = 200000, …… N = 2000000 
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Figure 5.2: The deflection profile of a simply supported damped beam resting on exponentially  

decaying foundation and subjected to moving forces for various values of foundation 
moduli K0 and for fixed values of  axial force N = 20000 and damping coefficient  ε0 = 76 

 
 
 

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Travelin time (t)

B
ea

m
 T

ra
n

sv
er

se
 d

ef
le

ct
io

n
 V

(L
/2

,t
)

 
 

Figure 5.3: The response amplitude of a simply supported damped beam 
resting on exponentially decaying foundation and subjected to moving 

forces for various values of damping coefficient ε0 and for fixed values of 
foundation moduli K0=40000 and axial force N=20000 

 
Figure 5.2 Depicts the deflection profile of a prestressed finite thin beam resting on exponentially 

decaying foundation and under the actions of concentrated forces and is shown from the figure that as the values 

of foundation moduli K0 increases, for fixed values of axial force N and damping coefficient  0ε  , the response 

amplitudes of the beam decreases. 
Furthermore, the response amplitude of a prestressed finite thin beam resting on exponentially decaying 

foundation and under the actions of moving concentrated forces is shown in figure 5.3.  It is deduced from the 

____ K = 0, …… K = 400000, _ _ _ _ K = 4000000 

 ____ ε0 = 76, …… ε0 = 236, ----- ε0 = 393, ….. ε0 = 550 
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figure that for fixed values of axial force N and foundation moduli K0, the amplitudes of the damped elastic beam 
decreases as the values of the damping coefficient ε0 increases 
 
6.0 Concluding remarks 
 In this study, the dynamic response of a prestressed damped beam resting on exponentially varying 
magnitude foundation to fast traveling loads has been investigated.  The fourth order partial differential equation 
governing the motion of the elastic beam is handled using an assumed mode technique and the method of integral 
transform and a closed form solution of the beam problem is obtained.  The advantage of these techniques is that 
solution so obtains shed light on vital information about the vibrating system.  Analytical and numerical results 
show that the higher the values of foundation stiffness K0 the lower the deflection profile of the thin beam.  
Similarly, as we increase the value of axial force N the transverse displacement response of the elastic beam 
increases.  This new results are in perfect agreement with existing results.  Furthermore, as the value of damping 
coefficient increases, the amplitude of the vibrating beam reduces.  Finally, it is found that as we increase the 

values of foundation stiffness K0, axial force N and damping coefficient 0ε  the critical speed of the vibrating 

system involving prestressed elastic thin beam under the actions of concentrated moving forces increases and the 
risk of resonance is sufficiently reduced. 
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